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Introduction

Welcome to the Third Workshop on Bridging Human–Computer Interaction and Natural Language
Processing!

The rapid advancement of natural language processing (NLP) research such as recent large language
models has led to a variety of language technologies spanning a wide range of domains, such as conver-
sational search and writing assistance. Those models are trained on vast amounts of data generated by
people and rely on human feedback for continual improvement. While this widespread adoption igni-
tes excitement, it raises pressing concerns and challenges in NLP research, such as real-world evaluation,
bias and fairness, and model interpretability and explainability. Meanwhile, the field of human–computer
interaction (HCI) develops rigorous methods for 1) studying and understanding human behavior to design
technologies and 2) understanding how people use those technologies. Such a human-centered approach
manifested in substantial efforts to understand the socio-cultural dynamics of data curation, to deve-
lop frameworks and tools to audit biases and ethical issues in intelligent systems, and to study people’s
interaction with language technologies and its impact on people’s behavior.

This workshop aims to bridge the NLP and HCI communities to allow members of the NLP community
to learn why, whether, and how methods and theories from HCI might be useful in advancing core NLP
work, as well as allowing members of the HCI community to learn how advances in NLP might shape
HCI research and practice centered around language technologies.

We are delighted to continue the effort of two previous editions of this HCI+NLP workshop at EACL
2021 and NAACL 2022 and bring the third edition to NAACL 2024. In this workshop we present eleven
papers, of which nine are archival papers, and two are non-archival papers to be presented at the workshop
but not included in the proceedings.

We would like to thank everyone who submitted their work to this workshop, as well as the program
committee for their insightful review and feedback. We would also like to thank our invited speakers:
Lydia Chilton and Sherry Tongshuang Wu.

We hope you find this workshop enjoyable! — Su Lin Blodgett, Amanda Cercas Curry, Sunipa Dev,
Michael Madaio, Ani Nenkova, Diyi Yang, and Ziang Xiao
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Abstract
The introduction of conversational systems
have made synthesized speech technologies
common tools for daily activities. However,
not all synthetic speech systems are designed
with the needs of people with disabilities in
mind. This paper describes a study in which
198 people – 80 participants with self-reported
disabilities and 118 participants without – were
recruited to listen to navigation instructions
from a spoken dialogue system with different
prosodic features. Results showed that slowing
down speech rate aids in participants’ number
recall, but not in noun recall. From our re-
sults, we provide suggestions for developers
for building accessible synthetic speech sys-
tems.

1 Introduction

The introduction of conversational systems such
as Apple’s Siri and Amazon’s Alexa have made
synthesized speech technologies common tools for
daily activities. However, people with disabili-
ties still struggle to interact with synthetic speech
systems (Vieira et al., 2022). On the NLP side,
current work in accessibility focuses on enhancing
system or model functionality. Examples include
finding appropriate data to train deep learning mod-
els that can be tailored to people with disabili-
ties (Yaneva et al., 2017), or examining negative
language model biases against disabilities (Venkit
et al., 2022). Yet, user evaluation of these models
deployed in systems are limited. On the other hand,
past work in HCI and speech systems have noted
the importance of using appropriate prosody to
achieve better user understanding and recall of the
system outputs. (Duffy and Pisoni, 1992; Mirenda
and Beukelman, 1987; Paris et al., 2000; Wester
et al., 2016; Rodero, 2017). To tie together per-
spectives from both NLP and HCI, we conducted

a study in which user recall of instructions from
an existing spoken dialogue system was evaluated
in order to (1) determine what speech features are
most beneficial for user recall of information, and
(2) decide on future features to implement in the
system. We recruited 198 people (with and with-
out disabilities) and asked them to recall informa-
tion under speech conditions which had either (1)
slowed down speech or (2) pauses before keywords
in the instruction. Furthermore, we grounded our
study to the realm of understanding navigation in-
structions, which is a challenging setting because it
requires users to remember exact numeric entities
(e.g., departure times, building numbers) and noun
entities (e.g., unfamiliar street names) in order to
navigate effectively.

Our results showed that across all participants
(with and without disabilities), slowing down
speech rate aided in recalling numeric entities, even
as the number of numeric entities in an instruction
increased, but was less effective for noun entity
recall. Furthermore, in speech conditions where
breaks were inserted before numeric and noun enti-
ties, participants in general had lower performance
in information recall. Our findings suggest that
developers may be able to make adjustments that
promote overall accessibly. In addition, appropri-
ate cues for different types of information (i.e.,
numeric vs. noun) should be considered.

2 Related Work

Appropriate prosody in synthetic speech systems
is important since synthetic speech often lacks nat-
ural cues and pacing found in human voices. Previ-
ous works have shown that inappropriate or absent
prosodic cues led to large performance gaps in re-
call tasks from natural and synthetic speech (Paris
et al., 2000), and that human voices were preferred
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over synthetic voices as task complexity increases
(Rodero, 2017). On the other hand, appropriate
prosodic cues can improve peoples’ abilities to dis-
ambiguate information – for example, distinguish-
ing between similar spoken mathematical expres-
sions (Gellenbeck and Stefik, 2009). Furthermore,
adding appropriate prosodic cues can decrease per-
formance gaps between different age groups in
understanding speech (Stine and Wingfield, 1987;
Wingfield et al., 1992; Langner and Black, 2005;
Wolters et al., 2007; Roring et al., 2007). Some
existing NLP systems have taken this information
into account. For instance, CMU GetGoing (Mehri
et al., 2019) is a trip-planning dialogue that in-
troduced attention-grabbing prefixes and allowed
“barge-in" to provide easier interaction for seniors.
However, many modern spoken dialogue systems
still fail to capture nuances of interaction for people
with disabilities (Vieira et al., 2022). While pre-
vious work such as Koul (2003) showed that syn-
thetic speech comprehension among people with
disabilities were influenced by the complexity of
task and acoustic-phonetic features, our study dif-
fers from previous work in that we grounded our
study in a trip-planning task. This task is challeng-
ing to users (i.e., recalling unfamiliar street names),
yet is important for independent daily travel, es-
pecially for people who are dependent on public
transit.

3 Overview

To analyze the effects of speech prosody on infor-
mation retention, we recruited participants with
108 and without self-reported disabilities to listen
to 109 audio clips containing navigation instruc-
tions. The outline of our paper is as follows: in
Section 4 we describe the audio clip collection pro-
cess for the study. In Section 5 we explain the
study design and participant recruitment. Finally,
in Sections 6, 7 and 8 we provide study results and
further discussion.

4 Audio Clips Collection

Audio clips were collected from GetGoing, a spo-
ken dialog system that provides step-by-step navi-
gation instructions to aid senior users in trip plan-
ning. GetGoing was previously deployed in South-
western Pennsylvania and could be accessed by
users through telephone. It follows a traditional

pipeline dialog system architecture with natural
language understanding and speech modules. No-
tably, the system uses Google Maps API1 to curate
sets of directions between two locations. Further-
more, the system uses Vonage’s text-to-speech API
2 to output synthesized speech to the user.

The audio clips collection process involved three
stages. In the first stage, GetGoing was used to
generate navigation instructions using random start
and end destination points around Southwestern
Pennsylvania. In the second stage, a subset of the
generated instructions was selected according to
two information parameters defined in Section 4.1
to ensure our instruction set was well-balanced.
This resulted in 48 unique instructions. In the third
stage, speech conditions (described in Section 4.2)
were created by either slowing down the speech or
inserting breaks before keywords using the Vonage
API. We recorded the speech output of GetGoing
for each of the 48 instructions under each condition,
and ended up with a total of 192 audio clips.

4.1 Navigation Instruction Parameters

To ensure the curation of a balanced set of naviga-
tion instructions from GetGoing, we defined each
instruction by two information parameters. The
first parameter is the number of nouns entities in
an instruction. Noun entities included street and
building names (e.g., “Frew St", “UPMC Presby").
The second parameter is the number of numeric en-
tities in an instruction. Numeric entities included
any word that contained a number (e.g., “9:30pm",

“7th Street"). Certain items in an instruction were
counted as both a noun entity and numeric entity.
For instance, in the instruction “Take the bus to Lib-
erty avenue and 7th Street.", the name “7th Street"
was counted as a noun entity and numeric entity.
We used noun and numeric entities as information
parameters for two reasons. First, when navigating
it is important to remember names, streets, and
times. Second, our instructions are not multi-step
and do not contain any other major pieces of infor-
mation.

Next, we defined eight unique parameter com-
binations, or groups, which are listed in Table 1.
Each parameter group contained 1-2 noun enti-

1https://developers.google.com/maps/
documentation/

2https://www.vonage.com/developer-center/
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Group Numeric Noun Words
Entities Entities mean sd

1 3 2 17.3 3.6
2 2 2 18.7 3.6
3 1 2 19.2 3.9
4 0 2 14.2 3.6
5 3 1 16.2 3.4
6 2 1 15.8 3.0
7 1 1 11.8 2.5
8 0 1 11.3 2.4

Table 1: Navigation instruction parameter groups. Each
group contains a set number of noun and numeric enti-
ties per instruction. The average number of words per
instruction in each group is listed on the right column.

ties and 0-3 numeric entities. For each parame-
ter group, six instructions were randomly selected
from the inital set of instructions collected from
GetGoing, resulting 48 unique instructions. Ta-
ble 7 in the Appendix lists all instructions and their
parameter values.

4.2 Audio Clip Conditions

Using Vonage’s text-to-speech API, we created
four speech conditions:

1. Default: The default Vonage API voice.

2. Default-slow: The Vonage API voice with
the speech rate set to “slow".

3. Break-short: The default Vonage API voice
with a 5ms break before every noun and nu-
meric entity.

4. Break-long: The default Vonage API voice
with a 15ms break before every noun and nu-
meric entity.

We selected these conditions since previous
work has shown that inserting pauses can aid
in speech understanding, especially for seniors
(Langner and Black, 2005; Wolters et al., 2007).
While other prosodic cues and its effects on infor-
mation retention can be explored, we decided to
focus on these four conditions for the scope of our
experiments.

We applied each of the four conditions to each of
the 48 instructions to create 192 audio clips. Table
2 shows the duration of clips according to each
condition. Clips in the Default condition had the

Condition Clip Duration (s)
mean sd

Default 7.6 1.9
Default-slow 8.8 2.0
Break-short 7.8 1.9
Break-long 8.0 2.0

Table 2: Average audio clip lengths within the four
speech conditions.

shortest average duration, while clips in Default-
slow had the longest average duration.

5 Study Design

In this section, we describe the study design, pro-
cedure, and participants. All participants were re-
cruited on Prolific.co. From there, they were di-
rected to a Qualtrics page to consent to the study.
After consenting, participants were redirected to
a website to do the tasks. An example of the task
interface is provided in Figure 4 in the Appendix.
Each participant listened to 24 audio clips and en-
tered what they heard in a text box on the website.
Participants listened to six clips from each of the
four conditions. Each of these six clips were ran-
domly sampled from instructions from different
parameter groups. All clips were presented to the
participant in random order, and the website pre-
vented participants from listening to the clip more
than once in order to test recall. Once the partici-
pants finished the tasks, they were redirected back
the the Qualtrics page where they answered a short
questionnaire, which is included in Table 6 in the
Appendix.

5.1 Participants
We recruited 198 adult participants from the U.S.
through Prolific.co (two additional participants did
not complete the study). The participants ages
ranged from 18 to 78 years (mean = 37.3, sd =
14.3), and the age breakdown is shown Table 4.
The participants reported their genders as follows:
105 participants self-identified as female and 82
as male, 10 as other genders, and 1 did not dis-
close their gender. The majority of participants
reported English as their native language (n = 192).
Furthermore, the majority of participants reported
that they used a computer daily on a scale from “1
(Never)" to “7 (Often - daily)" (mean = 6.85, sd =

3



Self-Reported Participants
Disabilities (n=198)

cognitive disability 12
communicative disability 3

dexterity disability 9
hearing impairment 13

mental disability 39
mobility disability 17
vision impairment 23

other 8
none 118

Table 3: Participants’ self-reported disabilities. Some
participants have multiple self-reported disabilities

Age Group Participants
(n=198)

18-24 35
25-34 70
35-44 41
45-54 21
55-64 19
65+ 12

Table 4: Participants’ ages.

0.51, min = 4, max = 7) and occasionally used a
voice assistant (mean = 3.58, sd = 2.09, min = 1,
max =7).

We used filters from Prolific.co to recruit par-
ticipants with and without disabilities. We first
recruited 98 participants without any selection cri-
teria. We then used five different Prolific filters
to recruit people with varying disabilities. More
specifically, we recruited participants who indi-
cated they have (1) vision, (2) hearing, (3) mobility,
(4) chronic conditions, and (5) cognitive disabili-
ties on Prolific. Twenty participants were recruited
using each filter. In addition, we asked participants
to self-report any disabilities during the post-study
questionnaire (shown in Table 6 in the Appendix)
to handle discrepancies and ambiguity from the
Prolific filter categories. The breakdown of partici-
pant self-reported disabilities is reported in Table 3.

6 Results

We grouped participants in two categories: those
who had self-reported disabilities and those who

did not, and analyzed recall of noun and numeric
entities across the four speech conditions. While
it is possible to examine the subgroups of self-
reported disabilities individually (e.g., all partici-
pants with a mobility disability), we avoided this
since the subgroups are imbalanced with respect
to the number of participants. In addition many
participants reported more than one disability.

6.1 Noun Retention Accuracy

Annotations for nouns were done manually, and
each noun was assigned as “correct" or “incor-
rect" by phonetic similarity since participants tran-
scribed text from audio. For example, “Knight St"
was considered to be the same as “Nite Street".
Figure 1 shows the results.

In clips with one noun, little difference in noun
accuracy (averaged across all conditions) was ob-
served among people with self-reported disabilities
(mean = 94.27) and those without (mean = 90.61.
In clips with two nouns, the noun accuracy dropped
in both groups, but the difference still remained
small between people with self-reported disabili-
ties (mean = 46.35) and those without (mean =
43.08). Large changes were not observed in noun
accuracy across different conditions among both
groups.

6.2 Number Retention Accuracy

In clips with one number, little difference in num-
ber accuracy (averaged across all conditions) was
observed between people with self-reported dis-
abilities (mean = 79.38) and those without (mean
= 78.25). In clips with two numbers, the number
accuracy dropped in both groups. However, there
was greater decrease in performance for people
with self-reported disabilities (mean = 36.46) than
those without (mean = 43.08). In clips with three
numbers, little difference was observed in the num-
ber accuracy between people with self-reported dis-
abilities (mean = 34.17) and those without (mean
= 35.03).

Unlike noun accuracy, differences in number
accuracy were noticeable across conditions. For
instructions with ≥ 2 numbers, participants (those
with and without self-reported disabilities) in gen-
eral performed the highest in number recall the
default-slow. Meanwhile participants performed
the worst in break-short, followed by break-long.
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Figure 1: Noun and number recall accuracy of participants across conditions. The x-axis reflects the number of
noun entities and numeric entities in a clip.

Notably, default-slow was the only condition which
obtained higher accuracy than default, which sug-
gested an overall slower speech rate was more ben-
eficial in number recall than inserted pauses before
numeric information.

7 Further Analysis

7.1 Parameter Lengths

Since the content of the information parameters
values can differ – for instance, recalling a short
and common street name (e.g., “Main St") versus
a long street name (e.g., “Presto-Sygan Rd") – we
further analyzed participants’ retention across dif-
ferent conditions with respect noun and number
lengths.

7.1.1 Noun Length
To evaluate noun recall with respect to its length
(i.e., the number of characters in a noun) we used
a finer resolution metric: first, given the partici-
pant’s transcription, t̂, and the true transcription,
t, we applied Metaphone (Philips, 1990) which
converted the transcriptions to standardized string
representations of its English pronunciations. Us-
ing these representations, m̂← Metaphone(t̂) and
m ← Metaphone(t), we then measured noun re-
tention by taking the Levenshtein distance between
m̂ and m. Figure 3 shows the results. Little differ-
ence in noun retention was seen between the condi-

tions even as noun length increased across all par-
ticipants. Furthermore, little difference in perfor-
mance was noticed between participants with and
without self-reported disabilities as noun length
increased. However, noun retention rapidly de-
creased starting from nouns with ≥ 16 characters
(Figure 3). This suggested that very long nouns
should be kept to a minimum in order to help users
retain information.

7.1.2 Number Length
Figure 2 shows number accuracy across different
conditions as number length – the number of digits
in a number – increased. Across all participants,
number recall was highest in the default-slow con-
dition as number length increased for both partici-
pants with and without self-reported disabilities. In
addition, default-slow was also the only condition
that had higher number accuracy than the default
condition.

7.2 Retention by Age Group
Since our study was motivated by previous work
in improving accessibility in dialogue system for
seniors, we examined the effects of the four condi-
tions on all participants with respect to their ages.
As shown in Table 5, the participants’ noun recall
(averaged across all conditions) decreased slightly
as age increased: from mean acc = 68.0 for par-
ticipants aged 25-35 to mean acc = 65.3 for par-
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Figure 2: Retention accuracy of participants as the number of digits in a number increases.

Figure 3: Participants’ recall as proper noun length increase. Proper noun recall is measured by Levenshtein
distance between the Metaphone (Philips, 1990) representation of the user responses (a higher value indicates lower
performance).

Age Noun Acc. Number Acc.
mean sd mean sd

18-24 69.0 46.3 47.5 49.9
25-34 68.0 46.7 52.4 49.9
35-44 68.1 46.6 52.8 49.9
45-54 63.7 48.1 48.0 50.0
55-64 65.3 47.6 44.4 49.7
65+ 65.5 47.5 42.1 49.4

Table 5: Noun and number accuracy by age group (av-
eraged across all condition)

ticipants aged 65+. As shown in Figure 5 in the
Appendix, when one noun was present in a clip,
were no large changes in performance across age
groups among the different conditions. However,
when two nouns were present, performance fluctu-
ated in different conditions as age increased.

Unlike noun recall, performance in number re-
call noticeably decayed as age increased: from
mean acc = 52.4 for participants aged 25-35 to
mean acc = 42.1 for participants aged 65+ as

shown in Table 5. Figure 5, shows when one
number was present in a clip, participants’ per-
formance in the conditions were similar in younger
age groups, but differed in older age groups. No-
tably, when there were ≥ 2 numbers in an instruc-
tion, performance in default-slow was often bet-
ter than the other conditions (similar to results
in Section 6.2). These findings supported pre-
vious work which showed that slower speech is
preferred among older populations (Langner and
Black, 2005; Wolters et al., 2007; Mehri et al.,
2019).

8 Discussion

There are several implications that can be drawn
from our findings. First, from our experiments
in Section 6.2, we observed that speech condi-
tions did not lead to large differences on noun
retention between (1) individuals with and with-
out self-reported disabilities, and (2) across age
groups. In addition, speech conditions had little
effect on noun retention even as noun length in-
creased across all participants as highlighted in
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Section 7.1.2. This suggests that system designers
may have some flexibility when presenting nouns
to users, as long as the nouns (i.e., names, streets,
places) are not long. However, additional care may
be taken into consideration when some nouns are
more important to remember than others, and this
is left as a direction for future research

Next, with respect to number retention, in Sec-
tion 6.1 we observed that having a slower overall
speech rate was helpful for number recall, while in-
serting pauses before numbers had negative effects.
Furthermore, results in Section 7.1.1 showed that a
slower overall speech rate also aided in number re-
tention as length of numbers (i.e., number of digits
in a number) increased. However, a follow up ques-
tion is why participants in general performed worse
in break-short and break-long conditions compared
to default-slow and default conditions with respect
to number retention. A possible explanation may
be that added pauses before every key piece of in-
formation caused participants to focus on too many
cues. This can overload the participants with infor-
mation, and cause forgetting. Further investigation
on where to place appropriate pauses is beneficial.
Overall, these findings suggest that system develop-
ers should take into account speech prosody when
communicating numbers, regardless of whether the
user has a disability.

Interestingly, our study showed little difference
in noun and number recall between participants
with and without self-reported disabilities in gen-
eral. A possible explanation is that participants
did our study online, and therefore had their en-
vironment and computing device set up for good
listening. For example, people with hearing loss
may have turned up the volume on their speakers,
worn headphones, or enabled a Bluetooth connec-
tion to hearing aids. Hence, future research should
explore use in less optimal conditions (e.g., using
a phone from a city street).

Based on our work, we have several recom-
mended directions for future research. One point
to consider is limiting prosodic cues based on infor-
mation priority. For instance, rather than inserting
pauses before every noun and number, only insert-
ing pauses before long numbers and uncommon
nouns may lead to a positive effect on recall. Fur-
thermore, we acknowledge that our study is limited
to noun and number recall, and that our analysis

considered these parameters to be independent of
each other. In realistic settings, other important
pieces of information may also be present in navi-
gation directions. For instance, instructing the user
to “turn right on Frew St and go up the ramp to
the bus station" adds additional load to remember
specific remember actions they must take. Also,
some pieces of information are more important for
the user to understand and recall than others. For
example, a user may prioritize recalling bus arrival
times over the name of their destination stop street.

Finally, finding effective prosodic features for
information retention could be explored as a prob-
lem of personalization (e.g., blind user preferences
for screenreaders). For example, allowing users to
select voice styles alongside information presenta-
tion styles can allow for easier usage for individu-
als with different disabilities. Finding successful
ways to achieve this goal also requires further in-
vestigation on how people with disabilities interact
with spoken dialogue systems.

9 Conclusion

In this study, we recruited people with and with-
out disabilities and evaluated their information re-
tention in different speech conditions. We found
that having an overall slow speech rate was use-
ful for number retention across all participants
(with and without self-reported disabilities), but
was less effective in improving noun retention. We
also showed that inserting breaks before nouns and
numbers did not improve in information retention.
Thus, finding appropriate prosodic cues for differ-
ent pieces of spoken information is an interesting
direction to explore.

Ethics and Limitations

Our study was approved by our Institutional Re-
view Board. Each participant received $7.50 USD
for participating in the study, and took on average
19 minutes (SD = 12) to complete the study. While
investigating information retention from dialogue
systems across different languages and cultures is
important, we note our recruitment was limited
to participants from the US and participants were
mostly native English speakers.
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Appendix

1. What is your age?

2. What is your native language?

3. What other languages do you speak?

4. What is your gender?

5. Are there other aspects of your identity that are important to you (racial, ethnic, or otherwise)?

6. How often do you use a computer? Answer on a scale from 1 to 7.

1 = Never. 7 = Often (daily).

7. How often do you use a smart voice assistant (Siri, Alexa, etc)? Answer on a scale from 1 to 7.

1 = Never. 7 = Often (daily).

8. Do you have a disability that you would like to disclose? (Select as many as you like.)

(a) I have a mobility device/disability
(b) I have a dexterity disability
(c) I have a vision impairment
(d) I have a hearing impairment
(e) I have a communication impairment
(f) I have a cognitive impairment
(g) I have a mental issue
(h) Other (please describe)
(i) I prefer not to disclose
(j) None

Table 6: Post-Study Questionnaire
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Clip Noun 1 Noun 2 Number
1

Number
2

Number
3

Next, you should Walk for about 14 mins to Fifth avenue + Beech-
wood.

Fifth avenue Beechwood 14 Fifth -

Next, you should Take the 53L to Fourth avenue at Wood Street It
will depart at 9:51pm.

Fourth avenue Wood Street 53 9:51 -

Next, you should Walk for about 4 mins to 4200 Fifth avenue. Fifth avenue - 4 4200 Fifth
Next, you should Walk for about 4 mins to Baum Blvd + Liberty
avenue.

Baum Blvd Liberty avenue 4 - -

Next, you should Walk to 8th Street + 6th StreetNS at 9:37pm. 8th Street 6th StreetNS 9:37 8th 6th
The final step is to Take the 51 to Brownsville Rd. It will depart
at 9:58pm.

Brownsville Rd - 51 9:58
PM

-

The final step is to Walk for 15 mins to UPMC Presby. UPMC Presby - 15 mins - -
The final step is to Take the bus to Liberty avenue + 7th Street. Liberty avenue 7th Street 7th - -
The first thing that you want to do is to Walk for about 18 mins to
South Busway + Pioneer avenue Ramp far side.

South Busway Pioneer avenue Ramp
far side

18 mins - -

Next, you should Turn left onto Panther Hollow Road Panther Hollow Road - - - -
The final step is to Take the bus to Fifth avenue + University Place
It will depart at 6:51pm.

Fifth avenue University Place Fifth 6:51
PM

-

Next, you should Walk for about 25 mins to 400 Presto-Sygan Rd Presto-Sygan Rd - 25 mins 400 -
The first thing that you want to do is to Take the 88 to 7th Street+
Penn avenue. It will depart at 9:19pm.

7th Street Penn avenue 88 7th 9:19
PM

The final step is to Take the 89 to Frick Park Frick Park - 89 - -
The first thing that you want to do is to Walk for about 5 mins to
Wood Street+ Third avenue far side.

Wood Street Third avenue far side 5 mins - -

The first thing that you want to do is to Walk to Island avenue +
Chartiers near side .

Island avenue Chartiers near side - - -

Next, you should Take the 21 to Stanwix Street. It will depart at
9:16pm.

Stanwix Street - 21 9:16
PM

-

The final step is to Turn right on Forest avenue Forest avenue - - - -
The first thing that you want to do is to Walk for about 4 mins to
46 18th Street.

18th Street - 4 mins 46 18th

Next, you should Take the 88 to Liberty avenue + 17th Street. It
will depart at 7:01pm.

Liberty avenue 17th Street 88 17th 7:01
PM

The first thing that you want to do is to Take the 71D to Hamilton
avenue + Lang. It will depart at 9:45pm.

Hamilton avenue Lang 71D 9:45
PM

-

The first thing that you want to Walk for 16 mins on Frew Street. Frew Street - 16 mins - -
The final step is to Walk for about 5 mins to 7101 Frankstown
avenue.

Frankstown avenue - 5 mins 7101 -

The final step is to Walk for about 1 min to 2900 7th Street. 7th Street - 1 min 2900 7th
The final step is to Take the 70D to Stanwix Street. Stanwix Street - 70D - -
Next, you should Walk to Sarah Street+ East Carson Street. Sarah Street East Carson Street - - -
The final step is to Take the 31 to Washington avenue + James
Streetfar side . It will depart at 10:26pm.

Washington avenue James Streetfar side 31 10:26
PM

-

The first thing that you want to do is to Take the 71B for about 15
mins to 395 Jacks Run Road.

Jacks Run Road - 71B 15 mins 395

Next, you should Take the bus to Freeport Rd + Butler. Freeport Rd Butler - - -
The first thing that you want to do is to Take the 13 to Forest
avenue.

Forest avenue - 13 - -

Next, you should Walk for 10 mins McKnight Rd. McKnight Rd - 10 mins - -
The first thing that you want to do is to Take the 56 to Brownsville Brownsville - 56 - -
The final step is to Walk for about 2 mins to Liberty avenue +
Fifth avenue.

Liberty avenue Fifth avenue 2 mins Fifth -

The first thing that you want to do is to Walk to 5th Street + 17th
Street at 10:45pm.

5th Street 17th Street 5th 17th 10:45
PM

The final step is to Take bus 61 for about 2 mins to 5235 Clairton
Boulevard.

Clairton Boulevard - 61 2 mins 5235

The first thing that you want to do is to Take the 28X to Forbes
avenue. It will depart at 9:27pm.

Forbes avenue - 28X 9:27
PM

-

The first thing that you want to do is to Walk for 16 mins to 300
Monongahela avenue.

Monongahela avenue - 16 mins 300 -

Next, you should Take the 34 to Shadyside Village Shadyside Village - 34 - -
Next, you should Take the bus to Cambronne Street+ Winhurst. It
will depart at 9:58pm.

Cambronne Street Winhurst 9:58
PM

- -

The final step is to Walk to 51th Street + 19th Street at 9:45pm. 51th Street 19th Street 9:45
PM

51th 19th

Next, you should Take the 88 to Halket Street Halket Street - 88 - -
The final step is to Walk for about 2 mins to Penn avenue + Village
of Eastside Shpg Ctr

Penn avenue Village of Eastside Shpg
Ctr

2 mins - -

The final step is to Walk to Liberty avenue at Wood Street. Liberty avenue Wood Street - - -
Next, you should Take bus 19 for about 9 mins to 7034 Blackhawk
Street.

Blackhawk Street - 19 9 mins 7034

The first thing that you want to do is Take the bus to Giant Eagle
Drive + Iggle Video.

Giant Eagle Drive Iggle Video - - -

The final step is to Take the 75 to 5th avenue / Halket Street It will
depart at 10:09pm.

5th avenue Halket Street 75 5th 10:09
PM

The first thing that you want to do is to Take the bus to Sandusky
Street+ General Robinson Street. It will depart at 9:41pm.

Sandusky Street General Robinson Street 9:41
PM

- -

The first thing that you want to do is to Walk to Main Street Main Street - - - -

Table 7: Instructions
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Figure 4: Task interface
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(a) Noun recall accuracy of age groups across conditions.

(b) Number recall accuracy of age groups across conditions.

Figure 5: Noun and number recall accuracy of participants across conditions with respect to different age groups.
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Abstract

The self-rationalising capabilities of large lan-
guage models (LLMs) have been explored in
restricted settings, using task-specific data sets.
However, current LLMs do not (only) rely on
specifically annotated data; nonetheless, they
frequently explain their outputs. The properties
of the generated explanations are influenced
by the pre-training corpus and by the target
data used for instruction fine-tuning. As the
pre-training corpus includes a large amount of
human-written explanations “in the wild”, we
hypothesise that LLMs adopt common proper-
ties of human explanations. By analysing the
outputs for a multi-domain instruction fine-tun-
ing data set, we find that generated explanations
show selectivity and contain illustrative ele-
ments, but less frequently are subjective or mis-
leading. We discuss reasons and consequences
of the properties’ presence or absence. In par-
ticular, we outline positive and negative implic-
ations depending on the goals and user groups
of the self-rationalising system.

1 Introduction

Self-rationalising models produce explanations to-
gether with their primary output, often in natural
language (Marasovic et al., 2022; Wiegreffe et al.,
2022). These models have received increased atten-
tion in recent years as language generation abilities
have improved with autoregressive Transformer
(Vaswani et al., 2017) architectures, pioneered by
the GPT models (Radford et al., 2018, 2019). Nat-
ural language explanations are easily accessible to
users and flexible in the tasks they can be used for
and the types of reasoning they can express. So
far, the focus of this line of research has been on
models trained on annotated explanations for (more
or less) well-defined tasks such as commonsense
question answering (Park et al., 2018; Rajani et al.,
2019; Aggarwal et al., 2021) or natural language
inference (Camburu et al., 2018). However, the cur-
rent generation of large language models (LLMs)

can give explanations for a much broader range of
questions or instructions.

Generated explanations can be a means to im-
prove model performance (Wei et al., 2022b;
Kojima et al., 2022) and decrease hallucinations
via a feedback loop (Stammer et al., 2023); but they
are also expected to provide context for human de-
cision-making (González et al., 2021; Narayanan
et al., 2018). As LLMs typically are not explicitly
trained with annotated explanations, in contrast to
earlier models, the properties of the explanations
they provide are not obvious, making it hard to
predict the usefulness of these models’ self-ration-
alising capabilities.

Two main factors can influence the explanations
given by LLMs: the properties of the explana-
tions contained in the pre-training data, and the
properties fostered by alignment techniques such
as instruction fine-tuning (IFT; Wei et al., 2022a)
and reinforcement learning with human feedback
(Ouyang et al., 2022). Based on this, we hypothes-
ise that LLMs capture various properties of human
explanations from the large amount of human text
in the training data, including characteristics un-
common in the earlier annotated explanations, and
in particular properties that contribute primarily to
the communicative function of human explanations
(Lombrozo, 2006; Miller, 2019). Many of these
properties have been argued to be irrelevant or even
detrimental to the goals of explainable NLP, where
the aim is to understand how a system arrived at
a certain prediction; these include incompleteness
(particularly selectivity), subjectivity, the inclusion
of illustrative elements, and the ability of systems
to provide explanations even for wrong answers
(Tan, 2022; Bommasani et al., 2021; Turpin et al.,
2023). In contrast, in the field of human–computer
interaction, human-like explanations are seen more
favourably (de Graaf and Malle, 2017; Ehsan et al.,
2019), indicating tension between the various goals
and user groups of self-rationalising systems.
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The aim of this paper is to systematise properties
of human explanations and to gauge to what extent
these properties are reflected in the explanations
generated by LLMs. This knowledge can help de-
velopers and users of these models understand in
which cases the generated explanations are aligned
with specific goals, and when a model needs to be
adapted or is unfit for the intended use case. To get
insights into the properties of LLM-generated ex-
planations, we look into the Alpaca dataset (Taori
et al., 2023; Peng et al., 2023). Choosing this data-
set lets us study the properties of the explanations
generated by GPT-4 (OpenAI, 2023), the LLM
used in the construction of Alpaca. However, our
findings also have a wider scope, as Alpaca is used
for IFT and the properties it exhibits, including the
properties of the explanations contained in it, are
likely to be further propagated to derived models
fine-tuned on it.

Contributions:

• We identify typical properties of human explan-
ations, specifically such that have been pointed
out as unfit for explaining model predictions.

• We investigate in a human analysis of a subset of
Alpaca if and how frequently such properties are
attested in real-world data.

• We discuss the implications of these proper-
ties for different goals of explainable NLP,
namely safety, trustworthiness, troubleshooting
and knowledge discovery, and the corresponding
target user groups that may use LLMs.

2 Related Work

We give a brief overview of the work on self-ra-
tionalising models in §2.1. In §2.2 we summarise
arguments for and against the use of generated nat-
ural language explanations.

2.1 Self-Rationalising Models
Most past work on free-text explanations in NLP
uses data sets that include human-annotated explan-
ations (Marasovic et al., 2022; Zhao and Vydis-
waran, 2020; Narang et al., 2020). Each such data-
set focuses on a specific, well-defined task, such as
natural language inference (Camburu et al., 2018),
multiple-choice commonsense question answering
(Rajani et al., 2019; Aggarwal et al., 2021) or visual
question answering (Park et al., 2018). While the
explanations in these datasets were collected with

open instructions to make them resemble human ex-
planations, the narrow nature of the targeted tasks
can result in a template-like character of explana-
tions (Camburu et al., 2018; Wiegreffe and Mara-
sovic, 2021). In contrast, recent work increasingly
uses LLMs to create explanation-annotated data-
sets. As an example, Wiegreffe et al. (2022) sug-
gest using few-shot learning in GPT-3 to generate
explanations for larger datasets with an acceptabil-
ity filtering system that selects the most acceptable
explanation from a set of candidate explanations
generated for the same sample.

Letting a model generate explanations along
with its primary output has been shown to improve
the model’s prediction accuracy in some cases
(Liu et al., 2019; Zhao and Vydiswaran, 2020).
Recent examples are chain-of-thought prompting
(Wei et al., 2022b; Kojima et al., 2022) and tree-of-
thoughts (Yao et al., 2023), where an LLM gener-
ates intermediate reasoning steps prior to making
a prediction in a zero-shot setting, “guiding” the
model towards the right answer.

2.2 Faithfulness Versus Understandability

Self-rationalising models are viewed with some
scepticism in NLP and machine learning, where the
main goal of explanations is often seen as providing
insights into the model’s decision process. Bom-
masani et al. (2021) express doubts about free-text
explanations as a tool for understanding LLMs, as
plausible-sounding explanations may not provide
true insights into model behaviour. Tan (2022)
discusses if human explanations are suitable as
additional supervision or as ground truth, given
that humans can also provide explanations for in-
correct labels. They point out that human explan-
ations for most tasks are necessarily incomplete
and do not present valid and complete reasoning
paths. The doubts are supported by evidence that
models mimic human misconceptions (Lin et al.,
2022), which will likely affect generated explan-
ations. Turpin et al. (2023) show with prompts
containing surface biases that affect the predictions
that this bias is never reflected in the explanations.

Herman (2017) emphasizes the importance of
differentiating between descriptive and persuasive
explanations. Descriptive explanations describe the
underlying model with maximum fidelity and serve
the ethical goal of transparency, while persuasive
explanations are tailored to the human cognitive
function and preferences to build trust and under-
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standing in the end user. Similarly, Jacovi and Gold-
berg (2020) call for a separation between plausibil-
ity and faithfulness. While most works using other
explanatory techniques, such as input feature attri-
bution, implicitly or explicitly focus on descript-
ive explanations (Narayanan et al., 2018), free-text
explanations are often interpreted as persuasive,
striving for plausibility. However, Wiegreffe et al.
(2021) provide a starting point for an analysis that
quantifies faithfulness in free-text explanations by
measuring if predictions and explanations show a
correlated behaviour, e.g., under input perturba-
tions. Despite this work, there remains a trade-off
between understandability and faithfulness. As
Doshi-Velez and Kim (2017) argue, the latter is
ultimately impossible for models that are not inter-
pretable per se, which includes LLMs. Later in this
article, in §6.3, we will discuss for which goals and
users explanations can (or do not) have value if we
cannot guarantee their relation to the prediction.

Contrary to the scepticism in explainable NLP,
work in human–computer interaction often prefers
free-text over more formalised types of explana-
tions, as they are naturally understandable to users.
de Graaf and Malle (2017) argue that autonomous
systems must communicate their goals and beliefs
to people interacting with them and do so in natural
language. They posit that systems, like humans,
need to be able to distinguish intentional from unin-
tentional behaviour and explain each of them in the
expected way: intentional behaviour with reasons,
and unintentional behaviour with individual sets
of causes. Ehsan et al. (2019) argue that natural
language explanations help humans communicate
effectively with models by verbalizing plausible
motivations. Ehsan et al. (2021) agree that explain-
ability is crucial for trustworthy and accountable
human–AI collaboration, but argue that research-
ers working on explainable AI are mostly driven
by their intuitions rather than knowledge about the
intended audience. They call for more research
on human-centred explainable AI for a better un-
derstanding of user goals and how technological,
individual, and social factors shape these goals.

3 Properties of Explanations

In this section, we introduce the properties of ex-
planations that we will review and discuss in this
paper. As LLMs are largely trained on human-au-
thored text, we expect their generated explanations
to be similar to human explanations (McCoy et al.,

2023). To identify and systematise relevant prop-
erties, we take inspiration from work on how hu-
mans construct and understand explanations (Keil,
2006; Lombrozo, 2006). In recent years, such work
has even targeted the explainable machine learning
audience (Miller, 2019; Byrne, 2023).

It is important to note that human explanations
do not all share universal properties. Their nature
and structure interact heavily with the explanan-
dum, that is, the topic of the explanation. For ex-
ample, while both an everyday explanation (e.g.,
why you are late for dinner) and a mathematical
proof are human-made explanations, they have
little in common (Wilson and Keil, 1998). In this
section, we will focus specifically on properties of
human explanations that have been pointed out as
disadvantageous in the context of explainable NLP,
and that we will test for in our experiment.

3.1 Incompleteness

Human explanations are often incomplete, as the
full set of relations behind a phenomenon can be
far beyond the grasp of both the explainer and the
explainee (Keil, 2006). Incompleteness has been
pointed out as an issue for explainable NLP, as
incomplete explanations do not present valid reas-
oning paths (Tan, 2022).

The incompleteness of explanations comes in dif-
ferent shapes. In particular, explanations often (or,
depending on the interpretation of the phenomenon,
always) rely on commonsense concepts without fur-
ther specification, assuming that the conversation
counterparts share them (§3.1.1). Secondly, explan-
ations often name only a subset of all causes and
mechanisms that lead to an outcome (§3.1.2).

3.1.1 Commonsense Concepts
Human explainers make assumptions about the
knowledge and understanding of their communica-
tion partner and do not explain the concepts they be-
lieve the respective other shares (Lombrozo, 2006).
Explanations are social and follow the rules of ef-
ficient communication; therefore, only knowledge
that the explainer assumes is new to the explainee
is communicated (Miller, 2019; Hilton, 1990). For
example, assume the question “Why is Bert wear-
ing shorts?” and the explanation “He wears shorts
because he is in Malta.” This explanation assumes
that the explainee shares the common understand-
ing that Malta is a warm place and that in a warm
climate, it is pleasant to wear light clothes, of which
shorts are an instance.
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Reliance on commonsense concepts is related
to the illusion of explanatory depth (Rozenblit and
Keil, 2002), the phenomenon that people’s explan-
atory knowledge, especially related to devices and
natural phenomena (e.g. of a flush toilet), is much
more fragmental then they perceive it to be. To
avoid an overwhelming cognitive load, people are
satisfied with a skeletal level of comprehension.
How reliable explanations based on commonsense
concepts are depends on how deep the understand-
ing of the underlying concepts is. Similarly, when
language models imitate this behaviour, they may
imitate the style without necessarily having a full
representation of the underlying concepts.

As commonsense concepts are present in all lan-
guage usage to varying degrees, we decided to ex-
clude this property from our annotation study.1 A
quantitative dive into this phenomenon is left for
future work.

3.1.2 Selectivity

Humans include causes in their explanations if they
judge them to be relevant and probable (Lombrozo,
2006; White, 1995). They hardly ever expect an
explanation to contain the complete causes of an
event, nor is this feasible (Wilson and Keil, 1998).
Selecting one or two causes suffices, as long as
the selection mirrors their impact and potentially
other human preferences, such as giving priority
to events that are more recent, surprising, inten-
tional or immoral (Miller, 2019). Mittelstadt et al.
(2019) name selectivity as a fundamental property
of explanations, given that some reasons are more
relevant than others. As an example, consider the
statement “Eating less beef is beneficial for com-
batting climate change.” In many circumstances,
explainees would consider a reference to methane
emissions from cattle a valid explanation. However,
there are various other factors that could be named,
e.g. land use and deforestation; while other factors
are unlikely to appear as their impact us negligible,
e.g. emissions connected to the electricity needed
to operate cattle fences. Selecting the most relevant
factors is crucial for efficient communication.

3.2 Subjectivity

Human decision-making can include subjective and
biased criteria that are not reflected in the explan-
ations given for these decisions (Greenwald et al.,

1A preliminary study showed a low inter-rater agreement
on whether an explanation invokes commonsense concepts.

1998; Tan, 2022). On the other hand, in certain situ-
ations, humans need to reflect on their subjective
mental processes in the explanations (Tan, 2022),
and certain decisions are inherently subjective. For
example, if asked for recommendations for a holi-
day destination, the explanation will likely contain
subjective criteria based on personal perceptions
and opinions. (“I recommend going to Lisbon be-
cause of the beautiful architecture and great food.”)

3.3 Misleading Explanations for Incorrect
Labels

A problem of human-annotated explanations that
has been pointed out for explainable NLP is that
humans can provide explanations even for incor-
rect labels and for tasks that they perform badly on
(Tan, 2022). For example, if the task is to calcu-
late the result of 0.5 + 0.5 ∗ 10 and the explainer
answers that “It is 11 because 0.5 + 0.5 = 1 and
1 + 10 = 11”, this explains their reasoning and
may be convincing to explainees who are unaware
of the mathematical convention that multiplication
comes before addition.

It has been noted that hallucinations in LLMs,
i.e. generations that are unfaithful to the input or
factually incorrect (Lee et al., 2018; Maynez et al.,
2020; Ji et al., 2023), can be accompanied by hal-
locinatory explanations (Augenstein et al., 2023).
However, there has been less work on how persuas-
ive they are in practice. Ye and Durrett (2022) show
that model-generated explanations rated as factual
by humans correlate with accurate predictions, but
that the effect depends on the dataset.

3.4 Illustrative Elements

That explanations generated by LLMs are not faith-
ful to their primary output is a classical objection
in the NLP community (Bommasani et al., 2021).
Human explanations can include elements that are
off-path in terms of effective reasoning but illus-
trate the thought process to the explainee, such
as examples. These are a fundamental part of ex-
planation and learning (Chi et al., 1989). For the
question “What is 12/4?”, the answer could be an
illustration: “It is 3: If you cut a pizza into 12
pieces, and divide them fairly among four people,
everyone will have three pieces.” While the illustra-
tion may not reflect how the explainer arrived at the
answer, they expect that it will help the explainee
understand the answer.
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4 Experimental Setup

In this section, we introduce our data and an-
notation setup. All data, code and ratings can
be found at https://github.com/jekunz/
llm-expl-properties..

4.1 Data
We use Alpaca (Taori et al., 2023), a dataset auto-
matically generated using the self-instruct pipeline
(Wang et al., 2022), in the version with GPT-4 an-
notations (Peng et al., 2023). Alpaca has a broad
coverage of instructions, as reported in an analysis
in Taori et al. (2023). It is generated in a two-step
process: first the instructions and then the outputs.
Alpaca is licensed under Apache 2.0.

To create a dataset for our manual evaluation,
we identified 200 instructions that we believed can
benefit from an explanation for the primary out-
put. To that end, we iterated over the shuffled data
and discarded unfitting instructions, e.g. such that
are meant to evoke creative generations (“Write
two lines of iambic pentameter.”), that ask for very
straightforward facts (“Who wrote Harry Potter?”)
or that are unclear and therefore likely to be refuted
by the model. We discarded 500 instructions until
we reached our target of 200.

Next, we categorised the 200 instructions, giving
us the distribution in Figure 1. Coding Assistance
are prompts that ask the model for concrete im-
plementations of programming problems. Math
Problems are mathematical questions. Grammar
& Language refers to prompts for correcting or im-
proving a piece of text or pointing out errors in it.
Text Classification includes all instructions that ask
the model to classify a sentence into (pre-defined
or implicit) categories. Facts & Lists refers to all
instructions where the model is asked for a fact or
a list of facts or suggestions. Other are all prompts
that do not fall into any of the other categories.

4.2 Questionnaire
For each of the 200 examples (instruction plus out-
put), we asked the following six questions based on
the properties introduced in Section 3, with answer
options yes and no:

• Q1: Does the output contain an explanation for
the prediction?

• Q2: Would you give an explanation/justify your
reasoning if you were asked this question by a
friend?

Coding Assistance
27

Math Problems

26

Grammar & Language

19

Text Classification

29

Facts & Lists

92

Other

7

Figure 1: Distribution of the categories defined in Sec-
tion 4.1 in the evaluation set.

• If the answer to the former question was yes:

– Q3: Does the explanation list contributing
factors?

– Q4: Does the explanation include subjective
or biased criteria?

– Q5: Does the explanation include illustrative
elements (e.g. examples)?

– Q6: Is the explanation misleading (e.g. arguing
for a label that is wrong)?

The full questionnaire with further instructions for
the annotation can be found in Appendix A. The
annotation was performed by three raters, all of
whom are LLM experts with a Master’s degree and
based in Sweden, using the Label Studio annotation
software (Tkachenko et al., 2020-2022).

To measure the correlation between the first two
questions, we report Matthew’s correlation coeffi-
cient (MCC; Matthews, 1975).

5 Results

We separate the results of our human evaluation
into two parts: the answers to the first two questions
about the existence of explanations in §5.1 and the
answers to the latter four questions in §5.2.

5.1 Presence of Explanations (Q1 and Q2)
In Figure 2, we present the results for the question
of how many instructions GPT-4 explains and how
many instructions the three individual annotators
self-report they would explain. In Table 1, we
present a breakdown per category of the number of
samples where at least two raters answered yes to
Questions Q1 and Q2.

The outputs contain explanations in (on rater av-
erage) 64.3% of the cases, while the raters would
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Figure 2: Comparison of the yes-answers the three an-
notators (A1, A2, A3) for Questions Q1 (“Does the
output contain an explanation for the prediction?”) and
Q2 (“Would you give an explanation/justify your reas-
oning if you were asked this question by a friend?”).

Category Q1 Q2 Total Length

Math 19 11 26 77
Code 17 12 27 110
List/Facts 80 78 92 168
Grammar 6 7 19 30
Class. 11 12 29 24

All: 137 125 200 113

Table 1: Samples that received at least two yes-Answers
from the raters for Questions Q1 and Q2 as well as the
average output length in tokens.

on average explain 62.5% of the answers. The lat-
ter has a large variation from 50.0% to 74.5%, in-
dicating the individual nature of the problem. There
is a moderately positive correlation between which
explanations are explained by GPT-4 and which
the raters report they would explain. Matthew’s
correlation coefficient for the individual raters is
0.58, 0.48 and 0.70.2

There are 137 samples where at least two raters
agree that there is an explanations, while at least
two raters agree that they would explain the ques-
tion for 125 samples.

Breakdown by category As we see in Table 1,
lists and facts are by far the most likely to be ex-
plained: For 80 out of 92 samples (87%), there
are yes-answers by at least two raters. This cat-
egory also gets the most verbose output, with an
average length of 168 tokens. Grammar and classi-
fication instructions are particularly unlikely to be

2The interval of MCC is [−1, 1], where 0 is random and 1
is perfect correlation. MCC is balanced between classes.

Category Q3 Q4 Q5 Q6 Total

Math 4 0 3 0 19
Code 3 0 10 0 16
List/Facts 64 1 63 0 81
Grammar 1 0 4 0 6
Class. 5 0 3 0 10

All: 79 1 86 0 137

Table 2: Samples that received at least two yes-Answers
from the raters for Questions Q3–Q6. Total is number
of explanations for the category (as reported via Q1).

explained by GPT-4, with 6 out of 19 (32%) and 11
out of 24 (46%) of instructions explained. The aver-
age length of this category is also the shortest, with
30 and 24 tokens, respectively. Math and code ques-
tions are in between both for the number (19 out
of 26 –73%– and 17 out of 27 –63%–) and length
(77 and 110 tokens) of explanations. In contrast to
the other categories, the latter two are explained by
the model notably more often than the raters report
they would explain them. The raters would only
explain 11 and 12 samples, respectively.

5.2 Properties of Explanations (Q3–Q6)

Table 2 shows the results for the questions about
which properties the raters have observed in the
explanation. For attested examples of each of
the properties from the dataset, we refer to Ap-
pendix B.

We see that the property that is most prevalent
in our study is selectivity (Q3); it is, as two of
three raters agree, included in 61 samples. Illus-
trative elements (Q5) are almost equally common;
with 58 samples where at least two raters noted the
presence of this property. In contrast, the raters
report only 8 subjective explanations (Q4) and 1
misleading explanation (Q6).

Breakdown by category Looking at the indi-
vidual categories, we see that math problems have
the least of the defined criteria, apparently having
the least social and the most formal explanations.
Subjectivity (Q4) is only reported for the category
Lists and facts in one example, while there is no
example for misleading explanations (Q6) in the
defined categories. Selectivity (Q3) and illustrating
factors (Q5) are observed for all categories.
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6 Discussion

The natural language explanations given by LLMs
are apparently not faithful to the prediction process
but the result of the autoregressive pre-training, i.e.
they imitate human explanations from the training
data, possibly constrained by instruction fine-tun-
ing and other alignment techniques. As such, they
exhibit typical properties of human explanations,
which we discuss in §6.1. In §6.2 we reflect on our
evaluation method and data. Finally, in §6.3 we dis-
cuss the implications of our findings for different
goals of explainable NLP.

6.1 Properties

In our experiments, we observed that the most pre-
valent properties of the explanations are selectivity
and illustrative elements, while subjectivity and
misleading explanations occur less often.

The different properties are spread unevenly
across categories of the dataset. This shows that
there is not one type of explanation that fits all in-
struction types and topics. In particular, for math
and code questions, it is often possible to provide
a complete reasoning path with logical inferences,
which allows these explanations to be complete
(Tan, 2022). Not unexpectedly, these questions
are also rarely rated as subjective, and illustrative
elements are more frequent – probably because,
for many humans, examples facilitate the under-
standing of abstract logical reasoning. Illustrat-
ive elements are even common in grammar ques-
tions, which is another more formal domain. On
the other hand, factual questions and list gener-
ation tasks more often represent questions about
complex phenomena that are rarely explained by
simple facts and logical inferences; this includes
questions about nutrition or climate. selectivity is
therefore particularly prevalent here.

Subjectivity is a special case as bias is explicitly
discouraged in current commercial LLMs (Askell
et al., 2021; Ouyang et al., 2022) and therefore
likely to have been punished during the alignment
phase of GPT-4 training. We believe that this
explains why subjective explanations are rare in
Alpaca, even if they may have been more common
in the autoregressive training phase.

6.2 Limitations of our Method

Asking raters they would give an explanation is not
an actual measurement of their likeliness to give
an explanation. A more natural setup would be to

ask the same questions to humans and annotate the
answers for explanations.

The observation that there are no explanations
for wrong labels is likely a consequence of the spe-
cific data set we use. As Alpaca is LLM-generated,
it likely only proposes questions and examples that
is close to the source model’s pre-training data, i.e.
the instructions are high-probability and are there-
fore likely to be answered correctly (McCoy et al.,
2023). To test this hypothesis, if only anecdotally,
we follow McCoy et al. (2023) and construct a
math problem with less common numbers:

Question: What is the result of 1/7 + 1/17 + 0.54?
Answer: 0.8117
Question: Can you explain?
Answer: The result of 1/7 + 1/17 + 0.54 is 0.8117.
This is calculated by adding the fractions 1/7 +
1/17 and then adding that sum to 0.54. The sum of
the fractions is 0.7117, and when this is added to
0.54 the result is 0.8117.

The result is wrong, but when we ask for an ex-
planation, we receive a misleading explanation for
the wrong prediction. This example indicates that a
more challenging, not LLM-generated dataset may
in fact trigger more explanations for wrong labels.

6.3 Implications for Different Goals
To discuss the effects of the different properties of
explanations, it is crucial to distinguish between
different types of user groups that may employ a
system, and what their goals are. Adadi and Ber-
rada (2018) identify four reasons to seek explana-
tions: to justify decisions, to (enhance) control, to
improve models, and to discover new knowledge.
Mittelstadt et al. (2019) name actual interpretabil-
ity (faithfulness), trustworthiness, accountability,
accessibility, comprehensibility, and usefulness as
common goals. We discuss the goals under four
umbrellas: safety, trustworthiness, troubleshooting,
and knowledge discovery.

6.3.1 Safety
We use the term safety for the possibility of deploy-
ing the model with a human in the loop without
risk of harm in a controllable and accountable way.
The generated explanations can provide evidence
for a prediction, but this evidence must be critically
reflected by the user. If the user is competent, their
decisions could be improved by this additional in-
formation, as explanations can give users a chance
to discover general inconsistencies between the
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user’s and the model’s beliefs (Keil et al., 2004).
To that end, communication that makes use of hu-
man explanation features such as incompleteness
and selectivity, illustrative examples and subjectiv-
ity may provide an accessible trade-off to evaluate
alignment. Incomplete explanations can be unsafe
if harmful (e.g. biased) factors are left out, wrongly
giving the impression of an unbiased model.

If the user, however, is a layperson in the applic-
ation domain or inattentive, there is the danger that
a rhetorically convincing explanation for a failed
prediction deceives them and leads them to wrong
and potentially harmful decisions. While we did
not observe a large number of such explanations in
our study, there is, as discussed in §6.2, the risk that
this was the result of the specific creation process
of our dataset, and may differ for instructions that
are less familiar to the model.

6.3.2 Trustworthiness
The largest consensus on where free-text explan-
ations can have a positive impact is that they
can improve human-model interaction by increas-
ing the users’ trust in the model. Trust, often a
vague concept (Jacovi and Goldberg, 2021), is here
defined as the user’s confidence that the model
works correctly, be it justified or not. Confidently
explaining wrong or ambiguous labels or obviously
subjective arguments can harm the trust of users
who are not familiar with how the system works
and generates explanations. Other than that, hu-
man-like properties in the explanations are aligned
with the user’s expectations (de Graaf and Malle,
2017), and therefore likely to increase trust.

6.3.3 Troubleshooting
By troubleshooting, we mean the developer’s pos-
sibility to debug and improve an LLM with the help
of explanations. As Lertvittayakumjorn and Toni
(2021) note, explanations can help debug a system,
especially where identifiable properties of the train-
ing data lead to the bug. For this goal, the unclear
relation between prediction and explanation is par-
ticularly problematic, therefore properties such as
illustrative elements may be less desired. selectiv-
ity and subjectivity can also be limiting factors,
albeit inevitable in many situations. Even incom-
plete and subjective explanations can however be
useful if the developer observes a consistency in
the explanations including or lacking the desired
reasoning process. Explaining wrong labels may
be a useful feature, too, as it can display the falla-

cies of the model. As a result, the developer may
make targeted modifications to the training data,
such as mitigating unwanted statistical cues.

6.3.4 Knowledge Discovery

Explanations can be used for attempts to discover
new knowledge. This can again happen in several
contexts: a user may want to learn existing know-
ledge (“the user as a student”) or discover novel
scientific knowledge (“the user as a researcher”).
For the former, factual correctness is crucial, as the
learner cannot be expected to be able to judge the
reliability of the prediction and explanation them-
selves, and may be misled by wrong labels or sub-
jective explanations. Selectivity may be misleading
in some cases, but simplification more often makes
new information more accessible to learners. The
situation is different for scientific discovery, as the
explanation seeker is likely an expert in the field
and able to judge whether to accept a new theory.
That the model potentially explains false labels can
be misleading but indirectly also be positive, as it
may correlate with the likelihood of making new
connections.

7 Conclusion

Large language models imitate human explanations
in their training data and adopt some of their typ-
ical properties. In our analysis of GPT-4 outputs
from the Alpaca dataset, selectivity and illustrat-
ing factors were particularly common. Subjectivity
was less common, as it was probably mitigated
in the alignment and filtering process of GPT-4.
Misleading explanations were observed rarely, but
given that the Alpaca dataset is LLM-generated,
it is likely that the observation will not hold for
lower-probability inputs.

We discussed the consequences of the presence
of these properties and emphasized that it is crucial
to consider both the goals and the target groups
of the application. For less competent and careful
users, there is a risk of shaping false confidence
with incomplete, rhetorically convincing but in-
correct or biased explanations. However, not all
properties that appear undesirable are unequivoc-
ally negative: Explanations for false predictions
may help developers spot the fallacies of the model.
Unfaithful reasoning can make explanations more
accessible with simplifications and illustrative ex-
amples. Selectivity is often even necessary for
generating comprehensible explanations.
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Limitations

In §6.2, we discussed the key limitations of our
setup and questionnaire. We mentioned that expli-
citly asking the question if the rater would explain
their answer may not reflect if they actually would
explain it in a natural setting. We also discussed
that the LLM-generated Alpaca dataset is likely
to only contain instructions that lead to a correct
answer, and thereby have a low risk of a misleading
explanation. The generation method of the dataset
will also affect the distribution of the other proper-
ties. While we selected the dataset for its comparat-
ively broad coverage, the quantitative findings are
unlikely to generalise to other domains (in partic-
ular to such that are low-resource) and instruction
types.

Other LLMs may also exhibit a different distri-
bution due to their pre-training data and instruc-
tion-tuning data and setup. A major limitation of
this study is the use of outputs from GPT-4, a pro-
prietary model for which there is little confirmed
information available to the public. Using an open-
source model with openly accessible training data
would allow for additional insights for the research
community.

We only consider English-language instructions.
The generated outputs and explanations probably
reflect cultural norms of the English-speaking
world. In addition, our three raters were a rel-
atively homogenous group with respect to their
demographic and educational background. A more
diverse set of raters would be desirable.
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A Full Questionnaire

The following information and instructions were
provided to the annotators in written form.

A.1 Instructions for Annotators
Each annotation sample consists of the following
parts:

• *****INSTRUCTION:*****: The prompt
that was given to the model.

• *****OUTPUT:*****: The output that the
model produces.

• *****QUESTION:*****: The question that
you are supposed to answer about the instruc-
tion and output.

The following seven questions are asked for each
data sample and must be answered with yes or no.
Questions 5-7 only need to be answered if question
1 was answered with yes. If the answer was no,
skip them or click N/A.

1. Does the output contain an explanation for the
prediction? - The model provides a reason(ing
path) why it gave a certain answer.

2. Would you give an explanation/justify your
reasoning if you were asked this question by a
friend? - If you were asked this question in a
dialogue with someone, would you be likely
to add a justification to your answer?

3. If there is an explanation: Does the explana-
tion refer to commonsense concepts that are
taken as given? - There are parts in the ex-
planation that require world knowledge (facts
about the world that are trivial for humans and
rarely explicitly stated) to comprehend.

4. If there is an explanation: Does the explana-
tion list contributing factors? - The explana-
tion lists reasons that contribute to the truth
value of the answer (that may not be complete
though).

5. If there is an explanation: Does the explan-
ation include subjective or biased criteria?
- There are reasons stated in the explanation
that are the results of subjective experiences.

6. If there is an explanation: Does the explan-
ation include illustrative elements (e.g. ex-
amples)? - There are elements in the explana-
tions that do not refer to concrete reasons but
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illustrate the reasoning so that the explanation
becomes easier to understand.

7. If there is an explanation: Is the explanation
misleading (e.g. arguing for a label that is
wrong)? - The explanation contains elements
that are wrong or irrelevant and can therefore
mislead the user of the system.

B Examples

In this section, we provide examples for the proper-
ties as observed in the Alpaca dataset. We choose
short examples where possible, and examples with
the highest available agreement between annotators
except for section B.1 where we in addition dis-
cuss one example where annotators disagree. For
the full dataset, we refer to https://github.
com/jekunz/llm-expl-properties..

B.1 Commonsense Concepts

The following example from the annotation illus-
trates the different approaches of the annotators to
the idea of commonsense concepts that are taken as
given. The large disagreement between annotators
in a preliminary study made us remove this concept
from the annotation as discussed in Section 3.

INSTRUCTION: Is the following sentence true
or false? – All atoms of the same element have the
same mass.
OUTPUT: The statement is False. This is because
while all atoms of the same element have the same
number of protons, they can have different numbers
of neutrons. Atoms of the same element with differ-
ent numbers of neutrons are called isotopes, and
they have different masses due to the difference in
the number of neutrons.

Annotators 1 and 3 have annotated this example as
containing commonsense factors, as the explana-
tion relies on the implicit common knowledge that
neutrons have mass. Annotator 2 however did not
think that it requires further explanation as a user
reading the output either knows it, or can infer it
from the text.

On the other hand, the following example is un-
equivocally agreed on by all three annotators to
contain noteworthy commonsense concepts.

INSTRUCTION: Does the following sentence
contain a run-on? – I walked to the park and I
ordered a hotdog.
OUTPUT: No, the sentence is not a run-on. It
contains two independent clauses separated by a

coordinating conjunction ’and’, which is an accept-
able way of joining two clauses.

The linguistic terminology in this example (inde-
pendent clause and coordinating conjunction, and
their relation to the concept of a run-on) require
further explanation for a broader set of goals: For
users who are not experts of linguistics and who
want to understand the output as well as for users
attempting to understand how robustly the model
will be able to solve similar tasks.

B.2 Selectivity (Q3)

For the following example, all three annotators
agreed that it contains contributing factors.

INSTRUCTION: Identify 3 people who have
made significant contributions to the field of ro-
botics.
OUTPUT: 1. Masahiro Mori: Masahiro Mori is a
Japanese roboticist and researcher, widely known
for his pioneering work in robotics and human-
robot interaction. He is most famous for creat-
ing the concept of the "uncanny valley,"which de-
scribes the discomfort people feel when a robot or
animation looks and moves almost, but not exactly,
like a natural human being.
2. Rodney Brooks: Rodney Brooks is an Australian
roboticist and computer programmer, recognized
for his pioneering work in autonomous robots and
artificial intelligence. He is the co-founder of iRo-
bot Corp., which is the maker of the Roomba va-
cuum cleaning robot. Brooks also served as the
director of the MIT Computer Science and Artifi-
cial Intelligence Laboratory, and is known for his
influential work in behavior-based robotics.
3. Cynthia Breazeal: Cynthia Breazeal is an Amer-
ican roboticist and professor, widely known for
her work in social robotics and human-robot in-
teraction. She is the director of the Personal Ro-
bots Group at the MIT Media Lab, where she cre-
ated the world’s first social robot, Kismet, in 1997.
Breazeal’s work focuses on developing robots that
can communicate and interact with people in a
more human-like way, and she has received numer-
ous awards for her research in this field.

For each person, several contributions and achieve-
ments are listed that justify their appearance in this
list. It is safe to assume that the mentioned re-
searchers have many more achievements than the
ones mentioned, but that a prioritisation has been
made.
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B.3 Subjectivity (Q4)

The following example contains subjective ele-
ments in the explanation, as reported by two of
the three annotators.

INSTRUCTION: What are the main advantages
of learning to code?

OUTPUT: There are several advantages to learn-
ing how to code, including:

1. Better job opportunities: There’s a high demand
for programmers and software developers, and the
field offers lucrative and stable job opportunities.
Additionally, even if you don’t pursue a career in
tech, many industries value employees with coding
skills, as technology becomes more integrated into
all aspects of business.

2. Improved problem-solving skills: Learning to
code involves breaking big problems down into
small, manageable parts, developing an eye for
detail and sharpening your logical thinking. These
problem-solving skills can be applied to many other
areas of your professional and personal life.

3. Increased creativity: Coding allows you to bring
your ideas to life, whether you’re building a web-
site, an app, or a game. As you learn to code and
experiment with different programming languages
and tools, you’ll find new ways to express your
creativity.

4. More control over technology: With coding skills,
you can better understand how technology works
and make changes to suit your needs. Whether
you’re automating repetitive tasks, customizing
your website, or fixing bugs in a program, coding
puts you in control.

5. Personal satisfaction: Finally, learning to code
can provide immense personal satisfaction, as you
gain the ability to create something from nothing
and tackle complex challenges. It’s an empowering
and rewarding skill to have.

Overall, learning to code can provide valuable job
opportunities, improved problem-solving and cre-
ativity, greater control over technology, and per-
sonal satisfaction. It’s a valuable skill that can
benefit you in many different ways.

The clearest subjective element is under point 5,
where the explanation states that coding is a per-
sonally empowering and rewarding skill, without
a constraint that this feeling may not apply to all
individuals.

B.4 Illustrative Elements (Q5)

For the following example, all three annotators
agreed that it contains illustrative elements.

INSTRUCTION: What verb do you use with the
word “inevitable”?
OUTPUT: The verb most commonly used with the
word “inevitable” is “to be,” as in “something
is inevitable.” Other verbs that can be used with
inevitable include “seem”, “appear”, “become”,
and “prove”. For example, “It seems inevitable
that prices will increase” or “It proved inevitable
that the company would go bankrupt.”

The examples illustrate common usage, but without
a causal explanation why the verbs are appropriate
(except that they are common). It can however be
a suitable, practical explanation if the user wants
to understand how to embed “inevitable” in a sen-
tence.

B.5 Misleading Explanations for Incorrect
Labels

The following example contains a wrong answer
and explains it confidently. During the annotation,
the mistake was discovered only by one rater, but
was agreed upon by the other two when it was
indicated.

INSTRUCTION: Create a regular expression to
find all words with three consonants and one vowel.
OUTPUT: The following regular expression pat-
tern can be used to find all words with three con-
sonants and one vowel:

\b[^aeiou\s]{3}[aeiou]\b

Explanation:
- \b - Matches the word boundary, which indic-
ates the position between a word and a non-word
character. It ensures to match the whole word.
- [^aeiou\s] Within the square brackets, the ^
symbol indicates negation. So, this character set
matches any character that is not a vowel or a
whitespace character .
- {3} - Specifies that the preceding character set
should be matched exactly three times. Therefore,
it matches three consecutive consonants.
- [aeiou] - This character set matches any single
vowel (a, e, i, o or u).
- \b - Matches the word boundary at the end of the
word, to ensure the whole word is matched.
This regular expression will match words such
as “milk”, “help”, and “desk” but not words like

“hello”, “world” or “me”.
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The given regular expression matches only words
that consist of three consonants followed by a
vowel. It would match none of the examples given
in the explanation (“milk”, “help”, and “desk”),
therefore it is misleading.
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Abstract

Citations are a fundamental and indispensable
part of research writing. They provide sup-
port and lend credibility to research findings.
Recent GPT-fueled interest in large language
models (LLMs) has shone a spotlight on the ca-
pabilities and limitations of these models when
generating relevant citations for a document.
Recent work has focused largely on title and
author accuracy. We underline this effort and
expand on it with a preliminary exploration
in relevance of model-recommended citations.
We define three citation-recommendation tasks.
We also collect and annotate a dataset of model-
recommended citations for those tasks. We find
that GPT-4 largely outperforms earlier mod-
els on both author and title accuracy in two
markedly different CS venues, but may not rec-
ommend references that are more relevant than
those recommended by the earlier models. The
two venues we compare are CHI and EMNLP.
All models appear to perform better at recom-
mending EMNLP papers than CHI papers.

1 Introduction

Citations are a common feature of research writing.
They lend credibility to claims and can help identify
gaps in prior research. They can also provide a
chain of ideas from prior work to a research task.

The last year has seen a drastic increase of inter-
est about large language models (LLMs). ChatGPT
(OpenAI, 2022) has opened the eyes of the general
public to the potential of LLMs. ChatGPT and its
related GPT-X LLMs are being applied to a grow-
ing array of tasks (Araoz, 2020; OpenAI, 2023;
Byun et al., 2023; Xiao et al., 2023).

One task that has drawn both interest and ire is
that of using LLMs to identify citations for a topic.
Several recent blog posts and articles have warned
of ChatGPT’s hallucinated references (Welborn,
2023; Wilkinson, 2023; Neumeister, 2023). We
build on recent work to assess the problem.

2 Related Works

Various citation recommendation systems exist, re-
lying on an array of NLP and information retrieval
(IR) approaches. Farber and Jatowt (2020) offer a
thorough survey of automated citation recommen-
dation approaches.

More recently, use of LLMs has been explored,
leading to discussion of the tendency LLMs have
to hallucinate output. Day (2023) offered an early
exploration of hallucinated references by ChatGPT.
They assessed references output by ChatGPT based
on accuracy of journal name, volume, issue and
page number and found the model incapable of
generating any valid references.

On the other hand, MW Wagner (2023) found
ChatGPT capable of some accuracy when answer-
ing questions about clinical radiological sources.

A letter of warning from McGowan et al. (2023)
discussed fabricated references from both ChatGPT
and Google’s Bard (Manyika, 2023) in psychiatry
literature. They found real authors are often in-
cluded, even when a paper title is fabricated. They
also raised the alarm on the possibility of fake ref-
erences entering into automated indexes.

Gravel et al. (2023) found ChatGPT output in
response to medical reference questions was of
limited quality, but that references offered by the
model were deceptively realistic.

Orduna-Malea and Cabezas-Clavijo (2023) com-
pared ChatGPT and Bard 2.0 citations in English,
Spanish, and Italian. They explored reasons for
fabricated citations and steps to address the issue.

Taylor et al. (2022) fine-tuned their own LLM,
Galactica, and assessed it on three citation genera-
tion tasks. They found LLM accuracy for citation
generation appears to improve with scale.

Finally, Agrawal et al. (2023) found LLMs tend
to hallucinate different authors of fabricated refer-
ences in multiple independent query sessions, but
consistently hallucinate authors in the same session.
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They compared accuracy on GPT text-davinci-003,
ChatGPT, and GPT-4.

Previous work has primarily focused on metrics
related to accuracy of information. While under-
standing accuracy is important, accurate citations
that are irrelevant will still be of little use to re-
searchers. In this work we still assess accuracy,
but we also offer a preliminary assessment of the
relevance of citations identified by three models.

3 Methods

We define three citation recommendation tasks, in-
tended to model aspects of academic writing that
could be supplemented by use of LLMs.

3.1 Models
We compare performance between three GPT-X
models: GPT-3 text-davinci-003 (GPT-3), GPT-
3.5-turbo (GPT-3.5), and GPT-4. All model hyper-
parameters used can be found in Appendix A

3.2 Tasks
We define three tasks, each with a unique prompt.
The full prompt evolutions and all final prompt
designs can be found in Appendices B and C.

3.2.1 Abstract→Citations List Task
This task asks the model generate a list of relevant
sources a researcher could explore and incorporate
into their paper (target paper). We provide the
models with a prompt including a paper title and
its accompanying abstract and request the model
generate ten relevant citations to be used in the
target paper. We request citations in APA format
because it is common and having all citations in a
consistent format aids in annotating and analysing
the data. See Figure 1 for prompt template.

3.2.2 Abstract→Related Works Task
The goal of this task is to explore how well the
models identify relevant citations when also asked
to discuss them, without the textual scaffolding of
a provided Related Works section. The prompt for
this task builds on the prompt for the first task, but
replaces the final section with: Write a Related
Works section for your paper. Include 10 in-text
citations. Also include a list of those citations with
each citation in APA format.

3.2.3 Discussion→Supported Discussion Task
The goal of this task is to test model citation recom-
mendation and discussion when some textual scaf-
folding is provided. The prompt for this task builds

You are an [NLP or HCI] researcher working
on a paper to submit to [EMNLP or CHI].
The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is:
[PAPER ABSTRACT]

List 10 relevant papers you could cite in your
Related Works section. Write each citation in
APA format.

Figure 1: Prompt template for Abstract→Citations List
task.

on the prompt for the first task by including the
target paper title and abstract in the prompt, but the
prompt additionally includes a portion of the results
discussion. The final section of the prompt, which
follows the discussion, is changed to: Rewrite the
Discussion section to include 10 in-text citations.
Also include a list of those citations with each cita-
tion in APA format.

3.3 Dataset
We randomly sampled twenty papers from two top-
tier, but different venues, CHI (HCI) and EMNLP
(NLP). Ten papers were randomly sampled from
recent publications of each venue. See Appendix
E for the list of papers. The paper title, abstract,
and discussion of results were extracted for each
paper. For some papers this was taken from the Re-
sults section and for others, the Discussion section.
Some discussions were too long for the models. For
these, we extracted only the first paragraph of each
section within the discussion. We also extracted
the bibliography from each paper.

This information was used to fill the prompt tem-
plates, which were then input to each model. The
output was collected and the citations extracted.
While we requested citations in APA, the models
sometimes used different formatting. We reformat-
ted each citation to ensure it was in APA. Some
model-generated citations lacked titles. These we
exclude from our final dataset because we can-
not verify whether they are real papers. Our final
dataset has 1616 annotated citations.

We used Google Scholar to check whether each
model-recommended citation was for a real paper.
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Abstract→ Citations List Abstract→ Related Works Discussion→ Supported Discussion
Title Accuracy Title Accuracy Title Accuracy

HCI NLP Total HCI NLP Total HCI NLP Total
GPT-3 24.47% 48.98% 36.98% GPT-3 0.00% 36.84% 19.44% GPT-3 34.88% 18.37% 26.09%
GPT-3.5 28.00% 56.00% 42.00% GPT-3.5 13.51% 50.54% 30.39% GPT-3.5 12.96% 51.43% 22.38%
GPT-4 54.00% 78.00% 66.00% GPT-4 68.87% 75.45% 72.22% GPT-4 47.15% 25.74% 37.50%

Author Precision Author Precision Author Precision
HCI NLP Total HCI NLP Total HCI NLP Total

GPT-3 75.00% 70.29% 71.82% GPT-3 - 72.71% 72.71% GPT-3 55.53% 41.67% 50.33%
GPT-3.5 81.46% 76.16% 77.93% GPT-3.5 62.13% 73.23% 70.55% GPT-3.5 66.86% 68.94% 60.03%
GPT-4 88.11% 89.01% 88.64% GPT-4 82.07% 84.78% 83.51% GPT-4 82.14% 63.15% 76.26%

Author Recall Author Recall Author Recall
HCI NLP Total HCI NLP Total HCI NLP Total

GPT-3 72.65% 41.54% 51.62% GPT-3 - 70.89% 70.89% GPT-3 37.93% 33.33% 36.21%
GPT-3.5 81.46% 70.88% 73.95% GPT-3.5 61.73% 71.02% 68.77% GPT-3.5 64.00% 68.11% 66.31%
GPT-4 88.11% 89.01% 88.64% GPT-4 82.07% 84.78% 83.51% GPT-4 82.14% 63.15% 76.26%

Year Accuracy Year Accuracy Year Accuracy
HCI NLP Total HCI NLP Total HCI NLP Total

GPT-3 1.43 0.31 0.68 GPT-3 - 1.57 1.57 GPT-3 2.40 0.89 1.83
GPT-3.5 0.29 0.46 0.40 GPT-3.5 1.06 0.55 0.68 GPT-3.5 6.29 0.61 3.09
GPT-4 1.44 1.26 1.33 GPT-4 1.59 0.70 1.12 GPT-4 2.59 3.08 2.74

Table 1: Accuracy scores for each model, for each of the tasks, broken out between HCI and NLP.

Nearly all real papers had an exact match in the first
three results of a page, so we restricted our search
to the first page of results. Petiska (2023) found
that ChatGPT tends to use Google Scholar citation
counts when recommending citations, so relying
only on Google Scholar results should be sufficient.
A citation was marked as fabricated if an exact
match was not found in the first page of Google
Scholar results. A citation with an exact match was
marked as a real paper and the APA citation for the
true paper was collected and checked against the
citation generated by the model.

We automatically compared information in the
citations generated by the models against the infor-
mation collected from the real papers. We collected
information for how many citations were fabricated
vs real. We also calculated author precision and re-
call between the authors in a recommended citation
and those on real papers. We tested relevance by
checking whether a real paper’s title was found in
the bibliographies of the target papers and whether
the authors of the model-generated citations were
found in the bibliographies of the target papers.

While more elaborate metrics for determining
citation relevance exist (Belter, 2017; Boyack and
Klavans, 2010), these often involve creating a net-
work of citations. The overlap between citations
is then checked. This includes overlap with the
target papers. However, we needed target papers
that were excluded from the models’ training data,
which meant very recent papers that had not been
cited yet. This meant we needed a different metric
for relevance. We focus on several basic metrics
based on the idea that if there is overlap between

papers models recommend and papers authors actu-
ally use, then those papers and authors that overlap
must be relevant. This means true relevance could
be higher, but our strict definition should offer a
reasonable exploratory view.

4 Results

Accuracy results can be found in Tables 1 and 3,
while relevance results can be found in Table 2.

4.1 Accuracy
Title Accuracy is the percentage of citations recom-
mended by the model that had real paper titles. Au-
thor Precision, Author Recall, and Year Accuracy
were only calculated for citations of real papers.
Year Accuracy was calculated by taking the abso-
lute value of the year a real paper was published,
minus the year in the model-recommended citation.

As seen in Table 1, the models tend to perform
better on NLP papers, particularly with respect to
paper titles. This is reiterated by the results in
Table 3, where for nearly every model, for every
task there appears to be a significant difference
between NLP and HCI papers on this metric.

The distinction is less clear for other metrics. For
example both GPT-3 and GPT-3.5 perform better
for HCI papers in terms of Author Recall for the
Abstract→Citations List task and GPT-4 performs
better for HCI papers in terms of Author Precision
for the Discussion→Supported Discussion task.

GPT-4 typically outperforms the other models in
terms of accuracy, which is unsurprising given the
findings of Taylor et al. (2022) that LLM citation
accuracy improves with model scale. There are,
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Abstract→ Citations List Abstract→ Related Works Discussion→ Supported Discussion
Title Relevance Title Relevance Title Relevance

HCI NLP Total HCI NLP Total HCI NLP Total
GPT-3 0.17% 22.92% 16.90% GPT-3 - 10.71% 10.71% GPT-3 0.12% 22.22% 12.5%
GPT-3.5 0.18% 25.00% 17.86% GPT-3.5 0.24% 29.79% 24.19% GPT-3.5 0.25% 33.33% 25.00%
GPT-4 0.20% 29.49% 20.45% GPT-4 0.17% 27.71% 17.31% GPT-4 0.08% 19.23% 8.33%

Real Author Relevance Real Author Relevance Real Author Relevance
HCI NLP Total HCI NLP Total HCI NLP Total

GPT-3 4.35% 6.25% 5.63% GPT-3 - 3.57% 3.57% GPT-3 6.67% 0.00% 4.17%
GPT-3.5 7.14% 5.36% 5.95% GPT-3.5 0.00% 10.64% 8.06% GPT-3.5 0.00% 11.11% 6.25%
GPT-4 3.70% 3.85% 3.79% GPT-4 4.11% 6.02% 5.13% GPT-4 1.72% 3.85% 2.38%

False Author Relevance False Author Relevance False Author Relevance
HCI NLP Total HCI NLP Total HCI NLP Total

GPT-3 13.04% 8.33% 9.86% GPT-3 - 25.00% 25.00% GPT-3 26.67% 0.00% 16.67%
GPT-3.5 7.14% 8.93% 8.33% GPT-3.5 13.33% 17.02% 16.13% GPT-3.5 21.43% 27.78% 25.00%
GPT-4 16.67% 25.64% 21.97% GPT-4 28.77% 19.28% 23.72% GPT-4 6.9% 11.54% 8.33%

Table 2: Relevance scores for each model, for each task, broken out between HCI and NLP papers.

Abstract→Citations List
Title Accuracy Significance

HCI NLP
Mean SD Mean SD t-statistic p-value

GPT-3 0.24 0.43 0.49 0.50 -3.62 0.00
GPT-3.5 0.28 0.45 0.56 0.50 -4.16 0.00
GPT-4 0.54 0.50 0.78 0.41 -3.68 0.00

Abstract→Related Works
Title Accuracy Significance

HCI NLP
Mean SD Mean SD t-statistic p-value

GPT-3 0.00 0.00 0.37 0.48 -6.25 0.00
GPT-3.5 0.14 0.34 0.51 0.50 -6.22 0.00
GPT-4 0.69 0.46 0.75 0.43 -1.08 0.28

Discussion→Supported Discussion
Title Accuracy Significance

HCI NLP
Mean SD Mean SD t-statistic p-value

GPT-3 0.35 0.48 0.18 0.39 1.81 0.07
GPT-3.5 0.13 0.34 0.51 0.50 -5.13 0.00
GPT-4 0.47 0.50 0.26 0.44 3.36 0.00

Table 3: Two-sample t-tests for title accuracy on HCI vs
NLP papers. Calculated via SciPy and NumPy (Virtanen
et al., 2020; Harris et al., 2020).

however, exceptions to this. For example, GPT-
3.5 outperforms GPT-4 on Title Accuracy, Author
Precision, and Author Recall for the NLP papers
on the Discussion→Supported Discussion task.

The models appear to struggle with the
Discussion→Supported Discussion task. This
could be due to our poor prompt design for this task.
CHI papers typically include a separate Discussion
section, while EMNLP papers often include a dis-
cussion of results with the Results section. We
distinctly asked models to support our Discussion
sections. Future research could explore whether
changing Discussion to Results in the prompt could
yield better results for NLP papers.

4.2 Relevance

Title Relevance reports the percentage of real pa-
pers cited in the target paper. Real Author Rel-
evance reports the percentage of authors from a
model-recommended citation that were real authors
on that paper and who had a paper cited in the target
paper. False Author Relevance reports the percent-
age of authors from a model-recommended citation
that were not real authors on that paper, but who
had papers cited in the target paper.

In terms of relevance, we again see better perfor-
mance for NLP papers in terms of title relevance.
The distinction becomes less clear for other met-
rics. For example, GPT-4 on the Abstract→Related
Works task and False Author Relevance. However,
there does not appear to be a large difference be-
tween models. In multiple instances the older mod-
els perform better than GPT-4, for example GPT-3
for the Abstract→Related Works task on the False
Author Relevance metric for NLP papers and both
GPT-3 and GPT-3.5 on the Discussion→Supported
Discussion task on all relevance metrics.

5 Conclusion

We evaluated GPT-3, GPT-3.5, and GPT-4 on three
different citation recommendation tasks and com-
pared them across two research disciplines. We
found contrasts in terms of relevance and accuracy
between those disciplines. This is important be-
cause individuals outside of NLP are beginning to
use these models in their research. It is important
for researchers from other disciplines to recognize
these models’ limitations for their disciplines.

Finally, while GPT-4 typically outperforms pre-
vious models on accuracy, it does not clearly per-
form better in terms of relevance.
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6 Limitations

While 1616 citations seems like enough for a thor-
ough run of statistical tests, this is not the case.
Due to how poorly GPT-3 and GPT-3.5 perform
on many of the tasks and how many ways we split
the data, several of our sample sizes are slightly
under 30, with the smallest being 24. We have run
significance tests comparing performance between
models and between HCI and NLP papers for other
metrics, but considering the small sample sizes of
some of the groups, we felt the limited space of
this short paper would be best utilized reporting
our other results.

Our largest sample sizes are for the Title Ac-
curacy metric because this included all citations,
while the other metrics excluded citations for pa-
pers that did not exist. This is why we only re-
port significance results for Title Accuracy between
HCI and NLP papers. We exclude our significance
results for Title Accuracy between models due to
the length limitations of this paper. Previous re-
search has shown a difference between models of
different sizes. Our results reiterate those findings.

We also did not compare accuracy of other cita-
tion information, like page numbers, publication
venues, and URLs. Preliminary tests showed much
worse model performance on these citation fea-
tures. We chose to focus on the features the models
appeared to recreate more accurately. We leave
exploration of these other features to future work.

Additionally, due to the inherently messy nature
of text data, some aspects of data collection and
curation were done manually. While we did multi-
ple checks at each step of the process to maintain
quality, there could still be errors we did not catch.

We also relied on Google Scholar results to de-
termine veracity of citation titles. It is possible that
some of the citations marked as fabricated could be
real papers that did not show up on the first page
of results.
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A Hyperparameters

• Temperature: 0.0
• Top P: 1
• Frequency Penalty: 0.5
• Presence Penalty: 0.5
• Maximum Tokens: 2000
We chose a temperature of 0 because, while a

temperature of 0 does not guarantee identical out-
put each time, it does increase the likelihood of
very similar output. This was the best option avail-
able at the time for generating reproducible results.
We used 0.5 for both frequency and presence penal-
ties because both GPT-3 and GPT-3.5 are prone to
repeating citations when they are set to 0.

B Prompt Engineering

The following are the various prompt evolutions we
used before settling on our final prompt designs.

We went through several iterations of prompt
design for each of the three tasks in this paper. The
prompt variations were primarily focused around
the request portion of the prompt. All prompts in-
cluded either a CHI or EMNLP paper title and
abstract. The Results→Supported Results task
prompts also included discussion from the same
CHI or EMNLP prompt paper.

All of the prompts in this subsection follow the
GPT-3 design. The main difference between the

GPT-3 and newer model prompts was a change
to a first person perspective. We did not ul-
timately include GPT-3 in our results for the
Abstract→Related Works and Results→Supported
Results tasks because the final prompt design was
too long for the GPT-3 limited context length. How-
ever, GPT-3 was included and evaluated on earlier
variations of prompts for those tasks. We found
GPT-3 was virtually incapable of identifying any
citations of real papers for the Abstract→Related
Works and Results→Supported Results tasks, even
for prompt designs short enough to fit the GPT-3
context.

B.1 Abstract→Citations Prompt Evolution

Our initial prompt design for the
Abstract→Citations task used the following
format:

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

Five relevant papers you could cite in
your related works sections are:

We found the models have a tendency to cite
older sources, so we next adjusted the prompt to re-
quest only recent citations. We updated the prompt
to the following, with the changed portion in bold:

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

Five relevant papers from the last five
years you could cite in your related
works sections are:

We did find the models do often claim to cite re-
cent papers using this prompt, but we also noticed
they have a tendency to hallucinate paper publica-
tion years as more recent than they actually are.
We did not, however, do an official comparison
between how these prompt designs impact citation
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year hallucinations. This would be an interesting
item for future research.

We ultimately decided to request ten, rather than
five citations, to hopefully get a large enough sam-
ple size to run statistical tests. We also decided
to remove the the request for papers from the last
five years because it did not appear to have a strong
impact on the results. Finally, we added a request
for the model to output the citations in APA for-
mat. We found that not requesting a specific format
often resulted in the models just choosing a for-
mat. The format they chose was sometimes not
even a standard format and occasionally the format
could change throughout the same output. Our final
prompt design was:

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

List 10 relevant papers you could cite in
your Related Works section. Write each
citation in APA format.

B.2 Abstract→Related Works Prompt
Evolution

The prompt format for this task is nearly identical
to that of the Abstract→Citations task. The main
difference is in the final line of the prompt.

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

The Related Works section of your paper
is:

Again, we realized the models have a tendency
to cite older sources, so we updated the prompt to
request recent sources. We also followed the same
pattern of changing the design to make specific
requests, rather than asking the model to continue
with writing a related works section. The changed
portion of the prompt is in bold.

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

Write the related works section for this
paper. Discuss 3 sources. Each source
must be from the last five years and
must include the paper name.

We decided to allow the model to include a
higher number of sources. We updated the prompt
to reflect that. We also wanted enough information
about each citation to be able to verify it, so we
updated the prompt to request the model to include
the paper title and a complete list of authors. The
prompt design can be found below.

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

Write the related works section for this
paper. Discuss up to 10 sources. Each
source must be from the last five years
and must include the paper name and
full list of authors.

We wondered if model performance could be
impacted by the difference in citation formatting
by asking the model to include a full list of authors
and paper title. We updated our prompt design to
allow the models to use in-text citations as one nor-
mally would (author name, year), but we included
a request for the models to include a list of used
citations after their prose. The final prompt design
can be found below:

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]
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Write the related works section for this
paper. Discuss ten sources. Each
source must be from the last five years.
Include a list of the citations used fol-
lowing your related works section.

Again, we found that including a request for
recent sources had little impact, so we removed that
portion of the prompt. We also found it necessary
to request APA formatting. Our final prompt design
for this task can be found below:

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

Write a Related Works section for your
paper. Include 10 in-text citations. Also
include a list of those citations with
each citation in APA format.

B.3 Results→Supported Results Prompt
Evolution

Again, prompts included either a CHI or
EMNLP prompt paper title and abstract, but the
Results→Supported Results task prompts included
discussion from the same CHI or EMNLP prompt
paper. Our original prompt design for this task was:

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

The Discussion section for your paper is:
[PAPER DISCUSSION]

A revised version of your Discussion sec-
tion including supporting sources is:

We updated this prompt design to also request
recent sources. Additionally, we decided to change
to a specific request, rather than having the model
simply continue on. The updated prompt can be
found below, with the changes in bold.

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

The Discussion section for your paper is:
[PAPER DISCUSSION]

Modify this Discussion section by in-
cluding supporting sources. Discuss 3
sources. Each source must be from the
last five years and must include the pa-
per name.

We modified the prompt to allow the models to
include up to ten sources. We also noted that earlier
prompt designs led to output following standard in-
text citation formats, in which only the name of the
lead author and publication year were included. We
updated the prompt to request the complete list of
authors and full paper name. We made this change
to make verification of sources possible.

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

The Discussion section for your paper is:
[PAPER DISCUSSION]

Write a revised version of this discus-
sion. Include up to 10 supporting
sources. Each source must be from the
last five years and must include the pa-
per name and full list of authors.

This prompt design was eventually changed to
request the model to include the list of sources fol-
lowing the prose, to allow for a format more similar
to the models’ training data. The final prompt can
be found below:

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]
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The abstract for your paper is: [PAPER
ABSTRACT]

The Discussion section for your paper is:
[PAPER DISCUSSION]

Rewrite the Discussion section to in-
clude 10 in-text citations. Also include a
list of those citations with each citation
in APA format.

C Final Prompt Templates for all Models

C.1 Abstract→Citations

The final prompt designs provided to each model
for this task can be found below.

You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

List 10 relevant papers you could cite in
your Related Works section. Write each
citation in APA format

C.2 Results→Supported Results

The final prompt designs provided to each model
for this task can be found below.

C.2.1 GPT-3.5 & GPT-4
You are an [HCI or NLP] researcher
working on a paper to submit to [CHI
or EMNLP].

The paper you are working on is titled:
[PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

The Discussion section for your paper is:
[PAPER DISCUSSION]

Rewrite the Discussion section to include
10 in-text citations. Also include a list of
those citations with each citation in APA
format.

C.3 Abstract→Related Works

The final prompt designs provided to each model
for this task can be found below.

SYSTEM: You are an [HCI or NLP]
researcher working on a paper to submit
to [CHI or EMNLP].

USER: The paper you are working on is
titled: [PAPER TITLE]

The abstract for your paper is: [PAPER
ABSTRACT]

Write a Related Works section for your
paper. Include 10 in-text citations. Also
include a list of those citations with each
citation in APA format.

D Example Citations

All citations in the following subsections were iden-
tified by GPT-X models.

D.1 GPT-4 Citations of Real Papers and
Correct Authors

The citations in this section are examples of GPT-4-
identified citations. The citation titles and authors
are correct, though other information in these cita-
tions, like year or publisher, may be hallucinated.

1. Kang, R., Dabbish, L., Fruchter,
N., & Kiesler, S. (2015). "My
data just goes everywhere: " User
mental models of the internet and
implications for privacy and secu-
rity. In Eleventh Symposium On Us-
able Privacy and Security (SOUPS
2015), pp. 39-52.

2. 10. Wash, R., & Rader, E. (2015).
Too much knowledge? Security
beliefs and protective behaviors
among United States internet users.
In Eleventh Symposium On Us-
able Privacy and Security (SOUPS
2015), pp. 309-325.

3. 1. Aker, J. C., & Mbiti, I. M. (2020).
Mobile Phones and Economic De-
velopment in Africa. Journal of
Economic Perspectives, 34(3), 207-
232.

D.2 GPT-4 Citations of Real Papers and
Incorrect Authors

The citations in this section are examples of GPT-
4-identified citations. The citation titles are correct,
though other information in these citations, like
year or publisher, may be hallucinated. At least
a portion of one author in each citation is halluci-
nated. In the section citation, the second author
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should be Kim, T. H. The models identified the
third citation in several of our tests, but it would oc-
casionally swap out Natural Language Generation
for Natural Language Inference.

1. Abawajy, J., & Hassan, M. M.
(2017). User preference of cyber se-
curity awareness delivery methods.
Behaviour & Information Technol-
ogy, 36(2), 133-144.

2. Das, S., Kim, D. W., & Dabbish, L.
A. (2019). The effect of social in-
fluence on security sensitivity. In
Proceedings of the Fourteenth Sym-
posium on Usable Privacy and Se-
curity (SOUPS 2018), pp. 27-49.

3. Zhang, X., Kedzie, C., & McK-
eown, K. (2019). Evaluating the
Evaluation of Diversity in Natural
Language Generation. In Proceed-
ings of the 2019 Conference on
Empirical Methods in Natural Lan-
guage Processing and the 9th Inter-
national Joint Conference on Natu-
ral Language Processing (EMNLP-
IJCNLP), pages 6007-6013.

D.3 GPT-4 Citations of Papers with Colons
The citations in this section are examples of GPT-4-
identified citations. While portions of these citation
titles are correct, they still include hallucinations,
often following the colon.

1. Blikstein, P. (2016). Snap! (Build
Your Own Blocks): An introduction.
In Proceedings of the 2016 ACM
Conference on Innovation and Tech-
nology in Computer Science Educa-
tion (pp. 358-358).

2. Lee, M. J., Bahmani, F., Kwan, I.,
& Ko, A. J. (2018). Gidget: A de-
bugging game for learning program-
ming concepts. In Proceedings of
the 2018 CHI Conference on Hu-
man Factors in Computing Systems
(pp. 1-12).

3. "Trust in the Sharing Economy: An
Experimental Study on the Role of
Reputation Systems in Collabora-
tive Consumption" (Ert et al., 2016)

D.4 GPT-4 Hallucinated Citations
1. Das, S., Kim, H., Kelley, P. G.,

& Cranor, L. F. (2018). Making

Security Memorable: Designing a
Behavior Change Story for Secure
Communication. In Proceedings of
the 2018 CHI Conference on Hu-
man Factors in Computing Systems
(pp. 1-12).

2. Alkaldi, N., Renaud, K., & Hutchin-
son, W. (2017). To Share or Not
to Share? A Cross-Cultural Study
of Security and Privacy Perceptions.
In Proceedings of the 2017 CHI
Conference on Human Factors in
Computing Systems (pp. 1-12).

3. 4. Boateng, R., Mbrokoh, A. S.,
Boateng, L., Senyo, P. K., & An-
song, E. (2018). Determinants of e-
commerce adoption among Ghana-
ian SMEs. Journal of Small Busi-
ness and Enterprise Development,
25(3), 501-520.

D.5 GPT-3.5 Citations
The citations in this section are examples of GPT-
3.5-identified citations.

1. Acquisti, A., Brandimarte, L., &
Loewenstein, G. (2017). Privacy
and human behavior in the age of
information. Science, 347(6221),
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Jiang and Riloff, 2022; Jeong et al., 2022; Cardon
et al., 2022; Zhang et al., 2022; Li et al., 2021;
Wagner et al., 2022).
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Abstract

Conversational AI is a subtype of Human-
Computer Interaction that has gained wide
adoption. These systems are typically pow-
ered by Large Language Models (LLMs) that
use Retrieval Augmented Generation (RAG) to
infuse external knowledge, which is effective
against issues like hallucination. However, au-
tomatically evaluating retrieval augmented con-
versations with minimal human effort remains
challenging, particularly in online settings. We
address this challenge by proposing a lexical
metric, and a novel method for combining it
with other metrics, including semantic mod-
els. Our approach involves: (1) Conversational
Information Utility (CIU), a new automated
metric inspired by prior user studies on web
search evaluation, to compute information over-
lap between conversation context and grounded
information in an unsupervised, purely lexi-
cal way; and (2) a generalized reward model
through Mixture-of-Experts (MoE-CIU) that
dynamically ensembles CIU with other metrics,
including learned ones, into a single reward.
Evaluation against human ratings on two public
datasets (Topical Chat and Persona Chat) shows
that CIU improves correlation against human
judgments by 2.0% and 0.9% respectively com-
pared to the second best metric. When MoE
is applied to combine lexical and learned se-
mantic metrics, correlations further improve by
9.9% and 5.0%, suggesting that unified reward
models are a promising approach.

1 Introduction

Conversational AI is a specific type of Human-
Computer Interaction that has been widely studied
in recent years (Ouyang et al., 2022; Team et al.,
2023), leading to the development of multi-purpose
chat assistants (e.g. ChatGPT, Claude) based on
Large Language Models (LLMs). However, as
more customers interact with such assistants, ad-
dressing limitations like hallucination, factual con-
sistency, prompt brittleness and controllability has

gained more attention (Kaddour et al., 2023). One
widely-adopted solution is Retrieval Augmented
Generation (RAG), which allows choosing a con-
text document (dcontext) to ground LLM responses,
and increase truthfulness with respect to the source
document (Lewis et al., 2020).

Our work focuses on the task of automatically
assessing the quality of retrieval-augmented re-
sponses in knowledge-grounded conversations. By
examining both the context and the response, we
estimate the degree to which the retrieved docu-
ment was used in generation, in order to identify
uninformative or inconsistent responses. Our ap-
proach is designed for real-time use, where using
a large model may be infeasible. Compared to of-
fline tasks, online evaluation (e.g., live monitoring
of defects) requires efficient solutions. Recent work
utilizes LLMs, either through prompt engineering
or fine-tuning, to automatically predict evaluation
metrics and reduce dependency from human an-
notators (Thapa et al., 2023; Chan et al., 2023).
Despite demonstrated potentials, a large number of
parameters, high latency, and potential legal issues
significantly limits deploying LLM-based solutions
for live traffic monitoring. As an alternative, we
propose an approach that combines much simpler
and scalable metrics to predict user ratings, or po-
tentially other business metrics. Our approach can
also support offline evaluations, and is relevant
to recent trends in Reinforcement Learning from
Human Feedback (RLHF), which aligns LLM re-
sponses toward human preferences (Ouyang et al.,
2022; Bai et al., 2022; Rafailov et al., 2024).

Early attempts on automatic dialog evaluation
relied on existing metrics (e.g. BLEU) from ma-
chine translation literature to evaluate assistant con-
versations against ‘gold’ conversations (Papineni
et al., 2002). However, defining the full space of
‘gold’ conversations is infeasible due to the non-
deterministic nature of dialogs and many existing
works simply penalize any response that slightly de-
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viates from ‘gold’ (Chen et al., 2019). On the other
hand, learned, semantic conversational quality met-
rics trained on labeled data tend to show higher
correlations against human judgements than exact
word-overlap metrics, because word embedding-
based approaches can compute overlap in a ‘soft’
way that accounts for lexical variation, e.g. , (Sel-
lam et al., 2020; Lowe et al., 2017a). However,
such ‘soft’ approaches also suffer from different is-
sues, such as over-fitting, performance degradation
on longer inputs, or learning similar representations
for antonyms.

To address these gaps, we ask: is it feasible to
unify multiple independent metrics into a single
reward? To answer this question, we investigated
two research questions:

Q1 What is the most effective and robust stan-
dalone metric (whether lexical or learned) that
aligns with human ratings from open-source
knowledge-grounded conversations?

Q2 Given a set of independent metrics, how much
improvement does a unified reward model
gain compared to the best standalone metric?

For Q1, previous studies on ‘exact’ word over-
lap metrics showed they correlate poorly with hu-
man preferences, such as question answering ac-
curacy (Chen et al., 2019) and response appropri-
ateness (Lowe et al., 2017b). To address this, we
compare our newly proposed lexical metric, Con-
versational Information Utility (CIU), which is
inspired from user-centric studies on web search
evaluation (Azzopardi et al., 2018; Moffat et al.,
2013) against existing metrics. A key insight is
that for the user to gain useful information, they
must ask a series of questions, or make statements,
that cause the conversational system (or human
partner) to respond with information overlapping
with dcontext. Our main novelty is how CIU quanti-
fies information overlap to reward relevancy, infor-
mation novelty and conciseness while penalizing
repetitive information and high user effort. Ex-
periments validate that CIU improves correlation
against human ratings by 2.0% and 0.9% against
the second best metric on Topical Chat (Gopalakr-
ishnan et al., 2019) and Persona Chat (Zhang et al.,
2018) datasets for predicting Overall Ratings.

For Q2, we experiment with different ensemble
learning strategies to (1) validate whether previ-
ously identified strong metrics are considered as
strong predictors (metrics); (2) demonstrate the

superiority of an unified reward compared to any
standalone metric. Experimental results in feature
selection ratio show that CIU is selected 76.4%
across 17 different feature selection approaches,
which justifies our findings on Q1. When Mixture-
of-Experts (MoE) (Masoudnia and Ebrahimpour,
2014) was applied, the resulting MoE-CIU model
further improved correlation with human ratings
by 9.9% and 5.0% on Topical Chat and Persona
Chat compared to the best standalone metric. In
summary, our contributions are:

• A simple and effective lexical metric for es-
timating Conversational Information Utility
(CIU) within information-seeking retrieval
augmented conversations

• A generalized, domain-agnostic model MoE-
CIU that utilizes Mixture of Experts to dy-
namically adjust metric weights of different
modalities into an unified reward signal

2 Related Work

Web Search Evaluation and Utility For search
engine evaluation, evaluation measures evolved
from precision- and recall-based to utility- and
cost-based with more emphasis on interactions be-
tween users and search results (Moffat et al., 2013).
This is because simply measuring how well search
engine ranks relevant documents does not always
translate to increased user satisfaction. To model
interactions, additional information such as like-
lihood of user continuing or stopping after at a
given rank or estimated effort to read each docu-
ment (Zhang et al., 2017; Sakai and Dou, 2013)
is considered when defining a utility (Wicaksono
and Moffat, 2020). Overall, web-search utility is
an aggregated metric that combines precision and
recall of ranked documents with user interaction
signals derived from search logs.

However, the main challenge is on applying
these intuitions to multi-turn conversations. In con-
versational settings, many existing word-overlap
and learned metrics (Papineni et al., 2002; Tao et al.,
2017; Zhang et al., 2019) still rely on word over-
lap or semantic similarity to evaluate responses
while neglecting potential user interactions. An
ideal utility should holistically consider word-level
precision, semantic relatedness, novelty of infor-
mation, repetition, conversational history and user
effort to evaluate conversations.
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Learned Metrics One popular approach is to uti-
lize pretrained contextual embeddings from Trans-
former models to compute a similarity score be-
tween two texts. For example, BERTScore (Zhang
et al., 2019) computes a token-level similarity ma-
trix and re-weights the scores based on IDF scores
to boost signals from more novel matches. ADEM
(Lowe et al., 2017b) uses a hierarchical RNN en-
coder to predict human-annotated ratings on Twit-
ter data. While ADEM requires human judgments,
RUBER-BERT (Ghazarian et al., 2019; Tao et al.,
2017) uses an unsupervised negative sampling strat-
egy to train a model that measures information
relatedness between query and response. USR
(Mehri and Eskenazi, 2020) is another transformer-
based model that is shown effective for evaluating
model generated responses. To evaluate USR, the
authors sampled a small number of conversations
from Topical Chat and Persona Chat datasets to
annotate several useful ratings (e.g. overall rating
of responses), which we adopt for our evaluations.

Mixture-of-Experts Models When there are
multiple representations of the same input, e.g.
complementary representations computed by differ-
ent expert modules, the Mixture-of-Experts (MoE)
approach (Masoudnia and Ebrahimpour, 2014) can
take these independent knowledge sources and con-
ditionally combine them into a joint representation
(Shazeer et al., 2017). It does so by training a gat-
ing mechanism that dynamically assigns weights
to the experts, depending on the input (Jain et al.,
2019). MoE has been shown to be effective in
various settings such as combining Support Vector
Machines (Collobert et al., 2002), hierarchical net-
works (Yao et al., 2009) and Named Entity Recog-
nition (Meng et al., 2021). For our use case, each
expert is a representation of different metrics. By
training a gating network to dynamically weight
experts per instance, we expect MoE to improve
over heuristic-based feature combination strategies,
such as sum or mean of different metrics (Ghazar-
ian et al., 2019).

3 Proposed Metrics and Models

We define our task and usefulness ratings, followed
by details on CIU and MoE-CIU approaches.

3.1 Usefulness Rating Prediction Task

Given a conversation history (C) and a specific ut-
terance at turn i (utti), our task is to predict how
much useful information (Rosset et al., 2020) is

present at utti, with respect to the retrieved knowl-
edge (dcontext). Usefulness ratings (1.0 - 5.0) mea-
sures whether the response helps towards fulfilling
the information needs (i.e. learning new informa-
tion, or asking questions about products in online
shopping). To be useful, utterances should meet
the information needs of users and drive the con-
versation forward to elicit more interaction, while
staying relevant to C and dcontext.

3.2 CIU: Conversational Information Utility
Utility is defined as the fulfillment a user receives
after search, and attempts to model how users
aim to gain optimal overall satisfaction (Mach-
mouchi et al., 2017). We hypothesize that success-
ful information-seeking conversations deliver use-
ful and factually correct information from dcontext.
CIU is specifically designed to rank responses with
respect to salient information overlap in an unsuper-
vised, lexical way. To measure information overlap,
we utilize Rapid Automatic Keyword Extraction
(RAKE) (Rose et al., 2010), an existing algorithm
that extracts and ranks keywords based on word co-
occurrences. Highly ranked phrases from dcontext
are then matched against tokens from each turn,
combined with multiple token-level discounting
criteria, which are discussed in next sections.

We define information overlap as the sum of all
token-level match score between utti and each
sentence dsent from dcontext. In case dcontext is
long and contains many paragraphs irrelevant to
utti, we limit dsent to only those from the most
relevant paragraph if such annotations are available.
However for other datasets without annotations, we
apply RAKE to dcontext to extract highly relevant
phrases. For simplicity, we use the same notation
dsent for extracted phrases.

CIU is a normalized, discounted information
overlap. For each turn (i), it is calculated as:

CIUi = [

dsent∑

token

score(token, utti) · γ
freq(token)

]− Ei.

(1)

CIU accepts any scoring function score which
outputs a relevance score between each token
in dsent and utti. Here, we use a binary func-
tion that outputs 1 if each token from dsent ap-
pears in utti and 0 otherwise. Although binary
scoring seems rudimentary, preliminary experi-
ments showed that embedding-based token similar-
ity scores were noisy and did not generalize well
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across diverse samples. Another reason to favor
binary scores is that CIU is meant to be purely lex-
ical and efficient; embedding-based similarity can
significantly slow down predictions as token-level
comparisons are expensive. Eq. 1 also has sev-
eral discounting terms: γ is position-based, freq
is word frequency-based, and Ei is an effort dis-
counting term that subtracts time required to read
utti. Next, we describe the discounting terms.

Position-based discounting Each score is dis-
counted based on which position token appears in
utti. For example, we boost weights of score that
appears earlier in utti. This was inspired from
earlier work (Sakai and Dou, 2013), which claims
the value of relevant information decays based on
how much user effort is required to process infor-
mation. This is particularly effective for longer
utti since users prefer useful information to appear
earlier than later. We adopt the linear discounting
proposed from same earlier work:

γ = max(0, 1− pos(token)/|utti|), (2)

where pos(token) is the token index, and |utti|
is the number of tokens in utti.

Frequency-based discounting Without fre-
quency discounting, all tokens are treated equally
regardless of how frequent or novel they are. Prior
work (Qi et al., 2020) computes informativeness as
how many unseen tokens from information units
overlap with an answer, measured with a unigram
precision function. However, this assumes all
repetitive information is irrelevant. Ideally, our
utility function should assign smaller weights to
frequently observed tokens and higher weights
to novel tokens. The simplest way of achieving
this is to divide each token score by token’s term
frequency (TF), which is measured and updated
throughout the conversation.

User effort and cost Several methods of evalu-
ating search engines have considered the trade-off
between user effort (E) and relevance gain (Zhang
et al., 2017; Azzopardi et al., 2018). In conversa-
tional settings, we hypothesize that turn-level effort
(Ei) can be approximated by computing the total
time a user has spent each turn to read a response.
To understand how Ei influences user satisfaction,
we analyzed turn-level human annotations from
Topical Chat and Persona Chat corpus. Accord-
ing to Figure 1, we first observed that users are

less likely to rate longer utterances as useful than
shorter utterances. To quantify this relationship,
we computed Spearman correlation between use-
fulness ratings and character length. There is a sta-
tistically significant negative correlation of -0.203
(p < 0.001), justifying the need for a length-based
effort discounting.

Figure 1: A box plot showing the distribution of ut-
terance length, divided into five equal-sized bins, over
human-annotated usefulness ratings from Topical Chat
and Persona Chat.

The simplest way of penalizing longer utterances
is assuming a constant cost (reading speed) per
character, Cchar.

Ei = Cchar ∗ |utti| (3)

Then, E required per turn is subtracted from
CIUi to favor shorter turns with identical informa-
tion as shown in Equation 1. Note that this value
can be tuned for different datasets if human anno-
tations are available. Otherwise, we propose to
reuse our value 0.005, which was tuned against
open-source dialogs with human annotations.

3.3 MoE-CIU: Mixture-of-Experts with CIU
Next, we focus on methodologies to model an uni-
fied reward from independent metrics. Perhaps
the simplest way of leveraging multiple metrics is
computing the average or sum. However, previ-
ous work (Ghazarian et al., 2019) highlighted that
simple arithmetic operations on raw metric values
degrades performance since each metric captures
orthogonal measures of relatedness or utility in dif-
ferent scales. Hence, we propose an MoE approach
to dynamically normalize and combine the metrics
with weights that vary over the input.

MoE requires vectors as inputs rather than scalar
scores. Instead of using raw metric scores, we cat-
egorize metric scores to one of N bins based on
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each score distribution. For bin size, we found that
N = 5 gives the best performance. Then, we cre-
ate trainable embedding layers of dimensionality
(M,N,D) where M is the number of metrics to
combine, N is the number of bins, and D is a hy-
perparameter that defines the embedding size. For
our experiments, we used (6, 5, 16).

Two different feature combination strategies
were explored. First, we trained a baseline MoE-
Concat that uses a concatenated vector of label rep-
resentations to predict scores. The second model
MoE-CIU uses the MoE gating mechanism (Meng
et al., 2021) to learn input-dependent weights for
each metric to compute a final score. Both ap-
proaches can be trained as a binary classifier (with
cross-entropy loss), or as a regressor (with mean-
squared error loss) depending on use cases.

4 Public Datasets with Human Ratings

We used two publicly available dialog corpora to
evaluate our approach.

Topical Chat Topical Chat (Gopalakrishnan
et al., 2019), contains 11k conversations that are
grounded to web articles (dcontext). For human rat-
ings, we use a subset of more recent and reliable
ratings obtained on the official test split (Mehri
and Eskenazi, 2020), which contains 360 samples.
From multiple available ratings, we selected two
ratings that are most relevant for our scope:

• Overall Rating (0 - 5): What is the overall
impression of this utterance based on under-
standability, naturalness, coherency, interest-
ingness, and relevancy of used knowledge?

• Uses Knowledge (0 - 1): Given the fact that
the response is conditioned on (dcontext), how
well does the response use that fact?

Persona Chat Persona chat (Zhang et al., 2018)
is another popular dataset that contains knowledge-
grounded conversations on different personas
(dcontext). Similar to Topical Chat, Mehri and Es-
kenazi (2020) released a more recent human anno-
tations on 300 test samples. For consistency, we
will choose the exact same type of ratings for our
evaluation.

5 Experimental Settings

We first present an overview of our selected base-
line metrics and evaluation criteria. For Q1, each
metric performance is (1) evaluated independently.

Then for Q2, we experiment with two settings for
metric unification: (2) static combination where op-
timal features (metrics) are pre-selected from exist-
ing feature selection algorithms; (3) dynamic com-
bination that utilizes MoE to automatically learn
and weight all input features.

5.1 Standalone Metrics Evaluation

We compare CIU performances against standard
word-overlap and learned baseline metrics (1)
Random Baseline (2) BLEU; (3) METEOR; (4)
ROUGE-L; (5) RUBER-BERT; (6) BERTScore
(Banerjee and Lavie, 2005; Lin, 2004). Random
baseline is added to highlight the relative difficulty
of different tasks.

To evaluate the effectiveness of individual met-
rics, we compute Spearman rank correlation be-
tween our metric predictions and two different
types of human ratings: (1) ‘Overall’ ratings; (2)
‘Uses Knowledge’ ratings, as discussed in Section
(§4). Spearman correlation was chosen over Pear-
son because Spearman is more suited for bench-
marking monotonic relationship while Pearson
only models linear relationships.

Ablation Analysis on CIU parameters To eval-
uate individual contributions of different discount-
ing terms within CIU, we include an ablation anal-
ysis that systematically removes each discounting
terms on Table 1 and Table 3. Effort terms were
tuned on the Topical Chat training corpus, and used
Cchar = 0.005 for other experiments.

5.2 Unified Reward Evaluation

Static Combination with Feature Selection We
experiment with existing feature selection strate-
gies to first identify strong predictors, and second
train a model to ensemble strong estimators for pre-
dicting human ratings. The evaluation criteria we
adopt is the feature selection ratio, which computes
how many times each metric is identified as a top-k
predictor against others. We experimented with
following feature selection1 strategies:

• Univariate feature selection

• Feature selection using random forest

• Recursive feature elimination

• Forward & backward feature selection

• No feature selection, uses all features
1https://scikit-learn.org/stable/modules/

feature_selection.html
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Since training ensemble models requires labels,
we reserved 50 random samples each from both
datasets for testing and remainders for training.
Support Vector Regressor (SVR) was chosen be-
cause this model achieved the strongest perfor-
mance on multiple experiments over other choices
(e.g., gradient-boosted decision tree). The optimal
hyperparameters were identified using Grid Search.
Since we have only 50 test samples, experiments
were repeated 15 times using different sampling
seeds and performances were averaged to reduce
variance. For consistency, we also report Spearman
correlation against human ratings.

Dynamic Combination with Mixture of Experts
We compare the static feature selection models to
MoE-Concat and MoE-CIU (discussed in Section
3.3), which does not require any feature selection
in theory because Mixture of Experts are designed
to automatically learn and combine different metric
representations. Hence by default, these models
take all features as inputs. Performances are also
averaged over 15 different sampling seeds.

6 Main Results

We present the results on each public dataset, fol-
lowed by ablation study and error analysis.

6.1 Topical Chat Results

Standalone Metric Performance Table 1 lists
the correlation of different metrics in a standalone
setting. Overall, the best CIU configuration that
uses all proposed discounting terms achieved the
highest correlation for predicting Overall Ratings,
which answers Q1. It is impressive that CIU
was able to outperform learned metrics without
any training data. However for predicting Uses
Knowledge, a learned metric (RUBER-BERT) out-
performed CIU by 3.6%. All of correlation co-
efficients reported in Table 1, including the dif-
ference between CIU and the second best lexi-
cal metric (METEOR) are statistically significant
(p < 0.001).

Unified Reward Performance Table 2 shows
the results from different feature selection strate-
gies. The best combination strategy for predicting
Overall Ratings was to simply use all metrics. This
achieved 0.432 Spearman correlation, a +1.7% im-
provement over the best standalone metric, CIU.
All correlations reported in Table 2 are statisti-
cally significant (p = 0.001). For predicting Uses

Metric Overall Ratings Uses Knowledge
Random Guessing 0.016 0.023
BLEU 0.298 0.631
METEOR 0.352 0.716
ROUGE-L 0.339 0.688
RUBER-BERT 0.385 0.778
BERTScore 0.395 0.717
CIU - freq 0.411 0.728
CIU - pos 0.412 0.729
CIU 0.415 0.742

Table 1: Spearman correlation between metric predic-
tions and human ratings on Topical Chat. Ablation study
is indicated with minus sign where freq stands for fre-
quency and pos for position.

Knowledge, the best ‘Recursive-5’ model excluded
ROUGE as the weakest feature, achieving 0.781
correlation. Generally, there is a clear trend that
correlation improves with more features. This is a
strong evidence showing that leveraging multiple
metrics is more effective than any single metric
alone.

For all 17 different feature selection strategies
we note that CIU, RUBER-BERT and BERTScore
were almost always selected. They were also
the top metrics on Topical Chat (Table 1). For
backward selection (which outperform forward se-
lection), we see that ‘Backward-1’ first picks up
RUBER-BERT as the most useful feature, followed
by CIU and BERTScore. Although CIU was best in
predicting Overall Ratings, other feature selection
strategies did not always prioritize CIU on first iter-
ations. Nonetheless, these results demonstrate that
the majority of feature selection strategies consider
CIU and RUBER-BERT as one of the strongest
features, which justifies our findings on Q1.

Having validating the effectiveness of combining
multiple metrics, we trained the MoE-Concat and
MoE-CIU models on the same data splits. To an-
swer Q2, MoE-CIU achieved 0.514 correlation for
Overall Ratings (+8.2% improvement), and 0.799
correlation for Uses Knowledge (+1.8% improve-
ment) against the best static combination approach,
both of which are statistically significant. Accord-
ingly, we claim that MoE-based approaches are
superior to traditional feature selection strategies
as the MoE gating mechanism can dynamically ad-
just the weights of different metrics while feature
selection is binary and static (features are either
used or not, and have a fixed weight).
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Metric Overall Ratings Uses Knowledge BLEU METEOR ROUGE-L CIU RUBER-BERT BERTScore
Univariate 0.427 0.773 ✓ ✓ ✓ ✓ - ✓

Random Forest 0.405 0.721 ✓ ✓ - ✓ ✓ ✓

Recursive-5 0.385 0.734 - ✓ - - - -
Recursive-4 0.392 0.733 - ✓ - - - ✓

Recursive-3 0.396 0.767 - ✓ - - ✓ ✓

Recursive-2 0.411 0.781 - ✓ - ✓ ✓ ✓

Recursive-1 0.422 0.781 ✓ ✓ - ✓ ✓ ✓

Forward-1 0.361 0.729 - - ✓ - - -
Forward-2 0.351 0.742 - - ✓ ✓ - -
Forward-3 0.392 0.747 - - ✓ ✓ ✓ -
Forward-4 0.418 0.757 - - ✓ ✓ ✓ ✓

Forward-5 0.417 0.771 - ✓ ✓ ✓ ✓ ✓

Backward-1 0.389 0.735 - - - - ✓ -
Backward-2 0.386 0.736 - - - ✓ ✓ -
Backward-3 0.403 0.752 - - - ✓ ✓ ✓

Backward-4 0.413 0.761 - - ✓ ✓ ✓ ✓

Backward-5 0.425 0.771 ✓ - ✓ ✓ ✓ ✓

All 0.432 0.778 ✓ ✓ ✓ ✓ ✓ ✓

Selection Ratio - - 5 (29.4%) 9 (52.9%) 9 (52.9%) 13 (76.4%) 13 (76.4%) 12 (70.5%)
MoE-Concat 0.507 0.788 ✓ ✓ ✓ ✓ ✓ ✓

MoE-CIU 0.514 0.799 ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Spearman correlation between model prediction with feature selection and human ratings on Topical Chat.
Selection ratio indicates how many times each feature was selected by different feature selection algorithms.

6.2 Persona Chat Results

Standalone Metric Performance Table 3 lists in-
dividual metric performance on Persona Chat. For
Overall Ratings, CIU again showed the strongest
correlation of 0.481 and for Uses Knowledge,
RUBER-BERT achieved 0.688. Although the top
metrics are identical to Table 1, the remaining met-
rics not only performed worse, but also fluctuated.
For Topical Chat, we observed that BLEU was the
least effective in predicting both Overall Ratings
and Uses Knowledge. However in Persona Chat,
BLEU outperforms METEOR and is comparable
to CIU. BERTScore also has poor generalization as
correlation dropped by 15.4% and 29.2% compared
to Topical Chat. All of the correlations reported in
Table 2 are statistically significant (p < 0.001).

Metric Overall Ratings Uses Knowledge
Random Guessing 0.011 0.017
BLEU 0.472 0.515
METEOR 0.223 0.379
ROUGE-L 0.202 0.387
RUBER-BERT 0.435 0.688
BERTScore 0.241 0.486
CIU - freq 0.461 0.667
CIU - pos 0.461 0.669
CIU 0.481 0.685

Table 3: Spearman correlation between metric predic-
tions and human ratings on Persona Chat. Ablation
study is indicated with minus sign where freq stands
for frequency and pos for position.

These findings show existing metrics have high
variance across tasks. This is true for both lexical
and learned metrics as BLEU, METEOR, ROUGE
and BERTScore all suffered from significant per-
formance drops. We believe that it is difficult to

determine which metric works best ahead of time;
nonetheless, CIU is consistently strong and reliable
across both domains.

Unified Reward Performance According to Ta-
ble 4 on predicting Overall Ratings, univariate fea-
ture selection combining five metrics excluding
ROUGE performed best and achieved 0.529 corre-
lation, a +4.8% improvement compared to best stan-
dalone metric CIU. Similarly for predicting Uses
Knowledge, SVR using all features achieved the
strongest correlation of 0.718, a +3.0% improve-
ment over RUBER-BERT in Table 3. All correla-
tions reported in Table 4 are statistically significant
(p < 0.001). Overall, it is clear that benefits of
combining different metrics generalize to different
domains.

For feature selection ratios, we observed BLEU
and RUBER-BERT were each selected 82.3% from
17 different feature selection strategies. While
CIU was one of the most selected features in Top-
ical Chat, CIU is the third best in Persona Chat
with 76.4% selection ratio. Although BLEU were
selected the most in Persona Chat, these perfor-
mances do not carry over to Topical Chat since
BLEU was only selected 5 times according to Ta-
ble 2. Across both datasets, RUBER-BERT was
selected most with 75.0% and CIU was second with
72.2%. All of these findings validate that CIU is the
strongest and most reliable lexical metric in eval-
uating retrieval augmented conversations without
any training.

Lastly, our proposed MoE-CIU outperformed the
strongest feature selection baseline by 1.5% on pre-
dicting Uses Knowledge, but only a tiny increase
on Overall Ratings. We suspect that with more
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Metric Overall Ratings Uses Knowledge BLEU METEOR ROUGE-L CIU RUBER-BERT BERTScore
Univariate 0.529 0.683 ✓ ✓ - ✓ ✓ ✓

Random Forest 0.492 0.636 ✓ - ✓ ✓ ✓ ✓

Recursive-5 0.436 0.675 - - - ✓ - -
Recursive-4 0.487 0.675 ✓ - - ✓ - -
Recursive-3 0.483 0.666 ✓ - - ✓ ✓ -
Recursive-2 0.505 0.711 ✓ - ✓ ✓ ✓ -
Recursive-1 0.514 0.713 ✓ - ✓ ✓ ✓ ✓

Forward-1 0.381 0.674 - - - ✓ - -
Forward-2 0.455 0.678 - - - ✓ ✓ -
Forward-3 0.511 0.658 ✓ - - ✓ ✓ -
Forward-4 0.504 0.701 ✓ ✓ - ✓ - ✓

Forward-5 0.507 0.702 ✓ - ✓ ✓ ✓ ✓

Backward-1 0.377 0.659 - - - - ✓ -
Backward-2 0.446 0.654 ✓ - - - ✓ -
Backward-3 0.501 0.645 ✓ ✓ - - ✓ -
Backward-4 0.518 0.699 ✓ ✓ - - ✓ ✓

Backward-5 0.521 0.699 ✓ ✓ ✓ - ✓ ✓

All 0.519 0.718 ✓ ✓ ✓ ✓ ✓ ✓

Selection Ratio - - 14 (82.3%) 6 (35.2%) 6 (35.2%) 13 (76.4%) 14 (82.3%) 8 (47.0%)
MoE-Concat 0.521 0.721 ✓ ✓ ✓ ✓ ✓ ✓

MoE-CIU 0.531 0.733 ✓ ✓ ✓ ✓ ✓ ✓

Table 4: Spearman correlation between model predictions with feature selection and human ratings on Persona Chat.
Selection ratio indicates how many times each feature was selected by different feature selection algorithms.

training data, the benefits will become more visible.
Nonetheless, since it is difficult to expect which
feature selection works best in advance, learning
dynamic metric weights through MoE seems ex-
tremely useful.

Case Study To illustrate benefits of MoE-CIU,
we selected one example in Table 5 where we show
the context, the response being assessed, different
metric scores, and the gold human rating.

dcontext: Until 1805 in the us, the runner up in
a presidential election automatically became the
vice president.

Response: Yeah i wonder what the president of
zimbabwe looks like?

CIU: 0.32 RUBER-BERT: 0.00 BERTScore: 0.36
MoE-CIU: 3.33 Rating: 3.66

Table 5: An example showing how MoE-CIU handles
potentially conflicting signals from individual metrics.

Here, although RUBER-BERT was very confi-
dent in classifying this example as NOT useful,
MoE-CIU still predicted 3.33 ratings, which is
much closer to gold ratings given other useful sig-
nals from CIU and BERTScore. A more compre-
hensive insights and additional examples are in-
cluded in Appendix A.

7 Conclusion

We introduced CIU, a novel utility metric for as-
sessing the quality of retrieval augmented conver-
sations. Based on our experiments on two popular
retrieval augmented (a.k.a. knowledge-grounded)

conversation corpus, we conclude that CIU was
the best metric among other lexical baselines. Al-
though RUBER-BERT surpassed CIU performance
on Persona Chat, considering the complexity of
RUBER-BERT (e.g., training and inference), CIU
is still an easy-to-use metric that can achieve simi-
lar results with no training, which answers Q1.

For Q2, we demonstrated the potentials of uni-
fying multiple independent metrics into a single
reward signal without any LLM dependency. This
was achieved through our MoE-CIU model, and
experiments confirm its effectiveness over any stan-
dalone metric. Insights from this study suggest
promising directions for applying MoE-CIU as a
proxy for an unified reward signal to optimize.

Limitations

Although our work proposes an approach to model
unified rewards, reward optimization approaches
to update dialog policy (e.g., RLHF) are left for
future work. MoE-CIU also requires a small num-
ber of human annotations, thus our approach will
require manual labeling. Our proposed discounting
functions were only validated on English corpora,
thus it is unclear how well CIU can generalize to
multilingual setting. Unfortunately, experiments in-
volving different languages and cultures are beyond
the scope of this paper. Lastly, instead of exhaus-
tive comparisons, we only selected the most widely
used metrics to keep our experiments simple.
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Appendix

A Additional Case Studies of MoE-CIU

To illustrate how MoE-CIU benefits from ensemble
learning, we highlight three examples in Table 6
where we show the context, the response being
assessed, and the scores from the various models,
and the gold human rating.

dcontext: Until 1805 in the us, the runner up in
a presidential election automatically became the
vice president.

Response: Yeah i wonder what the president of
zimbabwe looks like?

CIU: 0.32 RUBER-BERT: 0.00 BERTScore: 0.36
MoE-CIU: 3.33 Rating: 3.66

dcontext: In september of 2010, the united nations
appointed official ambassador to extraterrestrials
in they case they would ever make contact with
earth.

Response: I’m not sure. I wonder if the un has an
ambassador to aliens.

CIU: 0.36 RUBER-BERT: 0.99 BERTScore: 0.31
MoE-CIU: 2.66 Rating: 2.67

dcontext: Burger king had a promotion where if
you unfriend 10 people on facebook you get a
free whopper.

Response: Did you know burger king had a pro-
motion where they gave you a burger for every
10 people you unfriended? I could have had 100
burgers!

CIU: 0.91 RUBER-BERT: 0.99 BERTScore: 0.62
MoE-CIU: 4.53 Rating: 5.00

Table 6: Example predictions from MoE-CIU highlight-
ing how different metrics help recover false-positives
from individual metrics.

One obvious issue we noticed was that it is dif-
ficult to calibrate the score distribution of learned
models because on all three examples, RUBER-
BERT is extremely confident about its decision.
However, MoE architecture is particularly helpful
since it can combine different metric outputs into
a more continuous score distribution that is better
aligned with human ratings.

In the first example, RUBER-BERT fails be-
cause the utterance and reference do not con-
tain strong semantic relationship. Instead, they
are loosely connected with an important keyword
(‘president’). RUBER-BERT was very confident
in classifying this pair as NOT useful although hu-
man usefulness rating is 3.66. CIU and BERTScore
successfully capture the overlap and assign a rea-
sonable score compared to RUBER-BERT. The
resulting model is capable of correcting RUBER-
BERT’s prediction to 3.33, which is only 0.33 off to
human usefulness ratings. Without MoE, RUBER-
BERT alone will predict this pair with 0.0 rating.

In the second example, RUBER-BERT strongly
believes that the utterance and reference are seman-
tically related. Although both inputs talk about
alien ambassadors, the utterance does not use the
information correctly. The reference clearly states
United Nations appointed alien ambassadors but
the utterance still questions the fact. RUBER-
BERT is very confident that this example is highly
related. However, CIU and BERTScore are able
to regularize these effects if trained under MoE-
CIU. The final score correctly predicted usefulness
ratings with only 0.01 difference.

In the last example, it is clear that the input is
highly relevant to dcontext. Since individual metrics
provide strong signals, MoE-CIU also predicted a
very high rating of 4.53, which is close to 5.0.
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Abstract
Modern instruction-tuned models have become
highly capable in text generation tasks such
as summarization. Given the regularity with
which new model variants are now released, an
increasingly practical problem entails choos-
ing the best (zero-shot) summarization model
for a particular domain confidently, but with
minimal effort. In this work we empirically
investigate the test sample size necessary to se-
lect a preferred model in the context of news
summarization. Our results reveal that compar-
ative evaluation converges quickly for both au-
tomatic and human evaluation, with clear pref-
erences for a system emerging from under 100
examples. Collected human preference data al-
lows us to quantify how well automatic scores
can reproduce preference rankings across a va-
riety of downstream summarization tasks. We
find that while automatic metrics are stable at
smaller sample sizes, only some automatic met-
rics are able to moderately predict model win
rates according to human preference.

1 Introduction

Instruction fine-tuned language models are highly
capable summarizers, and new such models are
now released often. Continuously comparing such
models using large, reference-based benchmark as-
sessments is a costly task, especially if one wants
to use them in a new domain. Here we demonstrate
on (English) new summarization data that—with
respect to both human and automatic evaluations—
preferences toward a summarization model emerge
over test sets of about 50 samples. Collecting hu-
man judgements, GPT evaluations, or (if possible)
manually composed references for this size dataset
is reasonable. Further, we evaluate GPT evalua-
tions and two popular reference-based evaluations,
ROUGE-1 and BERTScore, in terms of their ability
to predict human preferences on a set of 36 test-
ing contexts. We collect human judgements in the

*Work completed while at Adobe Research.

context of three different summarization tasks and
three sources of input. For these variations, we
compute the accuracy of automated scores to repro-
duce human preferences between pairs of systems.

2 Background

Our goal is to establish the amount of test data
needed to decide which of two summarization mod-
els produces better summaries for a given distribu-
tion over inputs (i.e., different sources of text to be
summarized) and different task contexts for which
the summary is to be used.

It is common to approach evaluation as a rate-
then-compare task in which outputs from systems
are rated for quality on a scale, and then average
scores are used to compare systems. But it is well
known that inputs may differ considerably in diffi-
culty (Nenkova and Louis, 2008). Paired tests for
statistical significance, that evaluate the differences
of scores between two systems on the same input
is the basis for comparison are therefore more ap-
propriate (Rankel et al., 2011; Dror et al., 2018).
Most contemporary work has embraced this ap-
proach, largely abandoning scoring of outputs and
instead soliciting preferences among two or more
choices (Novikova et al., 2018). Given develop-
ments in LLMs, pairwise win rates have become
the de facto standard for reporting comparisons be-
tween instruction tuned models. In this work we
similarly adopt win rate to compare systems, and
we empirically identify the smallest test set size
that reliably reveals preferences.

Most closely related to our work is the study on
estimating power of tests for statistical significance,
i.e., the minimum test size necessary to detect statis-
tical differences of a given size (Card et al., 2020).
Our work is aligned with the main question of this
prior work, but we present empirical estimates of
differences between systems without making any
assumptions of tests to be used or size of effect we
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Figure 1: Distributions of average ROUGE-1 and BERTScores across 1000 re-samples. Differences between
systems emerge clearly and quickly for XSUM and Newsroom.

want to detect. Our empirical findings may inform
future work on power estimation.

Prior related work proposes ways of carrying out
evaluations, either automatically or manually (La-
ban et al., 2022a; Zhang* et al., 2020; Fabbri et al.,
2022; Zhong et al., 2022; Liu et al., 2022), and
measuring the correlations between system rank-
ings produced by human and automatic evaluations
on a given benchmark (Gehrmann et al., 2023).
We do not propose new evaluation methods, but
rather introduce a method for validating automatic
evaluations that does not rely on a benchmark, and
instead measures the accuracy of automatic scores
in reproducing human judgements across different
input distributions and intended use-cases.

3 Unnecessarily Large Benchmarks

We first compare two models, FlanT5-XXL (Chung
et al., 2022) and StableLM (Andonian et al., 2021)
via automatic scores over three news summariza-
tion benchmarks: CNN/DM (See et al., 2017; Her-
mann et al., 2015), XSUM (Narayan et al., 2018),
and Newsroom (Grusky et al., 2018). We use the
test set splits of these datasets from Huggingface.1

CNN/Daily Mail and XSUM contain about 10K
test inputs. The Newsroom test set split has over
100k samples. For efficiency, we randomly sample
10k examples from this set to scale it down to a
size comparable to the other two datasets. We then

1https://huggingface.co/docs/datasets/index

generate summaries with FlanT5 and StableLM for
all articles in the test sets, using the summarization
prompts that these models have been trained on (see
Appendix A). For each test split we sample 1000
times with replacement smaller test set sizes rang-
ing from [5, len(dataset)]. We evaluate the two
models with the commonly used ROUGE-1 (Lin,
2004) and BERTScore (Zhang* et al., 2020).2 Both
scores compare a summary with a human-written
reference summary. ROUGE does so using tokens,
while BERTScore relies on embeddings. We show
score variations for FlanT5 and StableLM across
the three datasets in Figure 1. For all three datasets,
a preference for one of the models emerges early:
The winning model as scored over 10k test points
emerges after just 25-50 samples.

Given these findings, we collect human judge-
ments on 100 samples from each of the data
sources, varying the task context in which the
judgement is made. We also add GPT-4 as an-
other summarization model to be evaluated, and
later report the accuracy of GPT-based evaluation
against the aggregated human judgements.

4 Human Preferences

We hire three individuals on Upwork (Appendix F)
for CNN/DM and Newsroom, and one for XSUM.
We select 100 inputs for annotation from each
dataset, which given the trends we observed in

2We also report BLEU (Papineni et al., 2002) and
SummaC-ZS (Laban et al., 2022b), in Appendix B.
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the previous section, would be sufficient to reveal
human preference.3

We also add summaries produced by GPT-4
for evaluation on the smaller dataset. FlanT5,
StableLM, and GPT-4 represent encoder-decoder,
decoder-only (open-source), and decoder-only
(closed-source) models, respectively.

We instruct annotators to rank the summaries for
each input in order of preference. This is a typical
evaluation setting in which win rates—the percent-
age of input for which the model was preferred
over the other—provide the clearest score for each
model pair.

We provide three different scenarios to measure
how preference may change based on context: (i)
Rank the summaries in order of preference; (ii) As-
suming you are monitoring the news for important
world events, rank the summaries in order of prefer-
ence; (iii) Which summary best captures the main
details of the event being reported on? (iv) Which
summary contains the fewest unnecessary details?

For GPT-4, we append the summaries with the
instructions and provide these as prompts to the
model.

4.1 Stability of Preference
First, we look to confirm whether smaller test sam-
ples are sufficient to make the same conclusion as
with a larger sample. We apply the same procedure
described in Section 3, where we resample 1000
test sets of size 25 and 50 from the 100 for which
we have human judgements. Figure 2 shows the
win rates for the CNN/Daily Mail test set for each
of the three pairs of models, on the full test set of
100 samples, as well as the min, max and average
win rate recorded across the 1000 smaller test sets.

While there is some variation in the strength
of the preference for a model, the overall prefer-
ence is preserved in the smaller samples. In only
one case—the comparison between FlanT5 and
StableLM—does the overall preference change for
the minimum value of win rates from the one thou-
sand samples of size 25. With 50 samples in the
evaluation set, all three of the minimum, maximum
and average win rates lead to the same conclusion
about which system in the pair is better as that from
the full 100 sample test set.

Similarly for the other two datasets, Newsroom
and XSUM, none of the overall preferences flip for
test sets of size 50 and only one minimum value

3See Appendix F for details about cost and hours for all
annotations.

for the 25 samples flips the preference. We provide
the complete tables in Appendix C.

These results indicate that even under human
evaluation, smaller test set samples (n=50) are ad-
equate to conclude which is the preferred summa-
rization model.

In many cases, the strength of the preference may
be of interest. As shown in the variation between
the minimum and maximum win rates, the strength
as captured by win rates can vary considerably
depending on the test set. We leave for future work
analysis of the test size required to obtain reliable
conclusions about the strength of the preference.

4.2 Human Preference Varies by Task and
Input Source

We now turn to comparing model preferences rela-
tive to downstream task use.

Figure 3 shows the variation of aggregated
preferences on the full 100 sample test set for
CNN/Daily Mail. The context of the task can dra-
matically change the win rates for a given model.
When contextualized in a specific use-case, human
preferences flip from the overall rating for two out
of the three model comparisons.

The overall win rate for StableLM over FlanT5
is 54%, indicating a weak preference for StableLM.
In the world event use case however, the win-rate
for FlanT5 increases to 53%, flipping to a prefer-
ence for FlanT5. Similarly, the win rate of Sta-
bleLM over GPT-4 in the overall condition is 21%
but flips to 76% in the main details setting. The win
rates of FlanT5 over GPT-4 remain stable across
all tasks, always in favor of GPT-4.

Similarly, win rates according to the aggregate
human preference for two systems vary depending
with the source of data. In the next section we
discuss how this observed variability changes the
approach to validation of automatic evaluations.

5 Validating Automatic Evaluation

We presented qualitative evidence that the context
in which preferences are made change the human
preferences dramatically. We also provided clear
examples of cases when human preference for the
same two models can flip depending on the con-
text. This judgement variability poses a novel re-
quirement for validating automatic evaluation ap-
proaches. We cannot combine win rates across
settings and compute correlations between human
preferences and automatic scores because these
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Figure 2: Aggregated annotator win rates for the CNN/DM dataset for the overall metric. Model preferences remain
fairly stable across all sample sizes except in one case for sample size of 25.
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Figure 3: Aggregated annotator win rates across all
metrics. Model preferences can change depending on
the task setting.

come from different distributions. We do, however,
have a sufficient number of pairs for comparison: 3
models evaluated on 3 sources of data, on 4 context
of use. This yields 9 overall preferences and 27
contextually dependent preferences.

For four automatic methods for evaluation, we
compute the accuracy of the automatic score in
reproducing human preferences. Specifically, we
compute the percentage of pairwise comparisons
for which the automatic evaluation agrees with the
human win rates on which system is the better
one. This is a coarse requirement because it does
not capture the size of the win rate. For example
the win rate of one system over another in human
preferences is 51% but an automatic score predicts
that its win rate is 79%, the automatic score will be
considered accurate.

Table 1 shows the accuracy for four automatic
evaluations: ROUGE-1, BERTScore, G-Eval, and
GPT-4 as an annotator. In the case of GPT-4 as an
annotator, we provide GPT-4 with the exact same
instructions as the human annotators. For the first
three approaches, a win for a model is declared
if the score assigned by the method for this input
is higher than that for the other model. In cases

Metric Accuracy (%)

ROUGE-1 78
BERTScore 56
G-Eval 44
GPT-4 (as annotator) 78

Table 1: Accuracy of automatic metrics compared to hu-
man evaluations. GPT-4 as-an-annotator and ROUGE-1
score have the highest accuracy in predicting which
model is selected by human annotators in each task set-
ting.

when the scores for an input are the same, there
is a tie. In the fourth case, using GPT-4 as an
annotator provides ratings, so the wins are decided
by the ranking returned by GPT-4 (rather than a
proxy score). In this case, there are no ties because
the annotators were asked to do a forced choice
comparison. We find that ROUGE-1 and GPT-4
as an annotator are able to moderately predict the
aggregated human preferences across the different
tasks, compared to BERTScore and G-Eval which
are not able to do so as reliably.

6 Conclusions

We presented automatic and human evaluations de-
signed to establish the minimum amount of data
necessary to choose between contemporary sum-
marization models. Comparative evaluations es-
tablish which model performs better with test sets
of 50 inputs. For human evaluation, a test size
of 50 is sufficient to confidently establish which
of two models people prefer. Human preference
varies, however, depending on the intended use of
the summary and on the source of data for sum-
marization. This variation calls for new methods
for validating automatic scores. We find that all
four automatic evaluations predict preferences bet-
ter than chance but lead to erroneous conclusions
for many pairwise comparisons.
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Limitations

We only evaluate over benchmark news datasets,
where it is possible that our observations may not
be reflected in other, more niche domains. In part,
this choice is due to lack of availability of quality
summarization datasets with references (and fur-
ther motivating the need for evaluation over small
samples), however it is important for future work
to consider more specialized cases. Another limi-
tation is that we do not collect human annotations
nor GPT-4 summaries over the entire test set splits.
This poses a challenge as collecting these evalu-
ations and summaries over such a big dataset is
costly.
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Model Prompt

FlanT5 [TEXT]\nWhat is a one-paragraph summary of the above article?

StableLM

<|SYSTEM|># StableLM Tuned (Alpha version)
- StableLM is a helpful and harmless open-source AI language
model developed by StabilityAI.
- StableLM is able to facilitate human communication by
providing a summary of a given text.
- StableLM is able to provide summaries that are useful and
relevant to the given text.
<|USER|> [TEXT].
Summarize the given piece of text.
<|ASSISTANT|>

GPT-4
"role": "user",
"content": ”[TEXT] \n\n Summarize the above text. \n\n"

Table 2: Input and prompt structure for each summa-
rization model. [TEXT] is replaced with the article to be
summarized.

Appendix

A Summarization Prompt Details

For the summarization prompts, we use prompts
and input structures that the models have been
trained on. Table 2 shows the input for each model,
where [TEXT] is replaced with the article to be
summarized.

B BLEU and SummaC-ZS

Figure 4 shows the distributions of averaged BLEU
and SummaC-ZS scores over all three datasets.
BLEU scores have trouble capturing meaning-
ful scores across longer inputs as seen with Sta-
bleLM. SummaC-ZS uses NLI-models to score
sentence-level information – similar to ROUGE-1
and BERTScore, we can start differentiating mod-
els earlier than the full sample size.

C Human Evaluation Win Rates and Sample
Sizes: XSUM and Newsroom

We provide the aggregated win rates across annota-
tors for XSUM (Figure 5) and Newsroom (Figure
6). Both datasets show the same trend as in Figure
2, where the win rate pair ranking is preserved in
the minimum, maximum, and average win rates
across 1000 trials. This holds across sample sizes
of 50, but not in all cases with sample size of 25.

D Human Evaluation Win Rates and Tasks:
XSUM and Newsroom

Similar to Figure 3, we show the win rates across
different tasks for XSUM and Newsroom in Figure
7. These results support the finding that preference
changes between downstream scenarios.

CNN/DM

Annotators Factuality κ Text Quality κ

1, 2 0.522 0.053
1, 3 0.249 0.539
2, 3 0.133 -0.081

Table 3: Agreement scores, Cohen’s kappa.

E Annotator Agreement on Text Quality and
Factuality

For CNN/DM we report the agreement scores over
factuality and text quality questions that we collect
in our surveys in Table 3. We expect the agree-
ment scores for factuality to be much higher; it is
possible that this is an indicator for different tol-
erance for minor errors (e.g., vague wording) or
may be indicative of the cognitive load involved in
judging factuality. Similarly for text quality, the
threshold for artifacts or other issues may differ
between annotators.

F Annotation Details
Costs We hired seven professional proofreaders
from Upwork, who were each recruited to read 100
articles and rank 3 summaries per article. We paid
each annotator a flat fee of $325 to evaluate the
summaries When asked for a time estimate after
they completed, responses ranged between 10 and
13 hours to complete the study, meaning annotators
were compensated at roughly $25-$30 per hour.
The annotators typically completed the work over
one to three days.

Annotation Platform We hire annotators on Up-
work4. We presented the annotators with a custom
interface for ranking the summaries and answering
questions, shown in Figure 8. Annotators were en-
couraged to take extended breaks during annotation
to reduce task fatigue.

4https://www.upwork.com/nx/
enterprise-homepage/
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Figure 4: Distributions of averaged BLEU and SummaC-ZS scores across 1000 re-samples for CNN/DM, XSUM,
and Newsroom.
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Figure 5: Win rates aggregated by annotators (XSUM).
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Figure 7: Aggregated annotator win rates across all metrics over the XSUM and Newsroom datasets.

(a) Summaries, as presented to the annotators. (b) Text quality issues and the ranking interface for the
summaries. Each box with the summary label can be
dragged-and-dropped into any order.

(c) Article, as presented to the annotator. (d) Factuality questions asked about each summary.

Figure 8: The annotation interface. For each article, annotation happens across two pages. The first page contains
the summaries (8a) and rankings (8b), and the second page contains the article (8c) and factuality questions (8d).
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Abstract

In the realm of research support tools, there ex-
ists a notable void in resources tailored specifi-
cally for aiding researchers during the crucial
ideation phase of the research life-cycle. We
address this gap by introducing ‘Acceleron’,
a ‘Co-Pilot’ for researchers, designed specif-
ically to accelerate the ideation phase of the
research life-cycle. Leveraging the reasoning
and domain-specific skills of Large Language
Models (LLMs) within an agent-based archi-
tecture with distinct personas, Acceleron aids
researchers through the formulation of a com-
prehensive research proposals. It emulates the
ideation process, engaging researchers in an
interactive fashion to validate the novelty of the
proposal and generate plausible set-of hypothe-
ses. Notably, it addresses challenges inherent
in LLMs, such as hallucinations, implements
a two-stage aspect-based retrieval to manage
precision-recall trade-offs, and tackles issues
of unanswerability. Our observations and end-
user evaluations illustrate the efficacy of Ac-
celeron as an enhancer of researcher’s produc-
tivity.

1 Introduction

With fast-paced research happening in every field,
we are witnessing an exponential growth in the
number of scientific articles and research papers on
the web. It is difficult for an individual researcher
or a small research team to keep abreast of the rel-
evant advances amidst this information explosion.
This has a downstream impact on the ability to be
consistently appraised and ensure novelty of a pro-
posed solution at various stages of the research life
cycle. Thus there is an urgent need for a tools that
can aid researchers to 1) understand, evaluate and
incorporate the latest developments in the litera-
ture and 2) Formulate/Modify the current proposed
solution accordingly to ensure novelty and impact.

Most of the existing tools focus on notifying
and recommending researchers with relevant liter-

Figure 1: Acceleron Interface

ature, facilitate exploration of existing literature
and/or writing research manuscripts. Researchers
have also proposed learning representations for re-
trieval of relevant scientific articles (Singh et al.,
2022; Cohan et al., 2020; Ostendorff et al., 2022;
Mysore et al., 2021), literature Review Genera-
tion (Hu and Wan, 2014; Kasanishi et al., 2023;
Chen et al., 2021), Question Answering over scien-
tific articles (Saikh et al., 2022; Dasigi et al., 2021;
Lee et al., 2023), Scientific document summariza-
tion (Hayashi et al., 2020), citation recommenda-
tion (Ali et al., 2021, 2022; Medic and Snajder,
2023) citation intent detection (Cohan et al., 2019;
Berrebbi et al., 2022; Roman et al., 2021; Lauscher
et al., 2021), critical review and rebuttal generation
(Ruggeri et al., 2022; D’Arcy et al., 2023; Kennard
et al., 2021; Dycke et al., 2022; Wu et al., 2022),
etc. However, to the best of our knowledge, no
tool or no approach in the literature facilitates a
researcher during the most arduous ideation stage
of the research life-cycle. (Wang et al., 2024) at-
tempts ideation in completely automated fashion.
However, their results demonstrate ∼40% gap in
the generation of ideas ‘helpful’ from the novelty
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perspective.
Most of the tasks involved in research require do-

main expertise and complex reasoning skills. The
recent advancement in Large Language Models
(LLMs) has made it possible to partially automate
some of these tasks (Liu and Shah, 2023; Liang
et al., 2023; Zhang et al., 2023a; Lahiri et al., 2023;
Kunnath et al., 2023). However complete automa-
tion of these tasks may not yield qualitative out-
comes. In this work, we propose ‘Acceleron’ (Fig-
ure 1), a tool to accelerate the research life cycle.
The tool exploits the reasoning and domain spe-
cific skills of LLM based agents not to replace
researchers but to assist them for research ideation.
With LLM powered mentor and colleague agents,
Acceleron provides relevant inputs to researchers in
an interactive fashion via a user-friendly interface.
Thus, it aids the researcher to develop the research
proposal consisting of a validated motivation, a
well-defined research problem focusing of research
gaps in the literature, a proposed approach selected
from a set-of plausible synthesized methods and
possible set-of experiments to be conducted to eval-
uate the approach for the research problem. To
the best of our knowledge, we are the first ones to
mimic the research ideation process using LLMs
and execute it using human-machine interaction en-
suring accelerated as well as qualitative outcomes,
in terms of novel ideas.

2 System Architecture

Acceleron provides a web-based interface for re-
searchers to interact. The system architecture is
illustrated in Figure 2. We define an LLM Agent
based architecture (Wang et al., 2023b), with agents
of two distinct types of profiles or personas. A
Colleague persona1 performs less complex tasks
including extraction of relevant information from
user inputs, generation of relevant questions from

1OpenAPI’s GPT-turbo-3.5 model

extracted information or retrieval of relevant data
from scientific documents. Whereas, mentor per-
sona2 performs more complex tasks requiring rea-
soning such as understanding the limitations or
gaps of the existing work, identifying problems
similar to the problem discussed in the proposal,
identifying sub-tasks of the problem being solved
in the proposal, solving similar problems and/or
sub-tasks to synthesize a solution to the proposed
problem and re-write the proposal given a plausible
set-of approaches or possible limitations of related
work. The architecture is flexible such that the
LLM agents can interact with (i) LLMs like GPT-
3.5-Turbo3, Cohere4 and Gemini5 using API calls
or (ii) open-source LLMs like Llama-26, Zephyr7,
Mixtral8 which reside on an internal hosting server.

We expect to have a global repository which is a
vector store of domain specific scientific articles9

which are indexed by the Specter embeddings (Co-
han et al., 2020) produced using the paper’s title
and abstract. We also have a User Specific cor-
pus which has chunks of all the retrieved papers
relevant to the current proposal the researcher is
working on. The paper chunks are created with
our in-house parser10 treating paragraphs as seman-
tic segments. If a paragraph does not fit into the
the maximum token length of LLM agents, while
chunking it is further split to fit into the maximum
token length. The chunks are further converted
to vector embeddings and indexed for efficient re-
trieval based on semantic similarity with a query.
This user corpus acts as a shared ‘memory’ for the
LLM agents.

3 Approach

The Acceleron Ideation simulation involves inter-
action between a researcher and the LLM agents,
where the LLM agents perform actions based on
the feedback received by the researcher or another
agent. The process takes a proposal as an input
from a researcher with a research problem descrip-
tion specified at a high level along with the motiva-

2OpenAPI’s GPT4 model
3https://platform.openai.com/docs/models/gpt-3-5-turbo
4https://cohere.com/
5https://gemini.google.com/
6https://llama.meta.com/
7https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
8https://mistral.ai/news/mixtral-of-experts/
9We use more than 2 million scientific articles in semantic

scholar fetched using S2ORC dataset (Lo et al., 2020) as the
global repository

10We built a PDF parser using PDFminer
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Figure 3: Motivation Validation Pipeline

tion behind the problem. The process involves: (i)
Analyzing the existing literature to critically eval-
uate the motivation behind the research problem
a researcher is trying to address to ensure that the
mentioned research gap(s) still exist(s), (ii) Refor-
mulating the proposed research problem and ob-
jectives based on the validation stage output and
re-identification of research gaps, (iii) Identifying
analogous research problems or sub-problems ad-
dressed in the literature and utilizing their solu-
tions, available in the literature, to derive a set-of
approaches or synthesizing a set-of plausible meth-
ods as a solution to the problem, (iv) Designing
experimentation strategy for the given problem and
selected methodology. The output of the ideation
process is the updated proposal with a (i) A re-
search problem with validated motivation (ii) Plau-
sible methods to address the research problem. The
overall ideation task is split into two pipelines: (i)
Motivation Validation and (ii) Method Synthesis.
The detailed prompts for the steps in each of the
pipeline are illustrated in the Appendix Section
A.2.

3.1 Motivation Validation Pipeline

As elaborated in Figure 3, the workflow begins with
the researcher providing the title and abstract for
their proposal. Acceleron identifies and extracts the
motivation behind the proposal and retrieves rele-
vant scientific articles relevant to the proposal and
presents them to the researcher for review. The re-
searcher can edit the selection of articles as needed.
Subsequently, the system generates binary ques-
tions to validate the proposal’s motivation against
the retrieved articles. After review and potential
edits by the researcher, the system retrieves rele-
vant sections from the selected articles to answer
these questions. If all articles fail to sufficiently
address the proposal’s motivation, the researcher is
notified. Otherwise, identified gaps in the literature
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are presented to the researcher for consideration.
The researcher can select relevant gaps or propose
new ones, which are then used to refine the pro-
posal’s motivation and problem statement. The
revised proposal is presented to the researcher for
further editing or approval. This iterative process
continues until the proposal’s novelty is validated
or until no relevant articles are found.

3.2 Method Synthesis Pipeline

The Method Synthesis workflow is illustrated in
Figure 4. The method synthesis phase begins with
the motivation validated proposal being accepted
by the researcher. The system employs the col-
league agent to extract and define the proposal’s
problem, followed by the mentor agent generat-
ing similar research problems and decomposing
the main problem into sub-tasks. The researcher
can refine these generated problems. Each refined
problem is used to retrieve relevant scientific ar-
ticles which is then parsed and stored in the user
corpus. The colleague agent then consolidates sim-
ilar problems and their solutions from these arti-
cles, presenting them to the researcher for further
editing. This information, along with the original
proposal, is provided to the mentor agent, which
synthesizes a list of plausible methods to solve the
problem. The researcher selects preferred methods,
which are incorporated into the updated proposal
by the mentor agent. The revised proposal is then
reviewed and finalized by the researcher.

4 Novel Components

With Acceleron our aim is to bridge Human-
Computer Interaction and Natural Language Pro-
cessing using an interactive tool infused with the
best of NLP and goodness of HCI. We created sev-
eral novel components within Acceleron that fixes
known shortcomings of NLP based systems using
HCI inspired ideas.
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4.1 LLM Agents for Research Ideation

To the best of our knowledge, ours is the first LLM
agent based tool which assists in the complex task
of ideation for research. We have devised with
two novel portfolios for LLMS, viz., colleague and
mentor, allocating less complex tasks to the col-
league agent and more complex reasoning based
tasks to the mentor agent. The user corpus acts
as the shared memory for the agents, whereas the
agents perform fixed set of actions at various stages
of the workflow based on the provided inputs as
discussed in the prior sections. Rather than using
a costly LLM like GPT4 for all the tasks involved
in the workflows; dividing the tasks as per the diffi-
culty level and leveraging less costly LLM such as
GPT-turbo-3.5 for colleague agent, performing less
complex tasks, provides a cost-effective solution
for workflows.

4.2 Mitigation of Hallucination

Hallucination is one of the major difficulties of
using LLMs for knowledge based tasks (Zhang
et al., 2023b; Wang et al., 2023a). We mitigate this
problem using a two-fold solution: (i) There are
retrieval augmented components of the workflows,
viz. the motivation validation workflow poses ques-
tions generated to validate the motivation of the
proposal on the retrieved articles stored in the user
corpus or extract limitations of the articles which
address the proposal motivation or the method syn-
thesis workflow extracts approaches used to solve
similar or sub problems from the retrieved articles.
For these retrieval augmented tasks through proper
prompt engineering, we ensure that the answers
are provided by restricting the knowledge to the
retrieved context only. We observe this helps to mit-
igate hallucinations. (ii) There are components of
the workflows which rely on parametric knowledge
of LLMs, for example the motivation validation
involves re-writing the proposal and the method
synthesis involves generating similar sub problems
for the problem defined in the proposal and syn-
thesizing methods. For these tasks the output can
not be restricted to the provided input. In such
cases, there is a higher chance of hallucinated out-
puts. For such scenarios, we ensure mitigation of
hallucinated outputs, by keeping the system semi-
automated and allowing user-interactions at every
step to edit or delete hallucinated outputs. More-
over at every stage of the workflow, the LLM agents
are asked to justify their outputs and the provided

justification is exposed to the researcher through
the interface. This forces the model to apply Chain-
of-Thoughts (COT) (Wei et al., 2022) and allows
the researcher to validate the output and check if
it is in sync with the justification provided. This
assists in alleviating the effect of hallucinations.

4.3 Two-Stage Aspect Based Retrieval

The global corpus contains a large number of sci-
entific articles stored with the Specter embedding
of the title and abstract of the papers. The title
and abstract of the papers contains information
about motivation and problem statement of the pa-
pers and a high level mention of the methodology
and the results. For ideation we require more in-
depth information from the papers across various
aspects such as methodology, limitations, etc. To
achieve this we perform retrieval in two stages. In
motivation validation workflow, we first retrieve
top-K papers from the global corpus with the pro-
posal as the query and high value of K for good
recall. This allows us to have a set-of papers with
similar motivation and problem statement to that
of the proposal. These papers are chunked and
stored in the user corpus for further aspect based
retrieval, such as papers with similar motivation to
that of the proposal and paper paragraphs mention-
ing the research gaps of these papers. In method
synthesis workflow, we first retrieve top-K papers
from the global corpus with similar sub problem
statements as the query and high value of K for
good recall. This allows us to have a set-of papers
with problems similar to the problem described
in the proposal or similar to any of the sub-tasks
of the problem described in the proposal. These
papers are chunked and stored in the user corpus
for further aspect based retrieval such as extracting
the approaches of the papers. Note that keeping
high-recall for the first stage of retrieval ensures
coverage of papers, whereas for the second stage
we favor more precise outcomes for aspect based
retrieval.

4.4 Introduction of Unanswerability

The output of aspect based retrieval is always top-K
paragraphs from the retrieved and chunked papers.
We keep the value of K low to get more precise re-
trieval for the given aspect based query. However,
there is a possibility that the retrieved paragraphs
do not have the answer to the query (the query is
unanswerable). For example, in the motivation val-
idation workflow the retrieved paragraphs from the
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papers do not answer the question of whether the
paper addresses a specific motivation of the pro-
posal and does not specify the limitations of the
paper which would help to refine the problem de-
fined in the proposal. Similarly, for the method
synthesis workflow the retrieved paragraphs may
not have an approach to solve a similar problem.
In such cases, the LLM based agents check the rel-
evancy of retrieved paragraphs for the given query
and identifies the query as ‘unanswerable’ in case if
all the retrieved paragraphs are irrelevant, avoiding
irrelevant outputs. Allowing unasnwerability also
assists in reduction of hallucinations.

4.5 Moderation of GenerativeAI

Output generated by API based closed-source
Large Language Models like GPT-3.5 or Cohere,
are always unmoderated relative to the domain they
are being used in. Even though first party modera-
tion in form of censorship and guardrails(Gehman
et al., 2020)(Welbl et al., 2021) exist, these mea-
sures are focused on moderating offensive and in-
appropriate content being provided as input and
generated as output by the LLM. Domain specific
contextual moderation is necessary for a LLM to
provide on-topic and context relevant outputs. An
output generated as part of one domain may be
irrelevant or inappropriate when taken out of con-
text or when being provided as input to a LLM
for a different task. To counter this issue we have
specially designed our system using a novel expert-
in-the-loop architecture where at each and every
step where a LLM agent is called to generate an
output, a context is created using our two-stage
aspect based retrieval technique and task specific
prompt provided by the human user themselves.
This allows for the human to be in control of what
the LLM is being fed as context for the output gen-
eration acting as a pseudo first layer of moderation.
This in turn allows the LLM to generate domain
relevant and topic appropriate output which is pro-
vided to the human for a review with option to edit
if needed, so that the output can be used as context
further down the pipeline, making a encapsulation
of moderation on the LLM agents, negating the
need for third party content moderation.

5 Qualitative Analysis of the Workflows

In the absence of an appropriate dataset for the
tasks relevant to the ideation process, we evalu-
ate our workflows by user-studies. We allow re-

searchers working in distinct domains like com-
puter science, material science and life science, to
use Acceleron for ideation of their research prob-
lems. For computer science domain , we use Se-
mantic Scholar data fetched using S2ORC dataset
(Lo et al., 2020) as our global repository. Whereas,
for material science and life science domain we use
our repository of papers downloaded from ‘Science
Direct’11 and ‘PubMed’12, respectively. We utilize
the logging functionality of ‘Acceleron’ to keep
track of the interactions between the researcher and
the LLM Agents. For space constraints and data
confidentiality preservation of unpublished work,
here, we provide a qualitative analysis of the work-
flows with 2 proposals from distinct researchers,
specifically in the domain of Artificial Intelligence
(AI), Machine Learning (ML) and Natural Lan-
guage Processing (NLP). The topics of these pro-
posals are: (i) Topic-based citation retrieval for re-
search proposal and (ii) Reference-free evaluation
metric for retrieval augmented question answering.

We receive an input from a researcher with a
proposal titled ‘Topic-based citation retrieval for
research proposal’ and the corresponding abstract
‘Retrieval of research articles pertinent to a given
query represents a thoroughly investigated research
challenge. Typically, queries take the form of a
title and abstract of a research article, or a spe-
cific sentence or paragraph from an existing re-
search article requiring citation. However, exist-
ing approaches presuppose the availability of a
well-constructed manuscript, an assumption that is
inappropriate during the initial research proposal
writing stage. At this initial phase, researchers
seek pertinent literature for citing in their propos-
als, often focusing on specific topics or intents and
further build the proposal. In this work, we aim
to tackle the issue of topic-based citation retrieval
for research proposals. We anticipate researchers
providing the title and abstract of their research
proposals, encompassing elements such as the re-
search gap, problem statement, and a high-level
overview of the proposed methodology and experi-
ments. Additionally, researchers will furnish a list
of topics for which relevant scientific articles need
to be retrieved. Our proposed algorithm intends
not only to fetch research articles pertinent to the
given proposal from a corpus, but also to establish
a crucial many-to-many mapping between these

11https://www.sciencedirect.com/
12https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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articles and the specified topics.’ The colleague
LLM agent generates the following questions for
validation of the motivation: 1. "Is the research pa-
per specifically addressing the retrieval of research
articles relevant to a topic of a research proposal?"
and 2. "Is the research paper developing a tech-
nique to map research articles to specified topics
in research proposals?". Out of top-50 research
articles used to validate the motivation of the pro-
posal by posing the above mentioned questions,
four (Appendix A.1.1) got retrieved to be answer-
ing as ‘yes’ to at the least one of the above ques-
tions, and thus invalidating the motivation behind
the proposal. However, the justifications provided
for these papers highlight that paper no. 1 and 3 in-
troduce an approach for citation recommendations
during the writing phase of the target manuscripts
and not at the proposal writing stage. Also, scien-
tific article 2 leverages contents of a target paper
and citation graph to extract scientific information.
The outcome of the scientific article 4 is a dataset
which can be useful for the proposal, but does not
address the task of ‘topic-based citation retrieval
for research proposal’. Thus, we observe that after
evaluating the retrieved scientific articles claimed
to be invalidating the proposal, the researcher dis-
agrees with the justifications provided for each of
the retrieved articles for addressing the motivation
behind the proposal, hence validating the novelty
of the proposal. This exemplifies the need as well
as the effectiveness of this human computer interac-
tion facility provided by the tool for the workflow.
This example demonstrates acceleration of motiva-
tion validation stage of the research-life cycle (∼8x
for this proposal as stated by the researcher), by
eliminating the need for the researcher to manually
go through multiple relevant research articles re-
trieved by generic or academic search engines to
ensure that the literature does not have a solution
for the specific problem the researcher is trying to
address, leading to a time consuming process.

We receive input from another researcher with
the proposal titled ‘Reference-Free evaluation met-
ric for Retrieval augmented question answering
task’ and the abstract ‘We observe that questions
with long answers on long documents do not have
unique reference evidences (relevant paragraphs
from the document) and answers. Rather, there is a
distribution over reference answers, making expert
based evaluation expensive and existing unique
reference-based evaluation metrics inadequate. We
also do not find any reference-free evaluation met-

ric designed for evaluating retrieval augmented
question answering task. Hence, this this work we
propose to define this metric.’. The colleague LLM
agent generates the following question to validate
the motivation of the proposal: "Is the research
paper proposes a reference-free evaluation metric
designed for evaluating retrieval augmented ques-
tion answering tasks?". We observe that out of
top-50 retrieved scientific articles relevant to the
proposal, none of the articles provides answer as
‘yes’ to the question, leading to retrieval of zero rel-
evant paper hence invalidating the motivation of the
proposal. Manual analysis of the top-50 retrieved
articles performed by the researcher (as well as
other relevant articles manually visited by the re-
searcher) to evaluate this outcome of the workflow,
substantiates the results.

For the next workflow of method synthesis for
the above proposal, the mentor LLM agent gener-
ates following set of research problems similar to
the problem defined in the proposal: 1. "Evaluat-
ing complex tasks where there is no unique correct
answer or reference", 2. "Designing evaluation
metrics for tasks that involve retrieval and inter-
pretation of large amounts of data", 3. "Creating
reference-free evaluation metrics for tasks where
reference-based metrics are inadequate or impracti-
cal", 4. "Assessing the quality of answers in tasks
where the answers can be long and drawn from ex-
tensive documents". The mentor LLM agent also
generates the following sub-tasks for the problem
defined in the proposal: 1. "Defining a new metric
that can effectively evaluate retrieval augmented
question answering tasks" and 2. "Overcoming
the inadequacy of existing unique reference-based
evaluation metrics for questions with long answers
on long documents". With these similar and sub-
problems as queries, the colleague LLM agent first
retrieves Top-10 similar scientific articles per state-
ment (total 40 articles with some overlap as same
article may be retrieved for multiple queries) and
then poses the question that ‘if the article provides a
methodology or an approach to solve the above de-
fined problem or sub-task’. The researcher receives
total 17 scientific articles which answers ‘yes’ to
the question along with a description of the method-
ology implemented for each of the above problems
or task. Out of these papers, the researcher ac-
cepts 11 (Appendix A.1.2) scientific articles, find-
ing them to be more relevant to the problem the
researcher is trying to address.

Based on approaches discussed in these scientific
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articles to solve the above enlisted similar problems
and/or sub-tasks, the mentor LLM agent suggests
the following 10 plausible methodologies for the
proposal. Theses suggestions with the exact verba-
tim provided by the agent are as follows: 1. AVA
(Automatic Evaluation Approach): This approach
uses Transformer-based language models to encode
the question, answer, and reference text. By mea-
suring the similarity between the reference and an
automatic answer, biased towards the question se-
mantics, AVA can estimate the system accuracy.
This approach can be used to evaluate retrieval aug-
mented question answering tasks and overcome the
inadequacy of existing unique reference-based eval-
uation metrics. 2. Informedness and Markedness
Measures: These new probabilistic and information
theoretic measures can be used to evaluate complex
tasks where there is no unique correct answer or ref-
erence. They can also be used to design evaluation
metrics for tasks that involve retrieval and interpre-
tation of large amounts of data. 3. Large Language
Models (LLMs): LLMs can be used as automated
metrics for evaluating tasks that involve retrieval
and interpretation of large amounts of data. They
can also be used to assess the quality of answers
in tasks where the answers can be long and drawn
from extensive documents. 4. SacreROUGE: This
open-source library dedicated to the development
of summarization evaluation metrics can be used
to develop reference-free evaluation metrics for
tasks where reference-based metrics are inadequate
or impractical. 5. Quantified Reproducibility As-
sessment (QRA): This method, based on concepts
and definitions from metrology, can be used to de-
velop reference-free evaluation metrics for tasks
where reference-based metrics are inadequate or
impractical. 6. RoSE Benchmark: This benchmark
can be used to provide a more robust evaluation
across different tasks. It can also be used to de-
velop reference-free evaluation metrics for tasks
where reference-based metrics are inadequate or
impractical. 7. GENIE6: This human-in-the-loop
leaderboard framework can be used to score an-
swers in tasks where the answers can be long and
drawn from extensive documents. 8. Sparse At-
tention and Contrastive Retriever Learning: This
system conditions answer generation on identified
documents and uses a dense retriever trained by
scaling up a distantly supervised algorithm. It can
be used to overcome the inadequacy of existing
unique reference-based evaluation metrics for ques-
tions with long answers on long documents. 9.

Unified Evaluation Benchmark for Long-form An-
swers: This approach involves conducting a thor-
ough study of evaluation, including both human
and automatic evaluation protocols. It can be used
to overcome the inadequacy of existing unique
reference-based evaluation metrics for questions
with long answers on long documents. 10. Training
an LFQA Evaluation Metric Directly on Human-
Annotated Preference Judgments: This approach
involves fine-tuning pre-trained Language Mod-
els based on human judgement scores for the task.
This output showcases the quality of method rec-
ommendations provided by the tool for the given
proposal. Though mentioned at high-level, the
researcher agrees that most of these methods are
well-suited as a plausible approach for the given
proposal. Though there is a need for further work
to finalize the most appropriate plausible method
for proposal, the researcher finds this first cut of
output provided by the tool to be relevant and the
overall process to be significantly more efficient
than the regular process followed by the researcher
for constructing a plausible set-of approaches for
the given problem, by searching through the rele-
vant literature from scratch.

These examples illustrating the outcomes of the
motivation validation and method synthesis phases
of the ideation workflow of the tool, demonstrates
the efficacy of the tool, in terms of providing rel-
evant outputs at each stage of the workflow. The
observations made in terms of time saved by the
researchers with the tool usage for the respective
tasks demonstrates the power of the tool with re-
gards to time efficiency gains.

6 Conclusion

In this work, we have demonstrated a tool called
‘Acceleron’, developed to accelerate the ideation
phase of the research life-cycle. To the best of our
knowledge this is the first tool which addresses the
tasks involved in the ideation stage. To emulate
the ideation process, we use LLM agents with col-
league and mentor personas to execute two work-
flows, viz. motivation validation and method syn-
thesis, which engage researchers in an interactive
fashion to develop the research proposal. Our work-
flow involves novel components to (i) alleviate the
hallucinations of LLMs through user interaction,
(ii) ensure relevant outcomes by two-stage aspect
based retrieval, where first stage introduces higher
recall reducing False Negatives and False Positives
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are corrected by user interaction and second stage
of more precise fine-grained aspect-based retrieval,
(iii) introduction of unanswerability and (iv) Moder-
ation of GenerativeAI via human interaction acting
as a pseudo first layer of moderation increases user
involvement in the final task specific outcome. The
qualitative analysis performed with proposals from
researchers in distinct domains, demonstrates qual-
itative outcomes for various stages in the workflow
with ∼7.5x gains in the time efficiency for vari-
ous stages of the ideation phase. Most importantly,
expert-interaction avoids error propagation through
the stages of workflows yielding qualitative outputs
in terms of generation of novel and diverse ideas.

7 Future Works

This is an ongoing work. In future, we plan to em-
ulate the domain specific aspects of the ideation
process creating domain specific instances of the
workflows. For example, there can be a specialized
workflow for synthesis of alloys in material science
domain or drug discovery or synthesis of clinical
trials in life science domain. This would result
into a meta-process for ideation, which is domain
independent and instances of this meta-process cus-
tomized for specific domains and / or tailor made
for specific tasks.

The logging functionality of ‘Acceleron’ keeps
track of every input provided to the researcher as
well as LLM agents and every output from them
along with the corresponding timestamps. We are
saving these logs for each user interactions for all
the sessions. We plan to use these logs with treating
user validated inputs as ground truth annotations,
to develop a datasets for the ideation process. The
logs would be used for developing datasets for tasks
such as: (i) retrieval of research papers with similar
motivation (ii) proposal re-writing with addressing
research-gaps (iii) retrieval of research papers with
similar problems and/or (iv) method-synthesis from
a set-of relevant papers. The datasets will be used
to instruction-tune the Open-Source LMs, which
can replace the existing LLMs yielding more cost-
effective solutions.

We plan to extend the implementation of cur-
rent phase to generate a list of experiments to be
performed for the problem defined in the proposal
and the methodology selected by the researcher.
This would lead to generation of a (set-of) results
table(s) in a semi-automated fashion, with baseline
approaches, planned experiments (ablations) and

appropriate metric(s) used for evaluation.

8 Limitations

The current version of ideation part of ‘Acceleron’
has certain limitations. The system generates de-
scriptions for every generated question at every
stage for the researcher to elaborate and explain of
the outcomes of these stages. For example, if an
existing paper is retrieved to be already addressing
the motivation behind the proposal, the tool pro-
vides LLM generated description of the same to
explain how the paper is already addressing the mo-
tivation. However, these descriptions sometimes
are not sufficient for the researcher to evaluate if
the retrieved outputs are correct, further hindering
the process of updating the outputs. To counter this
we are planning to extend this functionality by pro-
viding a facility to showcase the whole paper and
highlight the chunk of context in the paper using
which the description is generated. This would not
only provide vital context to the researcher to un-
derstand the answer but also provide backtracking
ability to check the context retrieved to generate
the description for a particular question.

We typically observe that we do not get quali-
tative results for extracting limitations of user pro-
posal as relevant retrieved papers do not specifi-
cally mention the limitations. In future we plan
to enhance the reasoning capabilities of LLMs to
extract limitations from a research paper. The open-
source locally run LLMs like Llama-2 (Touvron
et al., 2023) and Zephyr(Tunstall et al., 2023) are
slow and produce less qualitative outcomes as com-
pared to API based LLMs like GPT-3.5-Turbo and
GPT4 driving up the cost of running the system. A
single execution of the 2 workflows for a single pro-
posal cost the researcher somewhere around $0.5
to $1 for GPT-3.5-Turbo depending on the inputs
and context provided by the user and the number
of papers retrieved for the proposal, whereas this
cost is almost 10-fold for GPT4. To achieve better
quality of explanations from the retrieved papers
we plan to decontextualize the citations embedded
in the retrieved papers by using an approach simi-
lar to (Newman et al., 2023). Moreover, we need
a benchmark and metric to evaluate our idea gen-
eration pipeline. Right now, we are doing it by
user-studies and expert feedback. However, we
plan to use the newly released SciMon(Wang et al.,
2024) Dataset to benchmark the ideation workflows
and further enhance them.
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A Appendix

A.1 Qualitative Analysis of the Workflow: Retrieved Papers

A.1.1 Papers Retrieved during Motivation Validation of Proposal 1

1. "Citation Recommendation: Approaches and Datasets"
2. "CitationIE: Leveraging the Citation Graph for Scientific Information Extraction"
3. "Content-Based Citation Recommendation"
4. "unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and
Citation Network"

A.1.2 Papers retrieved during Method Synthesis Workflow of Proposal 2

1. "AVA: an Automatic eValuation Approach to Question Answering Systems"
2. "Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation"
3. "Re-visiting Automated Topic Model Evaluation with Large Language Models"
4. "SacreROUGE: An Open-Source Library for Using and Developing Summarization Evaluation Metrics"
5. "Quantified Reproductibility Assessment of NLP Results"
6. "Revisiting the Gold Standard: Grounding Summarization Evaluation with Robust Human Evaluation"
7. "A Critical Evaluation of Evaluations for Long-form Question Answering"
8. "Think you have Solved Direct-Answer Question Answering? Try ARC-DA, the Direct-Answer AI2
Reasoning Challenge"
9. "More Than Reading Comprehension: A Survey on Datasets and Metrics of Textual Question
Answering"
10. "Hurdles to Progress in Long-form Question Answering"
11. "A Critical Evaluation of Evaluations for Long-form Question Answering"

A.2 Prompts for different stages of the Workflows

1. Motivation Extraction Prompt

System Message:
You are a researcher and trying to understand the following proposal written by another
researcher:{proposal}

Human Message:
Describe in a bulleted list what is not addressed in the current literature which serves as the
Motivation behind solving the above research problem proposed in the Proposal. Answer without
a heading line and just the bullet points. Each bullet should mention one gap in the literature as a
bullet point and not a sentence.
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2. Motivation Question Generation Prompt

System Message:
You are a researcher and trying to understand the following proposal written by another
researcher:{proposal}

Human Message:
Describe in a bulleted list what is not addressed in the current literature which serves as the
Motivation behind solving the above research problem proposed in the Proposal. Answer without
a heading line and just the bullet points. Each bullet should mention one gap in the literature as a
bullet point and not a sentence.

AI Message:
{motivation}

Human Message: Convert each of the above bullets in to a binary question. The ques-
tion should begin with ’Is the research paper’.

3. Ask Question for Motivation Validation Prompt

System Message:
You are a researcher. You have been given a context, which are paragraphs from a research paper.
You have been given a question. Answer the given Question in ’Yes’ OR ’No’ OR ’Unanswerable’.
Answer solely based on the provided context of the research paper. If the question can not be
answered with the facts mentioned in the available context or there is any ambiguity in answering
the question answer as ’Unanswerable’.
Answer as ’Yes’ only when the question can be very clearly answered considering the facts in the
research paper provided in the context. Do not repeat the question as the part of the answer.
Provide a concise explanation about how the answer to the question is ’Yes’ mentioning the
paragraphs used in the context to answer it as ‘Yes’. If the answer is ’No’ or ’Unanswerable’ only
output that with NO description or elaboration.

Human Message:
Question: {question}
Research Paper Context: {paper_chunks}

4. Extract Limitation Prompt

System Message:
You are a researcher. You have been given the following proposal: {proposal}

A different research paper provided in the context already addresses the gap mentioned
as the motivation behind the proposal.
{descriptions}

Human Message:
Research Paper: {paper_chunks}

Identify the limitations or gaps of this research paper which can serve as the new motiva-
tion for the proposal. Provide a bulleted list of limitations, where each bullet is concise. Answer
WITHOUT a heading line and just the bullet points.

71



5. Re-write Research Proposal Prompt

System Message:
You are a researcher and have written a proposal: {proposal}

Human Message:
Re-write the proposal by taking into consideration the mentioned gaps in the current literature as
the new motivation behind of the problem defined in the proposal.
Answer in a Single detailed paragraph WITHOUT any bullet points or list.
Gaps in the current literature: {limitations}

6. Research Problem Extraction Prompt

System Message:
You are a researcher and trying to understand the following proposal written by another researcher:
{proposal}

Human Message:
What is the problem solved in the proposal?

7. Similar Problem Generation Prompt

System Message:
You are a researcher and trying to understand the following proposal written by another researcher:
{proposal}

Human Message:
What is the problem solved in the proposal?

AI Message:
{problem_statement}

Human Message:
Give me a bulleted list of a more generalised or similar problems to the problem defined in the
proposal. Don’t give a heading just the answer in a bulleted list.

8. Sub Problem Generation Prompt

System Message:
You are a researcher and trying to understand the following proposal written by another researcher:
{proposal}

Human Message:
What is the problem solved in the proposal?

AI Message:
{problem_statement}

Human Message:
Provide a bulleted list of sub-problems or sub-tasks involved to solve the problem. Don’t give a
heading just the answer in a bulleted list.
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9. Similar and Sub Problem Question Creation Prompt

Human Message:
{statement}
For the statement given above generate a question to be posed on a research paper to find out if the
paper is proposing an approach or method to perform the task defined by the statement. Start the
question with: ’Is the research paper proposing an approach or method to’.

10. Methodology Extraction Prompt

System Message:
You are a researcher and trying to answer the question posed on a research paper provided as the
context.
Research Paper: {paper_chunks}

Human Message:
Answer the given Question in ’Yes’ OR ’No’ OR ’Unanswerable’. Answer solely based on
the provided context of the research paper. If the question can not be answered with the facts
mentioned in the available context or there is any ambiguity in answering the question, answer as
’Unanswerable’. Answer as ’Yes’ only when the question can be very clearly answered considering
the facts in the research paper provided in the context. Do not repeat the question as the part of
the answer. If the answer to the question is ’Yes’, provide detailed approach or methodology to
perform the task. If the answer is ’No’ or ’Unanswerable’ only output that with NO description.

Question: {question}

11. Method Synthesis Prompt

System Message:
You are a researcher and have been given a proposal and the research problem the proposal is
trying to solve. You have been given the approaches in the literature trying to solve, similar
problems and sub problems or sub tasks of the problem defined in the proposal. Your task is to
synthesize and propose a possible set of methods or approaches to solve the problem defined in the
proposal.
Proposal: {proposal}
Research Problem in the Proposal: {problem}

Human Message:
{method_context}

Based on the above information suggest the top 3 possible methods or approaches to
solve the problem defined in the proposal.
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Abstract

In times of crisis, the human mind is often a
voracious information forager. It might not be
immediately apparent what one wants or needs,
and people frequently look for answers to their
most pressing questions and worst fears. In that
context, the pandemic has demonstrated that so-
cial media sources, like erstwhile Twitter, are
a rich medium for data-driven communication
between experts and the public. However, as
lay users, we must find needles in a haystack
to distinguish credible and actionable infor-
mation signals from the noise. In this work,
we leverage the literature on crisis communi-
cation to propose an AI-driven sensemaking
model that bridges the gap between what peo-
ple seek and what they need during a crisis.
Our model learns to contrast social media mes-
sages concerning expert guidance with subjec-
tive opinion and enables semantic interpreta-
tion of message characteristics based on the
communicative intent of the message author.
We provide examples from our tweet collec-
tion and present a hypothetical social media
usage scenario to demonstrate the efficacy of
our proposed model.

1 Introduction

During the early months of a crisis, people are not
equipped with relevant knowledge about a crisis,
such as what has occurred, what steps to take next,
etc., and information can keep evolving rapidly.
Public officials and crisis responders have often
used social media to communicate crisis informa-
tion (Graham et al., 2015). As witnessed during the
pandemic, social media platforms not only shaped
people’s behavior and opinions but also served as a
ground for communicating scientific information
about public health.

It is widely acknowledged that conflicting infor-
mation and claims can confuse the public, leading
to counterproductive preventive actions, as seen
during the COVID-19 pandemic (Rossmann et al.,

2018). To the best of our knowledge there has not
been much research focusing on designing or inves-
tigating social media sites when people might not
know what they need (Jang and Baek, 2019) to nav-
igate an unknown crisis. Some recent work investi-
gates cognitive factors to identify the relationship
between crisis type, organization reputation, and
sentiments (Eaddy and Jin, 2018; Liu et al., 2016).
The work in this domain explores distinct factors
like forgiveness, empathy, anxiety etc, (Kim and
Yang, 2009). Nonetheless, they do not focus on
how people perceive crisis information and guide
their decisions based on sensemaking (Stieglitz
et al., 2017) and contextualization. Research in cri-
sis communication suggests that effective commu-
nication requires an understanding of how different
people perceive the messages, and what the fun-
damental drivers are for their information-seeking
needs.

In our work, we take inspiration from the crisis
communication literature for analyzing the differ-
ent information facets that are needed by lay social
media users to make sense of an unfolding, un-
certain situation. Our work offers insight into the
generalizability of crisis information-seeking char-
acteristics. We contribute a crisis-related intent
classification model that is eventually integrated
into a human-AI interface to help social media
users triage and group relevant information without
being exposed to unnecessary noise and negativ-
ity. We demonstrate the efficacy of the model by
describing a hypothetical sensemaking workflow
of a social media user that leverages our proposed
model and interfaces.

2 Related Work

We discuss the related work regarding two overlap-
ping threads of research: i) socially mediated crisis
communication and ii) AI-driven sensemaking us-
ing social media interfaces.
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2.1 Crisis Communication and Social Media

Studies have shown that the initial crisis stage is a
critical period where informing people about pro-
tective behaviors supports a resilient crisis response
(Islam et al., 2023; Bukar et al., 2022b,a). The use
of social media bridged the gap between public of-
ficials and general public by providing a real-time
communication platform.

The role of social media users has become more
visible and active leading to collaborative crises re-
sponse with public officials (Reuter and Kaufhold,
2018). As such, social media users rely on various
sources during a crisis (Islam et al., 2023; Mead-
ows et al., 2019). Current research on social media
and crisis communication focuses on identifying
influential personnel who can allow for efficient
information dissemination.

Crisis communication aims to provide public
with credible sources of information during the un-
folding of a crisis (Lin et al., 2016). The informa-
tion from trustworthy sources can help to curb the
propagation of rumors (Aguirre and Tierney, 2001).
Most messages on social media can be categorized
as threat/risk messages or perceived severity (My-
neni et al., 2023; Islam et al., 2023). Messages that
include both emotional appeal and message source
can impact how people perceive severity (Vaala
et al., 2022). High engagement messages that are
emotionally charged can affect the general public’s
response (Naseem et al., 2021). These messages
help understand the impact of a crisis. However,
the interplay among different information dimen-
sions, like engagement, awareness, and cognitive
load, remains unclear and is an active area of re-
search (Stieglitz et al., 2017) that we contribute
to.

2.2 AI-Driven Sensemaking of Socially
Mediated Information

AI models are often used for distinguishing be-
tween facts and opinions on social media. The
current work in fact-checking focuses on the au-
tomated classification of social media content us-
ing supervised learning algorithms. While these
research studies present a fundamental approach
towards identifying and solving the problem of
check-worthy claim identification (Miranda et al.,
2019; Hassan et al., 2017), the focus is only on
binary classification tasks of accepting or refuting
the claims (Hanselowski et al., 2019; Nakov et al.,
2021). From the information consumers’ perspec-

tive, fact-checking tools are out of user control as
external sources provide them. Moreover, during
a pandemic, users are generally navigating terra
incognita as there is no establishment of ground
truth that can be automatically detected. Users of-
ten want to be self-reliant and not completely rely
on third-party fact-checking sites (Myneni et al.,
2023). Currently, social media platforms allow
end-users to curate their information feed by allow-
ing users to filter what types of content they are
exposed to. Studies distinguish between actions
users can take to moderate content based on source
(specific users) and types of content (Jhaver et al.,
2023). Reducing types of content that are not ex-
posed to the user can aid their information-seeking
process by reducing the search space (Gillespie,
2022). Lack of transparency in algorithmic details
of provided methods and unclear definitions of con-
textual terms can lead to further confusion. To
address these challenges, we propose to give social
media users the agency and control their feed while
also carefully considering the role of AI-driven au-
tomation in triaging information that users might
need but not necessarily be aware of owing to the
uncertain information landscape.

3 Methodology

In this section, we describe our methodology for
data collection and qualitative labeling of tweets
that preceded the conceptualization of communica-
tive intent. Please find details about the method-
ology in the supplemental material: https://
tinyurl.com/mrymxwed.

Data Collection: We used the erstwhile Twitter
User Timeline API (Hossain et al., 2018) for col-
lecting tweets from March 2020 to September 2020.
In particular, we wanted to collect tweets in two
batches: one, focused on identifying regular social
media users who could also be considered subject
matter experts, and two, tweets from lay social me-
dia users. With the help of a published list from El-
emental, a health and wellness publication, we col-
lected the relevant COVID-19 tweets from a list of
50 health and science experts (Editors, 2020) who
regularly updated information about the COVID-
19 pandemic. With the aid of a researcher in the
medical sciences domain, we verified that these
people could be considered credible voices about
the pandemic while acknowledging that there could
be differences of opinion among experts. The sec-
ond category of tweets in our collection is general
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Figure 1: Illustrating the derivation of our Intent
Model from the existing Crisis Communication Models
(SMCC, ELM, and HBM).

user tweets. These come from users except these 50
experts over the same period. For both categories,
expert and general users’ tweets, we extract tweets
using COVID-19-relevant keywords some of which
include “coronavirus”, “sars-cov-2”, and “covid-
19” and several others. We needed to ensure our
general user tweet collection did not contain any
tweets from users who could be considered experts.
We ensured that general public tweets excluded
tweets from users whose profiles included the key-
words "epidemiologist", "virologist", "clinician",
etc.
Topic Modeling. We anchored our analysis to un-
derstanding how experts and general users could
well be discussing different dimensions of the
pandemic. We leveraged publicly available deep-
learning models with good performance on tweets
based on BERT (Devlin et al., 2018) architecture
for consistency across each information dimension.
We use a transformer-based algorithm for topic
modeling called BERTopic (Grootendorst, 2020).
We trained the model on a subset of 5,000 expert
tweets using c-TF-IDF to reduce outliers. Then,
two graduate students labeled approximately 900
raw topic clusters to 25 topic categories using refer-
ences from prior work on topic modeling covid-19
tweets (Oliveira et al., 2022; Vijayan, 2021; Lyu
et al., 2021; Boon-Itt et al., 2020; Abd-Alrazaq
et al., 2020). These topics include governmental af-
fairs, vaccine development, scientific information,
healthcare, mitigation, symptoms, etc.
Subjectivity and Sentiment Analysis. Subjectiv-
ity prediction can help consumers evaluate the text
for more effective and efficient scientific communi-
cation. We, therefore collaborated with industrial
researchers for using professional labeling services
to tag 10,000 tweets from our corpus. The available
labels were “objective, slightly objective, uncer-

tain, slightly subjective, subjective, Irrelevant”. We
split the resulting data set into 3,232 for training
and the remaining 808 samples for test tweets and
trained a DistilBERT (Sanh et al., 2019) model for
this task. Tweets labelled "uncertain" or "Irrele-
vant" were removed. We fine-tuned a pre-trained
model to classify two labels. The total training time
for the model is approximately one hour with the
GPU-enabled Google Colab in the free tier. We
expected expert messages to be more objective and
general users to be more subjective. However, we
found that experts also exhibited subjectivity in
their tweets like general users across most topics.

For sentiment analysis, we chose the model
bertweet-base-sentiment-analysis (Pérez et al.,
2021) provided by HuggingFace. The model clas-
sification results in each tweet with three probabili-
ties corresponding to positive, negative, and neutral.
We use the label with the highest probability as the
final label for the tweet.

4 Sensemaking via Communicative Intent

Communicative intent, or simply intent, refers to
the aim or purpose of a tweet. Intent analysis can
help information consumers determine whether the
tweet is relevant to what they are seeking as it can
provide contextual information about a particular
topic. The message intent can be considered during
the reasoning process (Monti et al., 2022) which
can aid users in navigating the information space.
Unprecedented emergencies, like the pandemic,
require the public to adapt to time, domain, and
context-specific information in understanding the
communication dynamics on social media. Cur-
rent crisis communication models are insufficient
in guiding people when exposed to exponentially
more information due to increased social media
use. The intent classification model is shown in
Figure 1. The related models to our work are the
Health Belief Model (HBM), the Social Mediated
Crisis Communication Model (SMCC), and the
Elaboration Likelihood Model (ELM).

HBM states that an individual’s personal beliefs
affect their health-related behaviors (Washburn,
2020). This is a valuable framework to charac-
terize people’s discussions on social media based
on perceived severity, perceived threat, perceived
susceptibility, etc. However, this model does not
give us a way to characterize why people perceive
certain information in a particular way or what
constitutes a threat. In the Intent Model, source,
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Figure 2: A snapshot of each intent category (1) An overview of each intent category showing the five most frequent
topics and average subjectivity (2) An example tweet profiled by sentiment, subjectivity, and topic from both experts
and general users.

content, and attitude are ways to characterize who,
what, and how information is perceived under a
particular category (Figure 1.2).

The SMCC model offers a solution by character-
izing the source of information. The SMCC model
emphasizes identifying individuals that can aid in
information dissemination efforts, classifying these
individuals as influentials (Liu et al., 2020). In so-
cial media sites, these individuals have high engage-
ment by having a large following. However, these
individuals may not be crisis experts, and other so-
cial media users may not want to see information
from this individual. In the Intent Model this is
characterized by source of information where we
make a distinction between crisis experts and gen-
eral users (Figure 1.1). When individuals make de-
cisions based on popular information and not credi-
ble information, they are not engaging in elaborate
reasoning (i.e. taking the time to think through
what they’ve read). ELM considers that informa-
tion seekers make judgments in two ways: (1) fast
with simple reasoning and (2) slow with elaborate
reasoning (Petty Richard and Cacioppo, 1986).

Since social media sites provide information in a
user-friendly interface, information seekers are con-
tinuously tempted to make fast judgments based
on limited information. Additionally, the ELM
model doesn’t provide ways to characterize the in-
terplay between information dimensions and types
of decisions. Social media sites provide content
moderation methods that help users curate their
information feed, which can aid in finding rele-
vant scientific information. This can also aid in
supporting elaborate thinking. However, if users
deem these methods unreliable, they will not en-
gage in content moderation increasing the likeli-

hood of information overload. The Intent Model
can aid in characterizing what types of information
people seek during a crisis for different types of
decisions (Figure 1.3).

Using our intent model, an information seeker
can triage information based on different intent cat-
egories. For each intent category, additional details
are accessible to the user via the source, content,
and attitude or the messages. The message’s source
is defined as an expert or general user and the de-
gree of subjectivity. The content and attitude refer
to the topic and sentiment of the message. Most
content analysis studies generated a labeling guide
based on previous literature reviews, such as guid-
ing principles for classifying social media news
articles (MacKay et al., 2021), informativeness
(whether a tweet contains relevant information or
not) (Olteanu et al., 2015), an existing crisis com-
munication model like HBM (Myneni et al., 2023).
We chose to follow this approach for our label-
ing guide. During information-seeking behavioral
patterns, consumers pay attention to the message
source, So two graduate students took into account
the source of the message (expert/general user) and
the message content to determine the message’s
intent. We classified 6,844 tweets into five intent
categories: (i) Expert Guidance, (ii) Situational
Awareness (iii) Severity (iv) Reactions, (v) Lived
Experience. Figure 2 provides a topic distribution
and an example tweet in each intent category with
similar uncertainty profiles to emphasize the differ-
ences across each intent category.

Expert Guidance categorizes tweets from experts
that are providing some suggestions or recommen-
dations to address the pandemic (21% of sample)
(Wang et al., 2021; Brady et al., 2023; Ehrmann
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Figure 3: A hypothetical workflow of a social media user leveraging the intent classification model for sensemaking
during the pandemic.

and Wabitsch, 2022). The most frequent topics for
this category are scientific information, testing, and
vaccine development. Situational Awareness are
tweets from any source that are providing updates
on news alerts, business proceedings, and policy
revisions (33% of sample) (MacKay et al., 2021;
Myneni et al., 2023). The most frequent topics for
this category are global effects, pandemic emer-
gence, and recreation. Severity describes tweets
that qualitatively or quantitatively report on the im-
pact of the pandemic (11% of sample) (Myneni
et al., 2023). The most frequent topics for this
category are pandemic emergence, global effects,
and case statistics. Reactions are tweets from any
source that describe emotions, comments, or re-
sponses towards events caused by the pandemic
(30% of sample) (Wang et al., 2021). The most
frequent topics for this category are testing, recre-
ation, and global effects. Lived Experience tweets
describe direct personal experiences with specific
details regarding location and time (8% of sam-
ple) (Wang et al., 2021). The most frequent topics
for this category are global effects, schools, and
recreation.

A DistilBERT (Sanh et al., 2019) classification
model was trained on the 6844 labeled tweets un-

til overall accuracy reached approximately 70%,
indicating good performance. The accuracy per
intent category: (1) Expert Guidance 69%, (2) Re-
actions 74% (3) Lived Experience 80% (4) Sever-
ity 93% (5) Situational Awareness 74%. These
results on real-world data indicated that our model
could also be used to learn from user interactions.
Current content moderation methods do not allow
users to update the underlying model. However,
for machine-guided social media systems to bet-
ter address the changing needs of information con-
sumers, users need to update the underlying models
to match their mental model of changing informa-
tion. The Intent Model allows users to update each
message’s intent to one that aligns more with the
user’s mental model or curate their intent category
based on the source, content, and attitude of the
messages.

5 Sensemaking during a Crisis

We present an AI-driven sensemkaing scenario
during the COVID-19 pandemic to demonstrate
the utility of our proposed intent classification
model (ICM). We integrated ICM (a predictive
model trained on our collection of tweets) with a
web-based interface, which allows lay information
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consumers to triage credible and potentially action-
able information. Let us see how this interface can
be used by Mary, a parent whose child currently
studies at home due to COVID-19-affected school
closing. She needs to decide if she should reduce
her working hours and invest in homeschooling.
Figure 3 shows Mary’s workflow as she interacts
with our interface. From her experience, she knows
that not all tweets are reliable and that topics pro-
vided by Twitter do not give her sufficient control
to navigate the relevant messages. She uses the
interface to triage the relevant information using
Situational Awareness as the intent category of in-
terest (Figure 3.a). Additionally, she selects all in-
tent categories to learn more about the contrasting
messages by reviewing the representative tweets
in each category. She finds that by using the in-
tent categories and the highlighted words she can
gradually make sense of the different facets of the
conversation related to the pandemic that might or
might not be related to her decision-making goal.
She can easily filter out messages from categories
she is not interested in such as Reactions and Sever-
ity.

To find more contextually relevant messages,
Mary filters by keyword school and chooses to sum-
marize the overall message profile and observes the
patterns across sentiment, subjectivity, expertise,
and topics across each intent category (Figure 3.c).
She notices that Situational Awareness tweets are
from experts and lay users and that schools is a fre-
quent topic. She notices that messages from experts
and general users have distinct groupings which tell
her they may have different opinions (Figure 3.b).
Interestingly, she finds the helpful messages dis-
cussing distance learning and back-to-school ef-
forts come from lay users because of their lived
experience. It did not occur to her that online learn-
ing could be a possible solution for her child to
continue learning. She found tweets suggesting re-
opening in-person learning once proper safety mea-
sures are determined. She saves those messages
and repeats her search to find even more similar
tweets (Figure 3.d).

She also decided to filter the selection criteria
only to consider tweets from the schools topic. As
she expected, applying this filter allowed her to see
more messages about other parents’ experiences
with both homeschooling and online learning. Af-
ter reviewing her saved tweets, she decided that
online learning is a viable option. Since Mary has
a day job she needs to report to, online learning for

her child would allow Mary to continue working
and her child to continue receiving an education.
By leveraging the intent model, Mary could quickly
reduce her exposure to irrelevant tweets. She could
also assess the credibility of the messages critically
and have sufficient control over the information she
needed to know.

6 Conclusion and Future Work

In this paper, we present a crisis-related intent clas-
sification model and present its utility via examples
and usage scenarios using the COVID-19 pandemic
as an example. We developed and trained classifi-
cation models for sentiment, subjectivity, and topic
to further our understanding of how experts and
general users communicate during the initial stages
of a crisis. We use Twitter messages as the basis of
our analysis to profile the information uncertainty
and address the need for principled approaches
towards sensemaking of socially mediated informa-
tion during a crisis. We are currently developing
a software prototype, demonstrated in Section 5,
that allows lay users to explore messages using
the intent of a message author and control their ex-
posure to crisis-relevant information, by focusing
on what they would need to address their pressing
questions.

Future work would consider a user study with di-
verse participants to understand how users perceive
the usefulness and utility of our proposed sense-
making workflow and the resulting human-machine
interface in their information-seeking processes.
We intend to build upon and further develop the
web interface, taking into account previous studies
on end-user content moderation techniques.
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Abstract

With the rapid proliferation of artificial intelli-
gence, there is growing concern over its poten-
tial to exacerbate existing biases and societal
disparities and introduce novel ones. This is-
sue has prompted widespread attention from
academia, policymakers, industry, and civil so-
ciety. While evidence suggests that integrating
human perspectives can mitigate bias-related
issues in AI systems, it also introduces chal-
lenges associated with cognitive biases inherent
in human decision-making. Our research fo-
cuses on reviewing existing methodologies and
ongoing investigations aimed at understanding
annotation attributes that contribute to bias.

1 Introduction

With the recent rapid expansion of generative AI
models, we have witnessed their numerous bene-
fits and the emergence of substantial ethical con-
cerns (Thoppilan et al., 2022; Rudolph et al., 2023).
There has been an influx of remarkable and note-
worthy work that describes the issues of fairness,
toxicity and bias in the text generation process
(Bender et al., 2021; Abid et al., 2021; Seaborn
and Kim, 2023). Several models are deployed as
real-world solutions with a lack of informed con-
sideration of their social implications, especially
in sensitive fields such as healthcare, journalism,
law, and finance (Khowaja et al., 2023). Recent re-
search has revealed that these language models can
mimic human biases present in language, perpetuat-
ing prejudiced behaviour that dehumanizes certain
socio-demographic groups by deeming them more
negative or toxic (Havens et al., 2022; Blodgett
et al., 2020).

One of the proposed solutions to this issue has
been to introduce human annotators to label the
training corpora or validate pre-labelled datasets
and manually remove toxic (or biased) data entries
(Havens et al., 2022; Cabrera et al., 2014). It is com-
mon practice for machine learning systems to rely

on crowd-sourced label data for training and evalu-
ation (Wu et al., 2022). It is also well-known that
biases present in the label data can induce biases in
the trained models (Hettiachchi et al., 2021). There-
fore, while humans-in-the-loop for model training
may seem like an intuitive solution, it often intro-
duces additional biases due to inherent cognitive
biases in humans (Parmar et al., 2022). Crowdwork
annotation studies conducted on MTurk (and other
crowdwork platforms) where the participants come
from a specific demographic population can poten-
tially perpetuate populist viewpoints (Reinecke and
Gajos, 2015).

Prior work has established the pitfalls in human
rationality, as influenced by the lived experiences
and environment, which Herbert Simon termed
bounded rationality (Simon, 1957). Human bi-
ases have been identified to be the resulting gap
between rational behaviour and heuristically deter-
mined behaviour (Tversky and Kahneman, 1974;
Bojke et al., 2021). Over 180 cognitive biases
have been identified, spawning everything from
social interaction to judgment and decision-making
with research spanning over 70 years (Talboy and
Schneider, 2022). These tendencies or patterns can
lead to faulty reasoning, irrationality, and poten-
tially detrimental outcomes.

Bias sometimes emerges due to distractions, lack
of interest, or laziness among annotators regarding
the annotation task, leading them to select inaccu-
rate labels. However, more concerning is the label
bias stemming from informed and well-intentioned
annotators who consistently exhibit disagreement
(Hovy and Prabhumoye, 2021). Plank et al. (2014)
demonstrated that this form of bias emerges when
multiple correct labels are possible. For instance,
the term ’social media’ can be legitimately inter-
preted either as a noun phrase consisting of an
adjective and a noun or as a noun compound com-
prising two nouns. For example, Sap et al. (2019)
demonstrated that these biases mirror social and de-
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mographic variances. For instance, annotators tend
to evaluate utterances from various ethnic groups
disparately and may misinterpret harmless banter
as hate speech due to their unfamiliarity with the
communication norms of the original speakers.

Merely relying on a few gold-standard corpora
as training datasets or debiasing datasets is not
a sustainable long-term strategy since languages
undergo constant evolution. Thus, even a com-
prehensive sample can only encapsulate a momen-
tary snapshot, offering at best a transient solution
(Fromreide et al., 2014). We believe the design and
set-up of the crowd work task plays a pivotal role
in determining the goodness of data. In this work,
we look at bias-diminishing strategies and identify
the pressing questions in this area. Our central
goal is to show that there is a need for standard-
ized design principles when it comes to designing
crowdwork studies. Specifically, we concentrate on
the need for an HCI perspective in natural language
processing research.

2 Bias in AI Models

Generative AI’s propensity to amplify existing bi-
ases and create new ones has attracted considerable
attention across a range of communities, including
academics, policy-makers, industry, and civil soci-
ety. Much of the initial work focused on developing
quantitative definitions of fairness (Dwork et al.,
2012; Hardt et al., 2016; Joseph et al., 2016; Liu
et al., 2017; Verma and Rubin, 2018), and various
technical methods for ‘debiasing’ AI models (Agar-
wal et al., 2018; Bolukbasi et al., 2016; Friedler
et al., 2014; Zafar et al., 2017). When referring
to de-biasing, we use the definition ’removing un-
desired skews in the data and the model outcome,
such as by equalising a metric of interest between
groups’. “Unintended bias” is used to describe
the different sources of bias that are introduced
throughout an AI development life cycle (Lee and
Floridi, 2021; Suresh and Guttag, 2021), focusing
on not just the bias introduced, but also the harm it
causes (Crawford, 2016).

Recent studies have shifted focus from merely
identifying sources of bias in AI, such as flawed
data collection methods, to exploring the various
harms caused by these biases. This shift is sup-
ported by interdisciplinary research that highlights
the contextual nature of fairness. Factors such as
regional and cultural differences in lived experi-
ences significantly influence perceptions of fair-

ness, revealing that certain algorithmic behaviours
may only be deemed harmful in specific social or
cultural contexts (Green and Hu, 2018; Lee and
Singh, 2021; Sambasivan et al., 2021; Selbst et al.,
2019). Given these complexities, it is broadly ac-
knowledged that eliminating bias or ensuring abso-
lute fairness in AI systems is unfeasible (Klein-
berg et al., 2016; Mehrabi et al., 2021; Pleiss
et al., 2017). Instead, the objective is to minimize
fairness-related harms and other adverse impacts to
the greatest extent possible (Mehrabi et al., 2021;
Selbst et al., 2019; Sun et al., 2019). This perspec-
tive is further enhanced by recent interdisciplinary
studies (Lewicki et al., 2023), which underscore
the nuanced and multifaceted nature of fairness in
AI.

Identifying and acknowledging systemic biases
in data collection is a crucial step in mitigating their
impact on the systems that are trained using this
data, and is a critical prerequisite for achieving fair-
ness in algorithmic decision-making (Hajian et al.,
2016). While humans are integral to the system,
participating in data collection and various phases
thereof, it is imperative to emphasize that human
computation (Quinn and Bederson, 2011), the prac-
tice of harnessing human intelligence and cognitive
abilities as computational elements, holds potential
for addressing and mitigating these challenges.

3 Cognitive Bias among Annotators

As emphasized by Van Dis et al. (2023), ensur-
ing human accountability is essential in scientific
practice. The history of Large Language Models
(LLMs) has shown that they can produce inaccu-
rate information, or "hallucinations." To guarantee
the accuracy of information, it is necessary to im-
plement a rigorous verification and fact-checking
process led by experts. Consequently, the dis-
course highlights the critical need for accountabil-
ity in human-in-the-loop systems, particularly in
response to the new challenges posed by these sys-
tems.

The importance of understanding and mitigat-
ing biases in crowd data is highly relevant to re-
searchers, and others who rely on crowd data for
creating automated systems. Prior work has ex-
plored various approaches to promoting fairness
in machine learning, including the direct utiliza-
tion of crowdsourced data (Balayn et al., 2018),
leveraging crowds to assess perceived fairness of
features (Van Berkel et al., 2019, 2021), applying
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pre-processing techniques such as removing sensi-
tive attributes, resampling data to remove discrim-
ination, and iteratively adjusting training weights
for sensitive groups (Calmon et al., 2017; Kamiran
and Calders, 2012; Krasanakis et al., 2018), as well
as employing active learning methods (Anahideh
et al., 2022).

The use of crowdsourcing for tasks such as data
annotation can inadvertently introduce cognitive
biases, stemming from the inherent design of the
task itself. We have identified three primary rea-
sons why annotated data can be problematic: (1)
Unethical spammers submit imprecise or even ar-
bitrary labels in order to maximize their financial
advantage (Eickhoff et al., 2012) or due to external
distractions. (2) Unqualified workers are, despite
their best efforts, unable to produce an acceptable
annotation quality (Eickhoff, 2014). (3) Malicious
workers purposefully aim to undermine or influ-
ence the labelling effort (Wang et al., 2013). How-
ever, we propose that there might be some factors
that have not been uncovered in prior literature.
Crowd-workers have their tasks cut out for them,
in cases where the nature of task design causes the
propagation of bias. Research on crowd work has
often focused on task accuracy whereas other fac-
tors such as biases in data have received limited
attention (Hettiachchi et al., 2021).

Cognitive biases originate from individuals’ own
"subjective social reality" which is often a product
of lived experiences. This makes cognitive bias a
deviation from the rationality of judgement, there-
fore it may consist of perceptions of other people
that are often illogical (Martie et al., 2005). An
individual’s construction of social reality, instead
of the objective input, may dictate their behaviour
and lead to perceptual distortion, inaccurate judg-
ment, illogical interpretation, or irrationality (Bless
and Fiedler, 2014). Past work has demonstrated
that cognitive bias can affect crowdsourced labour
and lead to significantly reduced result quality.
This performance detriment is subsequently propa-
gated into system ranking robustness and machine-
learned ranker efficacy (Eickhoff, 2018).

The annotation instructions provided to crowd-
workers can inadvertently prime them to exhibit
biases towards or against specific domain infor-
mation, which can be exacerbated by poorly de-
signed instructions. Furthermore, annotators are
often not fully informed about the true purpose
of the research, leading to an ambiguity effect that
can make the decision-making process appear more

challenging and less appealing due to the limited in-
formation available (Ellsberg, 1961). Additionally,
the phased revelation of information to annotators
can result in an anchoring effect, where certain
pieces of information are given disproportionate
attention based on the timing of their disclosure.
This underscores the importance of designing anno-
tation studies that mitigate cognitive biases among
workers, ensuring that the annotation process is fair,
transparent, and unbiased.

4 Crowd Control

Humans in the loop bring a lot of value to gener-
ative AI and AI systems. Therefore, the solution
to the issue of cognitive bias cannot be to remove
the annotators from the system. Human annotators
often bring expert judgements, that are valuable
in creating ground truth labels. For example, an-
notation of medical imagery cannot be performed
without the help of annotators who are medical pro-
fessionals. Expert guidance, lived experiences and
proximity to the problem domain make human an-
notators irreplaceable in the AI-training life-cycle.
The common strategies of accounting for biases of
annotators by employing qualification tests, demo-
graphic filters, incentives, and sophisticated worker
models may not be enough to overcome this source
of noise. There is therefore a need to control the
annotation task design settings, to minimize the
introduction of biases due to the cognitive biases of
annotators. While cognitive biases and their effects
on decision-making are well-known and widely
studied, we note that AI-assisted decision-making
presents a new decision-making paradigm. It is
important to study their role in this new paradigm,
both analytically and empirically.

Crowdwork platforms are often designed to po-
sition crowdworkers as interchangeable (Irani and
Silberman, 2013). While some forms of digital
work can be decomposed and distributed, the pre-
sumption that all crowdsourced dataset annotators
exercise near-identical capacities of perception and
judgement ignores the fact that social position,
identity, and experience shape how annotators’ ac-
tions.

Previous research has highlighted the signifi-
cance of the annotator population and the power dy-
namics inherent in platform-mediated crowdwork,
both of which can perpetuate cognitive biases (Díaz
et al., 2022). Building upon this foundation, we pro-
pose a novel framework to enhance transparency
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and robustness in the process of designing a crowd-
work task. This approach holds promise for miti-
gating the impact of cognitive biases in crowdwork,
thereby contributing to more reliable and trustwor-
thy outcomes.

5 Counter-measures for Biases

To minimize bias in NLP annotation tasks, sev-
eral steps can be implemented. Firstly, recruiting
a diverse group of annotators from various back-
grounds can help balance individual biases. Provid-
ing clear and detailed guidelines ensures uniform
understanding across annotators. Training sessions,
followed by calibration discussions, align annota-
tor interpretations and reveal guideline ambigui-
ties. An iterative feedback loop allows for regular
quality checks and guideline adjustments based on
annotator experiences. Measuring inter-annotator
agreement with metrics like Cohen’s Kappa high-
lights discrepancies and areas needing clarification.
Annotation tasks should be designed to minimize
bias, such as by rotating text assignments among
annotators to avoid topical biases. Finally, a post-
annotation analysis can detect any remaining bi-
ases, ensuring the reliability and fairness of the
annotated data.

However, biases can arise at any point in the AI
lifecycle. It is therefore imperative for researchers
to maintain a meticulous approach throughout
the entire research process, encompassing various
facets such as the selection of appropriate datasets,
adherence to annotation schemes or labelling pro-
cedures, thoughtful considerations regarding data
representation methodologies, judicious selection
of algorithms tailored to the task at hand, and rig-
orous evaluation protocols for automated systems.
Furthermore, researchers must consider the tan-
gible real-world applications of their research en-
deavors. Particularly noteworthy is the imperative
to consciously direct efforts towards leveraging
technological advancements to uplift and empower
marginalized communities, as underscored by Asad
et al. (2019). Several studies critique existing bias
mitigation algorithms for their lack of effectiveness
due to inconsistent study protocols, inappropriate
datasets, and over-tuning to specific test sets. To
overcome these limitations, research needs to in-
troduce robust evaluation protocol, and sensible
metrics designed to evaluate algorithm robustness
against various biases (Shrestha et al., 2022).

Our future work derives from the insights pre-

sented in the preceding discussion. It posits that
the roots of bias within AI systems often traced
back to the initial stages of the annotation process,
particularly during the instruction phase. Although
not all cognitive biases are inherently detrimental,
a pressing need exists to advance our comprehen-
sion of how to devise annotation studies that align
with the principles of human-computer interaction
(HCI).

Our objective in this research endeavour is to
contribute substantively to the ongoing efforts
aimed at mitigating bias in crowd work. We intend
to achieve this by focusing on the refinement of
study design and instructional strategies. By incor-
porating insights from the HCI discipline, we aim
to cultivate a nuanced understanding of how to cre-
ate balanced annotation studies that minimize the
emergence of bias. Through this work, we aspire
to not only shed light on the pivotal role played by
the annotation phase in propagating or mitigating
bias but also to provide practical recommendations
and guidelines for researchers and practitioners en-
gaged in AI development and crowd work.

6 Conclusion

Our research highlights the critical importance of
considering annotation attributes that contribute to
bias in AI systems. The cognitive biases of annota-
tors, inherent in human decision-making, can per-
petuate and even amplify existing social disparities
in AI models. To mitigate these issues, a multidisci-
plinary approach is necessary not only in deploying
AI models but also in designing better systems for
annotation tasks. By bringing together experts from
diverse fields, including human-centered design,
ethics, social sciences, law, healthcare, AI/ML, ed-
ucation, communication, and community represen-
tation, we can design annotation systems that are
more inclusive, transparent, and fair. This collabo-
rative framework is essential for developing anno-
tation tasks that are free from biases, ambiguous,
and unclear instructions, and that take into account
the complexities of real-world data. Furthermore, a
multidisciplinary approach is crucial for deploying
AI models that are developed using these annotated
data, ensuring that they are fair, transparent, and
accountable. By acknowledging the limitations of
human annotators and addressing them through a
multidisciplinary approach, we can work towards a
more equitable digital landscape where AI systems
benefit both individuals and society as a whole.
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Abstract

Interpretability tools that offer explanations
in the form of a dialogue have demonstrated
their efficacy in enhancing users’ understand-
ing (Slack et al., 2023; Shen et al., 2023), as
one-off explanations may fall short in providing
sufficient information to the user. Current solu-
tions for dialogue-based explanations, however,
often require external tools and modules and
are not easily transferable to tasks they were not
designed for. With LLMCHECKUP1, we present
an easily accessible tool that allows users to
chat with any state-of-the-art large language
model (LLM) about its behavior. We enable
LLMs to generate explanations and perform
user intent recognition without fine-tuning, by
connecting them with a broad spectrum of Ex-
plainable AI (XAI) methods, including white-
box explainability tools such as feature attribu-
tions, and self-explanations (e.g., for rationale
generation). LLM-based (self-)explanations
are presented as an interactive dialogue that
supports follow-up questions and generates sug-
gestions. LLMCHECKUP provides tutorials for
operations available in the system, catering to
individuals with varying levels of expertise in
XAI and supporting multiple input modalities.
We introduce a new parsing strategy that sub-
stantially enhances the user intent recognition
accuracy of the LLM. Finally, we showcase
LLMCHECKUP for the tasks of fact checking
and commonsense question answering.

1 Introduction

To unravel the black box nature of deep learning
models for natural language processing, a diverse
range of explainability methods have been devel-
oped (Ribeiro et al., 2016; Madsen et al., 2022;
Wiegreffe et al., 2022). Nevertheless, practition-
ers often face difficulties in effectively utilizing

*Equal contribution
1https://github.com/DFKI-NLP/LLMCheckup

Figure 1: LLMCHECKUP dialogue with data augmenta-
tion and rationalization operations on a commonsense
question answering task (ECQA). Boxes (not part of the
actual UI) indicate the original instance from the dataset
as well as its prediction (cyan) and the explanation re-
quested by the user (orange).

explainability methods, as they may not be aware
of which techniques are available or how to inter-
pret results provided. There has been a consen-
sus within the research community that moving
beyond one-off explanations and embracing con-
versations to provide explanations is more effective
for model understanding (Lakkaraju et al., 2022;
Feldhus et al., 2023; Zhang et al., 2023) and helps
mitigate the limitations associated with the effec-
tive usage of explainability methods to some extent
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(Ferreira and Monteiro, 2020; Slack et al., 2023).
In the field of NLP, two dialogue-based inter-

pretability tools, INTERROLANG (Feldhus et al.,
2023) and CONVXAI (Shen et al., 2023), have been
introduced. Both tools employ multiple, separately
fine-tuned LMs to parse user intents and dedicated
external LMs to provide explanations.

By contrast, our framework, LLMCHECKUP,
only requires a single LLM and puts it on “quadru-
ple duty”: (1) Analyzing users’ (explanation) re-
quests (§2.1, §5.1), (2) performing downstream
tasks (§4), (3) providing explanations for its out-
puts (§3), and (4) responding to the users in natu-
ral language (§2.3). Instead of using many differ-
ent LMs to explain the behavior of another LLM,
LLMCHECKUP allows us to directly employ the
same LLM used for user intent recognition to self-
explain its own behavior. The advantage of a single-
model approach is that it simplifies the engineering
aspect of building an XAI system without multiple
external modules and separately fine-tuned models.
At the same time, we consistently achieve good
performance even with a single model, as modern
LLMs are very powerful and can handle a wide
range of tasks including user intent recognition
and explanation generation. Thus, LLMCHECKUP

provides a unified and compact framework that
is useful for future user studies in the context of
human-computer interaction and explainability.

2 LLMCHECKUP

LLMCHECKUP is an interface for chatting with
any LLM about its behavior. We connect several
white-box and black-box interpretability tools (§3),
s.t. LLMCHECKUP takes into account model inter-
nals, datasets and documentation for generating
self-explanations. User requests for explanations
are recognized via a text-to-SQL task performed
by the LLM under investigation (§2.1-2.2).

We showcase a short dialogue between the user
and LLMCHECKUP in Figure 1 and a longer dia-
logue featuring different operations in Appendix
B. LLMCHECKUP can answer various questions
related to the data as well as the model’s behav-
ior. For example, in Figure 1 the user is interested
in the rationale for a specific prediction and the
model generates an explanation to justify the as-
signed label. LLMCHECKUP also suggests to have
a look at another related operation (token-level im-
portance scores) that can help explain model’s be-
havior (§2.4), but the user asks for a modified (aug-

mented) version of the same instance instead. As a
result, the model paraphrases the original question
which can be then treated as a new sample and the
user can further examine it by using the custom
input functionality of LLMCHECKUP (§2.4).

2.1 System architecture

Figure 2 illustrates the interaction flow of LLM-
CHECKUP. When a user asks a question, it will
be parsed as an SQL-like query by the LLM.
E.g., the first user question in Figure 1 will be
parsed as filter id 26 and rationalize. The
corresponding parsed operation (i.e., filter and
rationalize in our example, see Table 1 for the
full list of operations) will then be matched and
executed. For response generation, the explanation
provided by the underlying interpretability method
is converted into a natural language output using a
template-based approach (Slack et al., 2023; Feld-
hus et al., 2023) and is then displayed to the user.

2.2 Parsing

To recognize users’ intents, the deployed LLM
transforms a user utterance into a SQL-like query.
The SQL-based approach is needed to formally rep-
resent the available operations (see Table 1) and
their “semantics” including all necessary attributes.
For user intent recognition, we employ two meth-
ods: Guided Decoding and Multi-prompt Parsing.

2.2.1 Guided Decoding
Guided Decoding (GD) ensures that the generated
output adheres to predefined grammatical rules and
constraints (Shin et al., 2021) and that parses of the
user requests align with predefined operation sets
(Slack et al., 2023). GD is generally more suitable
for smaller LMs, since in-context learning may
encounter instability attributed to the fluctuations
in the order of provided demonstrations, and the
formats of prompts (Ma et al., 2023).

2.2.2 Multi-prompt Parsing
As an alternative to GD, we propose and imple-
ment a novel Multi-prompt Parsing (MP) approach.
While GD pre-selects prompts based on the embed-
ding similarity with user input, the model does not
see all the available operations at once and the pre-
selection may not include the examples for the ac-
tual operation required. With MP, we test whether
showing all possible operations in a simplified for-
mat (i.e., without any attributes such as instance
ID or number of samples) and then additionally
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Figure 2: On the left, a dialogue example asking for explanation in natural language about a ECQA-like customized
question. The workflow of LLMCHECKUP is shown on the right side.

Fi
lte

r filter(id) Access single instance by its ID
includes(token) Filter instances by token occurrence

Pr
ed

ic
tio

n predict(instance)∗ Get the prediction for the given instance
randompredict(number) Precompute a subset of instances at random
mistakes
show|count(subset)

Count or show incorrectly predicted in-
stances

score(subset, metric) Determine the relation between predictions
and labels

D
at

a show(list) Showcase a list of instances
countdata(list) Count number of instances in the dataset
label(dataset) Describe the label distribution across the

dataset

M
et

a data() Information related to the dataset
model() Metadata of the model

A
bo

ut function() Inform about the functionality of the system
self() Self-introduction of LLMCHECKUP
qatutorial(op_name) Provide explanation for the supported oper-

ations (tutorial)

E
xp

la
in nlpattribute(inst.,

topk, method_name)∗
Provide feature attribution scores

rationalize(instance)∗ Explain the output in natural language

N
L

U keywords() Show common keywords in the data
similarity(instance,
number)∗

Output top k similar instances in the dataset
Pe

rt
. cfe(instance)∗ Generate counterfactuals

augment(instance)∗ Augment the input text

L
og

ic and(op1, op2) Concatenation of multiple operations
or(op1, op2) Selection of multiple filters

Table 1: All operations (mappings between a partial SQL-type query and a function) facilitated by LLMCHECKUP,
including all explainability methods mentioned in §3 and other supplementary operations. Operations marked with
(∗) support the use of custom inputs (see more details in App. A).

prompting the model to fill in more fine-grained
attributes can improve performance.

As a first step, MP queries the model about
the main operation (see list of operations in Ta-
ble 1). Next, depending on the chosen operation,
MP selects the operation-specific prompts with 2-7
demonstrations2 (user query and parsed outputs ex-
amples) to generate the full parses that may include
several attributes. E.g., for the user input "What
are the feature attributions for ID 42 based on
the integrated gradients?", we start by generating
nlpattribute and then augment the parse with
the second prompt and transform it into filter id
42 and nlpattribute integrated_gradient.

Since the output of the model is not constrained,
unlike in GD, in the MP setting we need to check
whether the model’s output matches any of the
available operations and if there is no exact match
we employ SBERT3 to find the best match based
on the embedding similarity. We also implement
checks to avoid possible hallucinations, e.g., if the

2The number of demonstrations depends on the difficulty
of operation, e.g., how many attributes it may have.

3https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

model outputs an ID that is not present in the input
we remove it from the parser output. §5.1 evaluates
the performance of both parsing approaches.

2.3 Interface

LLMCHECKUP provides a user interface (Figure 3)
including a chat window to enter questions and
settings on the right panel, including XAI exper-
tise level selection, custom inputs, prompt editor
and export functionality for the chat history. It is
implemented in Flask and can be run as a Docker
container. LLMCHECKUP provides a chat window
(Slack et al., 2023), a dataset viewer (Feldhus et al.,
2023), a custom input history viewer and ques-
tion suggestions for different operations. Together,
these UI elements facilitate dataset exploration and
provide sample questions for all available opera-
tions to inspire users to come up with their own
questions.

On the right side of the window, there is a Prompt
Editor with different options for prompt modifica-
tion (§3.2). The icons associated with each strategy
describe them in detail, including the correspond-
ing prompts that can be appended after the default
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Figure 3: LLMCHECKUP interface with welcome message, free-text rationale and sample generator buttons. Expert
XAI level and OPRO strategy are selected. For example multi-turn dialogues, see Table 5 and Table 6.

system prompt.

2.4 Key features

Supported NLP models Out of the box, we in-
clude five auto-regressive LLMs representative of
the current state-of-the-art in open-source NLP
(as indicated in the left column of Table 2) avail-
able through Hugging Face TRANSFORMERS (Wolf
et al., 2020). The diverse choice of models demon-
strates that our framework is generalizable and
supports various Transformer-type models. While
Falcon-1B (Penedo et al., 2023) and Pythia-2.8B
(Biderman et al., 2023) are available for users with
limited hardware resources (RAM/GPU), it is gen-
erally not recommended to use them due to their
small model size, which may negatively affect per-
formance and user perception. Llama2-7B (Tou-
vron et al., 2023) and Mistral-7B (Jiang et al.,
2023) are both mid-sized with 7B parameters,
while Stable Beluga 2 (Mukherjee et al., 2023)

is a fine-tuned version of Llama2-70B. To facilitate
the deployment of large models in a local envi-
ronment, LLMCHECKUP offers support for various
forms of LLMs. This includes quantized models
through GPTQ (Frantar et al., 2023), loading mod-
els in 4-bits with the assistance of BITSANDBYTES

(Dettmers et al., 2022), and the implementation of
a peer-to-peer solution using PETALS (Borzunov
et al., 2023), enabling efficient deployment on a
custom-level GPU.

Tutorial To help non-experts get background
knowledge in XAI, we introduce a tutorial func-
tionality. It is based on prompting with different
roles corresponding to levels of expertise in XAI
(Figure 3) and enables us to provide tailored meta-
explanations of supported operations to individuals.
For example, at the beginner level, we add a system
prompt hinting at the expertise: “As a NLP begin-
ner, could you explain what data augmentation is?”
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(Figure 4). In such a way, all users can receive
meta-explanations according to their expertise.

Customized inputs & prompts In comparison to
TALKTOMODEL (Slack et al., 2023), which was lim-
ited to three datasets, LLMCHECKUP offers users
the freedom to enter custom inputs (e.g. modi-
fied original samples or even completely new data
points, see the Custom Input box on the right panel
in Figure 3), going beyond just querying instances
from specific provided datasets. In addition, in-
spired by PROMPTSOURCE (Bach et al., 2022), a
Prompt Editor (see Prompt modification section on
the right panel in Figure 3) supports inserting both
pre-defined and fully customized prompts, allow-
ing the users to control how downstream tasks and
rationalization (§3.2) are performed. All custom
inputs are saved and can be inspected and reused
later via a dedicated custom input history viewer.

Suggestion of follow-up questions To guide the
user through the conversation, we implemented a
suggestions mode. The user receives suggestions
for related operations that LLMCHECKUP can per-
form based on the dialogue context, e.g., if the user
asks about the top k attributed tokens for a specific
sample, they will receive a suggestion to have a
look at the generated rationales since both oper-
ations belong to the “Explanation" category also
displayed in the user interface. The suggestions
are grouped into several categories as specified in
Table 1 (see Appendix F for more detail).

2.5 Add-on features
External information retrieval Since LLMs
may sometimes generate incorrect responses
(Welleck et al., 2020), LLMCHECKUP allows users
to access information by conducting search through
external knowledge bases, promoted by the integra-
tion of GOOGLE SEARCH4 (Figure 5). In particular,
it provides an external link that contains informa-
tion relevant to the input sample(s). Users can
cross-reference the retrieved information with the
provided explanations, thereby achieving a more
comprehensive understanding.

Multi-modal input format Motivated by Malan-
dri et al. (2023), LLMCHECKUP not only accepts
text input from users but also provides support for
other modalities such as images and audio. To
facilitate this, we integrate packages and models
tailored to each modality. For optical character

4https://github.com/Nv7-GitHub/googlesearch

recognition (OCR), we use EASYOCR5. For au-
dio recognition, we employ a lightweight fairseq
S2T6 model (Wang et al., 2020) trained on Auto-
matic Speech Recognition (ASR).

Dialogue sharing LLMCHECKUP offers the func-
tionality to export the dialogue history between the
user and the deployed LLM as a JSON file that
contains the user’s questions and the corresponding
generated responses. This simplifies data collection
and sharing of conversation logs between users.

3 NLP explainability tools

While we introduce each explainability method in-
dividually, these methods can be interconnected
through follow-up questions from users or sugges-
tions provided by LLMCHECKUP to preserve con-
text. Table 5 and Table 6 show examples of expla-
nations for each supported explainability method
by LLMCHECKUP.

3.1 White-box
Feature attribution Feature attribution methods
quantify the contribution of each input token to-
wards the final outcome. In LLMCHECKUP, we
deploy various auto-regressive models (§2.4), for
which INSEQ (Sarti et al., 2023) is used to deter-
mine attribution scores. We support representative
methods from INSEQ, including Input x Gradient
(Simonyan et al., 2014), Attention (Bahdanau et al.,
2015), LIME (Ribeiro et al., 2016), and Integrated
Gradients (Sundararajan et al., 2017)7.

Embedding analysis By calculating the cosine
similarity between the sentence embeddings of the
instances in datasets, we can retrieve relevant exam-
ples (Cer et al., 2017; Reimers and Gurevych, 2019)
and present them for contextualizing the model be-
havior on the input in question.

3.2 Black-box
Data augmentation Augmentation involves syn-
thesizing new instances by replacing text spans of
the input while preserving the semantic meaning
and predicted outcomes (Ross et al., 2022). Data
augmentation can be achieved by LLM prompting
with or without providing a few demonstrations
(Dai et al., 2023). Alternatively, NLPAUG8 can be

5https://github.com/JaidedAI/EasyOCR
6https://huggingface.co/facebook/

s2t-small-librispeech-asr
7Details on the INSEQ integration are described in App. C.
8https://github.com/makcedward/nlpaug

93



used to substitute input words with synonyms from
WORDNET (Miller, 1995). Augmented texts can
offer valuable insights into model behavior on per-
turbation tasks and prediction differences between
them and their original texts.

Counterfactual generation Unlike data augmen-
tation, counterfactuals manifest as input edits caus-
ing the predicted outcome to be different (Wu et al.,
2021; Chen et al., 2023). Counterfactuals are gen-
erated by prompting LLMs with manually crafted
demonstrations.

Rationalization Rationalization aims to provide
free-text explanations that elucidate the prediction
made by the model (Camburu et al., 2018; Wiegr-
effe et al., 2022) (an example is shown in Figure 1).
The use of Chain-of-Thought (CoT) prompting en-
hances the reasoning capabilities of LLMs by en-
couraging the generation of intermediate reasoning
steps that lead to a final answer (Wei et al., 2022;
Wang et al., 2023b). Different CoT strategies can
be applied depending on users’ preferences, in-
cluding Zero-CoT (Kojima et al., 2022), Plan-and-
Solve (Wang et al., 2023a), and Optimization by
PROmpting (OPRO) (Yang et al., 2023) (Figure 3).

4 Use cases

In this paper, we demonstrate the workflow of
LLMCHECKUP on two typical NLP tasks: Fact
checking and commonsense question answering.
Figure 1 and Appendix B show sample dialogues
where user asks questions regarding rationalization,
data augmentation and other operations based on
the ECQA data (Aggarwal et al., 2021) for com-
monsense question answering. The LLMCHECKUP

repository includes all the necessary configuration
files for different LMs and our use cases. They
can be easily adopted to many other downstream
tasks, data and Transformer-type models, demon-
strated in a tutorial which will be available with the
camera-ready version of our repository.

4.1 Fact checking
The importance of fact checking has grown sig-
nificantly due to the rapid dissemination of both
accurate information and misinformation within
the modern media ecosystem (Guo et al., 2022).
COVID-Fact (Saakyan et al., 2021) is a fact-
checking dataset that encompasses various claims,
supporting evidence for those claims, and contra-
dictory claims that have been debunked by the pre-
sented evidence.

Model Size Strategy Accuracy

Nearest Neighbor - - 42.24

Falcon 1B GD 47.41
Pythia 2.8B GD 51.72
Llama2 7B GD 64.71
Mistral 7B GD 55.88

Stable Beluga 2 70B GD 67.23

Falcon 1B MP 64.15
Pythia 2.8B MP 75.91
Llama2 7B MP 82.35
Mistral 7B MP 84.87

Stable Beluga 2 70B MP 88.24

Table 2: Exact match parsing accuracy (in %) for dif-
ferent models. GD = Guided Decoding prompted by
20-shots; MP = Multi-Prompt parsing.

4.2 Commonsense question answering

Unlike question answering, commonsense ques-
tion answering (CQA) involves the utilization of
background knowledge that may not be explicitly
provided in the given context (Ostermann et al.,
2018). The challenge lies in effectively integrat-
ing a system’s comprehension of commonsense
knowledge and leveraging it to provide accurate
responses to questions. ECQA (Aggarwal et al.,
2021) is a dataset designed for CQA. Each instance
in ECQA consists of a question, multiple answer
choices, and a range of explanations. Positive ex-
planations aim to provide support for the correct
choice, while negative ones serve to refute incorrect
choices. Additionally, free-text explanations are
included as general natural language justifications.

5 Evaluation

We conducted evaluations for parsing and data aug-
mentation with LLMs using automated evaluation
metrics9. Among all the supported methods pre-
sented in Table 1, we chose data augmentation as
a representative operation to evaluate the perfor-
mance of different LLMs.

5.1 Parsing

To assess the ability of interpreting user intents
by LLMs, we quantify the performance of each
deployed model by calculating the exact match
parsing accuracy (Talmor et al., 2017; Yu et al.,

9Note that our evaluation does not involve any user study,
as that aspect is considered as future work and falls outside
the scope of our initial focus on engineering.
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Model #max_new_tokens Accuracy
Falcon 10 64.15
Falcon 20 64.15

Pythia 10 75.91
Pythia 20 63.03

Llama2 10 74.79
Llama2 20 82.35

Llama2-GPTQ 10 82.63
Llama2-GPTQ 20 87.40

Mistral 10 84.87
Mistral 20 71.43

Mistral-GPTQ 10 78.71
Mistral-GPTQ 20 68.91

Stable Beluga 2 10 88.24
Stable Beluga 2 20 86.55

Table 3: Parsing accuracy (in %) using MP with differ-
ent number of maximum new tokens. Note that for the
Llama2-7b and Mistral-7b models, we offer various
options for quantization. In this case, we have chosen
GPTQ as the representative method.

2018) on a manually created test set, which con-
sists of a total of 119 pairs of user questions and
corresponding SQL-like queries. As an additional
baseline, we employ the nearest neighbor approach
that relies on comparing semantic similarity.

We assess parsing accuracy of our two ap-
proaches, GD and MP (§2.2). Table 2 shows that,
as model size increases, the parsing accuracy tends
to increase and MP demonstrates a notable im-
provement over GD. Despite Stable Beluga 2
having a larger size compared to 7B models, its
parsing performance only marginally surpasses that
of Mistral and Llama2. This can be partially at-
tributed to the difficulty of the parsing task10 and
the number of demonstrations, as larger models
may require a greater number of demonstrations to
fully comprehend the context (Li et al., 2023b).

Table 3 summarizes our parsing evaluation re-
sults for different models with different number
of ’max_new_tokens‘ for generation. Llama-based
models showed better performance with more to-
kens to generate compared to the rest of the mod-
els. After looking at some generated outputs we
realized that Falcon-1B and Pythia-2.8B are not
good at extracting ids and often can only recog-
nize the main LLMCHECKUP operation. Hence,
for these two models we have an additional step
that extracts a potential ID from the user input and

10We have a total of 21 LLMCHECKUP operations displayed
in Table 1 (excluding the logic operations), and many of these
offer multiple options. For instance, score operation supports
F1, precision, recall and accuracy matrices.

adds it to the parsed operation. As expected, larger
models tend to perform better than the ones with
fewer parameters. However, we also found that the
quantized Llama model outperforms its full (non-
quantized) version on the parsing task.

5.2 Data augmentation
We assess the quality of the generated augmented
output based on two key aspects: (1) consistency:
the metric represents the proportion of instances
where the augmentation process does not lead to
a change in the label before and after the augmen-
tation (Li et al., 2023a; Dai et al., 2023); (2) flu-
ency: assesses how well the augmented output
aligns with the original data in terms of semantic
similarity (Ross et al., 2021) measured by SBERT.
Table 4 indicates that Mistral and Llama2 exhibit
comparable performance, while Stable Beluga
2 displays substantially higher consistency scores
on two tasks, although it may exhibit lower flu-
ency in certain cases. The overall performance on
ECQA is relatively low compared to COVID-Fact.
This difference in performance can be attributed to
the increased complexity of the ECQA task. Our
primary focus is to compare the performance of
different LMs (Table 4), rather than aiming for
state-of-the-art results on both downstream tasks or
demonstrating perfect fluency and consistency11.

6 Discussion

In contrast to previous dialogue-based XAI frame-
works CONVXAI (Shen et al., 2023) and INTER-
ROLANG (Feldhus et al., 2023), which require a
fine-tuned model for each specific use case, LLMs
used in LLMCHECKUP possess remarkable zero-
/few-shot capabilities (Brown et al., 2020) for ef-
fectively handling many tasks without requiring
fine-tuning. Although the quality of an explana-
tion could be enhanced with further fine-tuning,
LLMCHECKUP uses model outputs out of the box.

Our empirical results underline the feasibility of
conversational interpretability and the usefulness
of LLMCHECKUP for future studies, especially hu-
man evaluation. We focus on the ground work in
terms of engineering, implementation and user in-
terface, for connecting the human with the model.
This provides user studies (Wang et al., 2019; Feld-
hus et al., 2023; Zhang et al., 2023) in the future
with a head start, s.t. they can spend more time

11Creating gold data is out of scope for this work, because
it involves costly human annotations. For the lack of gold data,
we have intentionally omitted providing a baseline.
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Dataset COVID-Fact ECQA
Model Size Consistency Claim Fluency Evidence Fluency Consistency Question Fluency

Mistral 7B 0.66 0.88 0.96 0.50 0.76
Llama2 7B 0.65 0.88 0.94 0.50 0.76

Stable Beluga 2 70B 1.00 0.85 0.96 1.00 0.73

Table 4: Consistency and fluency scores of data augmentation from three models. falcon and pythia are not
considered due to poor performance because of small model size.

on conducting their study. We see evaluation mea-
sures for differences between users’ mental models
and model behavior and objective metrics beyond
simulatability as the most important gaps to fill.

7 Related work

Interfaces for interactive explanations LIT
(Tenney et al., 2020) is a GUI-based tool avail-
able for analyzing model behaviors across entire
datasets. However, LIT has less functionalities in
terms of prompting and lower accessibility, e.g.
no tutorial and a lower level of integration with
HUGGINGFACE. CROSSCHECK (Arendt et al., 2021)
exhibits the capability to facilitate quick cross-
model comparison and error analysis across var-
ious data types, but adapting it for other use cases
needs substantial code modification and customiza-
tion. XMD’s (Lee et al., 2023) primary purpose
is model debugging, but it shares similarities in
the focus on feature attributions, visualization of
single instances and user feedback options. It is,
however, limited to feature attribution explanations
and smaller, efficiently retrainable models. IFAN
(Mosca et al., 2023) enables real-time explanation-
based interaction with NLP models, but is limited
to the sequence-to-class format, restricting its ap-
plicability to other tasks and it offers only a limited
set of explainability methods.

Dialogue-based systems for interpretability
Carneiro et al. (2021) point out that conversational
interfaces have the potential to greatly enhance
the transparency and the level of trust that hu-
man decision-makers place in them. According
to Zhang et al.’s (2023) user studies, delivering ex-
planations in a conversational manner can improve
users’ understanding, satisfaction, and acceptance.
Jacovi et al. (2023) emphasizes the necessity of
interactive interrogation in order to build under-
standable explanation narratives. CONVXAI (Shen
et al., 2023), TALKTOMODEL (Slack et al., 2023),
INTERROLANG (Feldhus et al., 2023) and Brach-
man et al. (2023) share some similarities with our

framework, but are more complex in their setup
and consider fewer explainability methods. Ad-
ditionally, they might overrely on external LMs
to explain the deployed LM’s behavior, whereas
LLMCHECKUP places a strong emphasis on self-
explanation, which is crucial for faithfulness. Fi-
nally, LLMCHECKUP uses auto-regressive mod-
els, as they have become increasingly dominant
in various NLP applications nowadays. In ISEE

(Wijekoon et al., 2023), a chatbot adapts explana-
tions to the user’s persona, but they do not consider
LLMs.

8 Conclusion

We present the interpretability tool LLMCHECKUP,
designed as a dialogue-based system. LLM-
CHECKUP can provide explanations in a conversa-
tion with the user facilitated by any auto-regressive
LLM. By consolidating parsing, downstream task
prediction, explanation generation and response
generation within a unified framework, LLM-
CHECKUP streamlines the interpretability process
without switching between different LMs, mod-
ules or libraries and serves as a baseline for future
investigation.

Future work includes exploring RAG models
(Lewis et al., 2020) combined with explainability,
as currently LLMCHECKUP relies on search engines
for external information retrieval. We also want to
add multi-modal models, so that converting image
or audio input to texts would no longer be neces-
sary, but the current state of interpretability on such
models lags behind unimodal approaches (Liang
et al., 2023). Integrating our framework into HUG-
GINGCHAT12 would further increase the visibility
and accessibility through the web.

Limitations

In LLMCHECKUP, we do not focus on dataset anal-
ysis or data-centric interpretability, but on how a

12https://huggingface.co/chat/
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model responds to single inputs. There are a lot
of practical cases, e.g. medical report generation
(Messina et al., 2022), gender-aware translation
(Attanasio et al., 2023), where users are not in-
terested in raw performance metrics on standard
benchmarks, but are interested in detecting edge
cases and investigating a model’s behavior on cus-
tom inputs.

English is the main language of the current
framework. Multilinguality is not supported, as
both the interface, the responses, tutorial and the
explained models are monolingual. While it would
be possible to adapt it to other languages by translat-
ing interface texts and prompts and using a model
trained on data in another target language or mul-
tiple ones, it remains to be seen to which extent
multilingual LLMs can do quadruple duty as well
as the current model does for English.

In LLMCHECKUP, users have the flexibility to
input data in different modalities, including im-
ages and audio. However, for audio and images,
LLMCHECKUP will convert the audio content and
texts contained within the images into textual for-
mat for further processing and analysis. Besides,
the explanations and responses generated by our
framework are currently limited to the text format
– apart from the heatmap visualization of feature
attribution explanations.

The QA tutorial only aims to provide explana-
tions for supported operations in XAI to individuals
with different levels of expertise. However, the ex-
planations, e.g. rationales, generated by the LLM
may not inherently adapt to users’ specific exper-
tise levels (Zhang et al., 2023). In the future, we
will explore how to prompt the models to provide
simple explanations reliably.

In LLMCHECKUP, we employ a single LLM to
serve quadruple-duty simultaneously. However,
models with lower parameter counts may exhibit
limitations in certain types of explanation genera-
tion, particularly when using prompting techniques
like rationalization or counterfactual generation
(Marasovic et al., 2022).
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A Supported operations in
LLMCHECKUP

Table 1 lists all operations supported by LLM-
CHECKUP. Operations other than those related
to explanation (Table 5, Table 6) are considered
supplementary and are responsible for providing
statistics and meta-information about data, model
or LLMCHECKUP to make it more user-friendly.
For instance, predict operation enables users to
receive predictions and serves as an initial step
for starting an explanatory dialogue; data opera-
tion can offer meta-information about the dataset,
thereby sharing essential background knowledge
with the users, when they start a new dialogue.

B Explanation examples

Table 5 and Table 6 displays examples of explana-
tions for each supported explainability method. In
each screenshot, the operation name is highlighted
in blue.

C Details on feature attribution

In LLMCHECKUP, we do not exhaustively employ
all INSEQ’s methods for feature attribution. Instead,
we selectively choose certain representative meth-
ods from our perspective. Nevertheless, we would
like to emphasize that it is straightforward to in-
corporate addition methods such as Saliency (Si-
monyan et al., 2014), Occlusion (Zeiler and Fer-
gus, 2014), Sequential Integrated Gradients (En-
guehard, 2023).

101



User LLMCHECKUP

Table 5: Sample dialogues for welcome words, prediction (predict), feature attribution (nlpattribute), data
augmentation (augment) and rationalization (rationalize) for the ECQA use case.

D QA tutorial

Figure 4 shows tutorials for data augmentation with
different levels of expertise in XAI.

E External information retrieval

Figure 5 shows the external information retrieval
for an instance from COVID-Fact.
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(a) QA Tutorial for data augmentation with beginner level of knowledge in XAI.

(b) QA Tutorial for data augmentation with expertise level of knowledge in XAI.

(c) QA Tutorial for data augmentation with expert level of knowledge in XAI.

Figure 4: QA tutorial with different knowledge level in XAI.
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User LLMCHECKUP

Table 6: Sample dialogues for counterfactual (nlpcfe), similar (similar) for the ECQA use case.

Figure 5: External information retrieval of an instance from COVID-Fact.

F Suggestion of follow-up questions

The suggestion mode can provide follow-up ques-
tions for metadata operations (e.g., dataset statis-
tics, model types etc.), prediction-related oper-
ations (e.g., predict, count or show mistakes),
explanation-based operations (e.g., attributions for
top k, attention scores and integrated gradients or
free-text rationale), NLU (similarity and keywords)
and input perturbations (counterfactuals and data
augmentation). These categories are also summa-
rized in Table 1.

The user always has an option to decline a sug-
gestion and ask something different. We check
whether the user agrees with the LLMCHECKUP

suggestions by computing the similarity scores be-
tween the input and the confirm/disconfirm tem-
plates with SBERT.

Additionally, for each generated suggestion we
check whether it already appears in the dialogue
history to make sure that the user does not receive
repetitive suggestions for the operations that have
already been performed. E.g., if the user inquires
about the counterfactual operation and the model
explains how it works, LLMCHECKUP will store
this information and will not suggest explaining
counterfactuals again.
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