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Abstract
In this paper, we propose a novel decoding al-
gorithm for streaming End-to-end (E2E) auto-
matic speech recognition (ASR) models, the
double decoder. By comparing it with exist-
ing decoding algorithms, we argue that this
new method achieves a better balance between
word error rate, latency and streaming sta-
bility, notably by reducing latency without
WER degradation but with degradation in sta-
bility. The algorithm also does not require any
change in model weights. We show results on
a Conformer-CTC model trained on the Lib-
riSpeech dataset, which indicates that the pro-
posed double decoder maintains the same WER
as buffered decoding while reducing the latency
by the size of the look-ahead used in decod-
ing. We also show that the proposed method
is generalizable. For example, we apply it to
the Zipformer-CTC-Transducer model, which
traditionally uses the default decoding, and it
achieves better WER and latency at the expense
of increased computational cost.

1 Introduction

Real-time automatic speech recognition (ASR) sys-
tems are a critical part of many of the industrial
speech understanding applications. For example,
delays in the ASR cause delays in downstream natu-
ral language processing (NLP) tasks. Other factors
like accuracy, measured by word error rate (WER),
and streaming stability (Shangguan et al., 2020a)
are also important factors to ensure a good overall
user experience in real-time language processing
systems.

While deep neural network-hidden Markov
model (DNN-HMM) hybrid ASR models have
traditionally been used for efficient streaming
ASR inference, many advancements in end-to-
end (E2E) ASR research have shown that E2E
models have more performance potential. For in-
stance, the connectionist-temporal-classification
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(CTC) loss (Graves et al., 2006) models longer
context without pre-defined alignment and allows
for low frame-rate decoding (Pundak and Sainath,
2016). RNN-Transducers (RNN-T) (Graves, 2012)
jointly train an internal language model with an
acoustic model, further improving the modelling
capabilities of a single model. Attention encoder-
decoder (AED) models such as the Listen-Attend-
Spell (LAS) (Chan et al., 2016) models exploit the
attention mechanism to model much longer context.
With the introduction of Transformer (Vaswani
et al., 2017) and its variants (Gulati et al., 2020),
E2E models have been pushing the state-of-the-art
WER on various ASR datasets (Chen et al., 2023).

However, for streaming ASR, the search for a
good trade-off between latency, stability and ac-
curacy remains an open problem. The aforemen-
tioned E2E models achieve good WER by incor-
porating more audio context, and exploiting more
parameters, translating to higher latency and more
compute cost. For example, an AED model for
ASR requires the entire input sequence before start-
ing to generate output tokens; the Transformer
model uses absolute positional embeddings, lim-
iting its applicability to streaming real-time ASR
systems (Dai et al., 2019).

In our study, we propose an algorithm we call
the double decoder. In essence, we run the decoder
twice on the encoder outputs - once on the look-
ahead or the most recent chunk of audio to specu-
latively display low latency results, then once on
the chunk behind it, with a delay. No change in
the weights of the model is needed. The algorithm
builds on the existing buffered decoding method,
which is designed for inference time and addresses
the limitation of Transformers, which typically re-
quire the complete sequence for inference.

This simple algorithm has not been published at
the time of writing and we believe many ASR engi-
neers can benefit from this method. We show that
our proposed method can improve the suitability of



E2E models for streaming ASR by achieving a bet-
ter balance between latency, accuracy, and stability.
In particular, it enables streaming for Conformer-
CTC (Graves et al., 2006; Gulati et al., 2020) and
other CTC models, which would otherwise have
undesirable performance for streaming. This is
achieved by reducing the latency while keeping
the WER of the buffered decoding method. We
also show an example with the Zipformer-CTC-
Transducer model where we reduce the WER and
latency when we use the right most part of the
original chunk size as look-ahead.

2 Traditional Decoding Algorithms for
Streaming

There are a few assumptions and definitions to clar-
ify for the description of decoding algorithms. For
simplicity, we assume there is no sub-sampling so
the model stride at output time is the same as the
input. We also define model to be the neural net-
work outputting log probabilities for each frame,
whereas the external decoder is the external decod-
ing algorithm, not to be confused with the decoder
inside an AED model. Its forward function takes
the log probabilities from the model given the latest
input chunk, and outputs the text hypothesis for the
entire audio so far. It updates its internal state for
caching the history: for greedy decoding, the latest
text output is appended to the text history; for beam
search, the beam gets updated.

2.1 Default Method

The most straightforward default method is to de-
code using the same duration for input length and
step size. This can be sufficient if the model incor-
porates an RNN component, where the left context
is inherently represented in the RNN cell state. In
this method, no computation is wasted as every in-
put frame passes through the model exactly once.
Conceptually, Figure 1a shows this decoding algo-
rithm. At each time step t, the model reads input
chunk xt and outputs the log probabilities, and the
external decoder processes them into text.

2.2 Buffered Decoding

For Transformer or Transformer-like models such
as the Conformer (Gulati et al., 2020), every layer
attends to the exact same context as the input au-
dio. It does not incorporate history context directly,
therefore we need to explicitly include history au-
dio ht besides xt as input. Moreover, we have seen

in the literature (Moritz et al., 2020) as well as em-
pirically that adding the right context (look-ahead
lt) improves WER. This is called buffered decoding
as we need to keep ht, xt and lt together in a buffer,
run the model on everything at each time frame
and only keep the log probabilities for xt. This
method has been the default streaming method for
Transformer-like models1, and it is illustrated in
Figure 1b. In practice, lt is the actual latest chunk.
To only output the results for xt means a constant
additional delay of |lt| after getting xt.

3 Proposed Decoding Algorithm

Our proposed method, the double decoder, builds
on the buffered decoding with one simple modifica-
tion: we use a temporary decoder on top of the main
external decoder. For each time step t, the model
produces output log probabilities pt for ht, xt and
lt, where only the log probabilities given xt are
passed into the main external decoder. The state of
the external decoder gets updated, then it is copied
to be the state of the temporary decoder. Subse-
quently, the log probabilities given lt are decoded
by a temporary decoder to produce the partial hy-
pothesis yt, which is the text hypothesis given in
the audio so far. The partials get replaced with
new ones at each time step. See Algorithm 1 and
Figure 1c.

Algorithm 1: Double Decoder
input :audio stream x, same |ht|, |xt|,

|lt| for every t
output :partial hypotheses y
Initialize model, ext_decoder, t← 0;
while x not ended:

Get latest chunks ht, xt, lt from x;
pt ← model.forward(ht + xt + lt);
t′0 ← start time of xt;
t′1 ← end time of xt;
ext_decoder.forward(pt from t′0 to
t′1);

temp_decoder←
copy(ext_decoder);

yt ← temp_decoder.forward(pt from
t′1 onward);

t← t+ |xt|;

Using this algorithm, we ensure that the final
1Example code using the NeMo toolkit at

https://github.com/NVIDIA/NeMo/tree/main/
examples/asr/asr_chunked_inference

https://github.com/NVIDIA/NeMo/tree/main/examples/asr/asr_chunked_inference
https://github.com/NVIDIA/NeMo/tree/main/examples/asr/asr_chunked_inference
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(a) Default decoding: decoding each
current chunk
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(b) Buffered decoding: decoding with look-
ahead

audio stream: x

ext. decoder

model at t xt

xt+1

audio stream: x

ext. decoder

model at t

model at t+1

yt+1 = "she had your"

xt

xt+1

model at t xt

ext.
decoder

temp. decoder

ht

ht

lt

lt

copy

audio stream: x

yt+1 = "she had your"

yt = "she had your"

model at t+1 lt+1ht+1

(c) Double decoder: using a temporary
decoder for outputting the look-ahead

Figure 1: Three decoding methods. The chunks xt and the context ht and lt represents what the mdoel (encoder)
has access to, and we skip the steps where the model encodes the audio and output log probabilities. The copy
action copies the internal state of the external (ext.) decoder to the temporary (temp.) decoder, which includes the
information about the history. Notice that yt from the double decoder outputs the same text for yt+1 from the other
two methods. This is to demonstrate that the double decoder can output the same text earlier than the other methods.
Light grey colour means the result is cached and used for the final output, while dark grey means the content is
discarded after one time step.

hypothesis is made up of the outputs given xt where
the accuracy is better. The hypothesis given the
look-ahead lt is only displayed but never saved
into the main decoder’s state. At the same time,
we avoid waiting for getting lt purely as context,
compared to buffered decoding.

4 Related Work

Many previous studies on streaming ASR have
focused on improving the internal efficiency of
the models. Modifications to the Transformer
are proposed to make it more suited for real-
time streaming ASR - this includes relative posi-
tional embeddings (Shaw et al., 2018), caching
and reusing intermediate network states (Dai
et al., 2019), limiting the look-ahead acoustic con-
text (Noroozi et al., 2024) and using time-restricted
self-attention (Moritz et al., 2020). Most of the pro-
posed methods require changes to the original ASR
architecture and re-training of the model, whereas
our proposed method works on pre-trained models.

Other studies take a more holistic view of opti-
mizing for streaming ASR, considering the trade-
off between context size, latency, accuracy, and
streaming stability, i.e. whether the displayed
words gets revised as the transcript becomes more
complete (Bruguier et al., 2016; Moritz et al., 2020;
Shangguan et al., 2020a,b, 2021). In Shangguan
et al. (2020a), the authors proposed increasing par-
tial emission latency, unifying text normalization
for different domains and using domain ID to im-
prove the stability of partials. Whereas in Bruguier

et al. (2016), the authors proposed an algorithm to
select more stable hypotheses during beam search
decoding. We take inspiration from these studies
and analyze the stability of our proposed method.

In terms of architectures used for streaming, re-
cent studies of streaming ASR have focused on
improving RNN-T models as they showed superior
WER performance. To further improve the final
WER, earlier efforts use a second pass LAS model
to do beam search or to rescore the RNN-T hypothe-
ses (Sainath et al., 2020, 2019). He et al. (2019);
Narayanan et al. (2021); Sainath et al. (2021);
Shangguan et al. (2020b) use cascaded encoders,
with a causal encoder which passes its output to an-
other non-causal encoder. This eliminates the need
for training a separate re-scoring model, unifying
streaming and non-streaming models while improv-
ing the final transcription. Related, Yu et al. (2021)
presented a more detailed exploration of a unified
streaming and non-streaming RNN-T model.

Our proposed method is similar to the cascaded
encoders (Narayanan et al., 2021), besides the fact
that we make use of only a single model with a
single encoder, saving the compute of running an
extra encoder. It can be seen as a special case of
cascaded encoders where the second encoder is just
copying the embeddings from the first one. How-
ever, since we are using only one model, the final
WER is bound by the offline model performance,
whereas the cascaded encoders’ second pass im-
proves WER.

A similar idea of fast-slow two-head decoding is



explored for older hybrid ASR in Li et al. (2020).
However, Li et al. (2020)’s method also involves
changing the model architecture and training a sec-
ond encoder. Our method is purely a decoding
algorithm. It can be argued that their method is
suitable for LSTM models without explicit access
to look-ahead data, and our method is preferable
for Transformer-like E2E models.

Finally, as many of the techniques mentioned
above focus on RNN-T, we show that our decod-
ing algorithm can be applied to not only RNN-Ts
but also CTC models. Models trained with CTC
are typically outperformed by RNN-T or AEDs
in WER, but they have a lower real-time factor
(RTF) (Zhang et al., 2021), making them suitable
candidates for streaming ASR where latency is cru-
cial.

5 Evaluation Metrics

5.1 Accuracy

We use WER to measure the accuracy performance
of the streaming inference. For WER, if we use
the same context (buffer) size, we expect the WER
to be the same for buffered decoding and double
decoder, since the chunks used to generate the final
hypothesis are exactly the same.

5.2 Streaming Stability

To discuss streaming stability, we first define the
relevant terms used: A partial hypothesis is a text
sequence outputted by the ASR system before the
end of an utterance is reached. A final hypothesis
is produced after end-pointing - either the end of
the audio is reached or the end-pointer detects the
boundary of the utterance. As we replace previous
partials on the display with new partials, the words
may get revised which can be seen as the effect
of instability. It should be noted that we do not
measure the WER of partial hypotheses for the
stability since both the reference and the hypothesis
are incomplete and changing.

We employ the unstable partial word ratio
(UPWR) introduced in Shangguan et al. (2020a) to
measure instability. To calculate UPWR, we sum
up the revised or unstable tokens in each partial
hypothesis when compared to the next partial hy-
pothesis, then divide it by the number of tokens
in the final. The closer UPWR is to 0, the more
stable the system. As an example, for the partial
hypotheses produced by the double decoder in Ta-
ble 1, we have three unstable tokens, but, please

and him. The final hypothesis has 10 tokens, there-
fore UPWR = 0.3. It should be noted that we can-
not directly compare the results of partial stability
with the original paper, since they use formatted
transcripts.

As we compare with the buffered decoding
method, we expect stability to degrade, since we
are incorporating more speculative text outputs in
the hypothesis. As the buffered decoding method
always takes the middle chunk which forms the
final hypothesis, we expect the UPWR to be almost
0. On the other hand, double decoder will produce
mostly non-zero scores.

5.3 Latency

To simplify the calculation of latency differences,
we consider three parts of latency that make up
the total latency in a continuous, streaming ASR
system, presuming I/O and other system latency to
be negligible. Firstly, there is the delay for accu-
mulating audio stream Ta, composed of |lt + xt|
which makes up a constant delay. It should be noted
that the history size |ht| corresponds to a one-time
delay at the start of the audio stream. However,
by padding the beginning of the audio with artifi-
cial silence, we can effectively reduce this delay to
zero.

Furthermore, for every audio input x, we con-
sider the model forward latency Tm(x), which is
the inference time for producing frame-wise log
probabilities. Independently, we consider decod-
ing latency Td(x), which is the time taken by the
external decoder to produce one partial hypothesis,
given the probabilities.

In this context, we can calculate the theoretical
latency of buffered decoding as |lt+xt|+Tm(ht+
xt + lt) + Td(xt). Given our algorithm, if we
compare it with the buffered decoding approach,
we can see that by outputting the hypotheses for
the right contexts of each time step, we reduce the
theoretical latency to |xt| + Tm(ht + xt + lt) +
Td(xt + lt), where ∆T = |lt| − Td(lt). We show
∆T in Section 7.

6 Experiment Setup

We have chosen two models to illustrate the effec-
tiveness of the algorithm with or without explicit
historical context. First we apply it to the small
Conformer-CTC model from NVIDIA NGC2 to

2https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_ctc_small_ls

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small_ls
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small_ls


Table 1: Sample comparison of partials generated by buffered decoding vs. double decoder decoding. It is taken
from Test-clean and the context size is 1.2 seconds.

Buffered partial hypotheses Double decoder partial hypotheses
i never

i never knew i never knew of
i never knew but i never knew but
i never knew but one ma i never knew but one man
i never knew but one man who coul i never knew but one man who could ever
i never knew but one man who could ever pleas i never knew but one man who could ever please him
i never knew but one man who could ever pleasing i never knew but one man who could ever pleasing

show its effectiveness comparing to buffered decod-
ing. The model has 13M parameters. For the de-
coding method, we utilize a streaming beam search
decoder built on PyCTCdecode3. For the beam
search, we use a 3-gram language model (LM) with
LM weight of 0.2, insertion penalty of 0.3. The
beam width is set to 100, and max active tokens is
20. When we decode with buffered decoding or the
double decoder, the middle chunk |xt| is 0.6 s. We
evaluate WER, latency and streaming stability for
Conformer-CTC given different context sizes.

We also show that our algorithm can be applied
to a Zipformer-CTC-Transducer model to improve
its WER against default decoding. We trained
a 66M parameter Zipformer-medium(Yao et al.,
2024) streaming cache-aware model. The final
loss for the model was computed as a weighted
sum of a CTC (Yao et al., 2023) and pruned RNN-
T loss (Kuang et al., 2022) using K24 with CTC
weight of 0.2. The decoding method for this model
is greedy decoding. The training recipe can be
found on the Icefall repository5. The model does
not require history input, i.e. |ht| = 0. Instead, it
keeps a cached state of intermediate layers for the
past history.

Both models are trained on the 960 hours of
LibriSpeech data(Panayotov et al., 2015), and are
evaluated on LibriSpeech test-sets. Latency is com-
puted on a virtual machine using intel Cascade
Lake CPUs.

7 Results

7.1 Results on Conformer-CTC

Table 2 shows the WER for both buffered decod-
ing and double decoder, as well as the latency dif-

3https://github.com/kensho-technologies/
pyctcdecode

4https://github.com/k2-fsa/k2
5https://github.com/k2-fsa/icefall/tree/

master/egs/Librispeech/ASR/zipformer

ference between the two decoding methods. As
discussed in Section 5.1, WER is the same for
buffered decoding and double decoder. We see that
on LibriSpeech Test-clean and on Test-other, WER
decreases by approximately the same rate. This
demonstrates the benefit of using longer context,
whose effect is consistent across different testing
conditions.

Regarding latency, as discussed in Section 5.3,
double decoder reduces latency from buffered de-
coding by |lt| − Td(lt). We can clearly see from
Table 2 Td(lt) is an order of magnitude smaller
than the look-ahead size |lt|, and does not increase
linearly with |lt|. Therefore, we can conclude that
with the studied context size the double decoder al-
ways provides a latency reduction of approximately
the same duration as the look-ahead size. As the
WER decreases when the context size increases, we
can effectively achieve better WER while maintain-
ing latency, or reduce latency while maintaining
WER, by using the double decoder.

Figure 2 and 3 shows the UPWR results on Test-
clean and Test-other. We confirm that using the
double decoder results in higher UPWR scores.
However, there are other interesting trends with
regards to partial stability. Firstly, we observe a
downward trend for the buffered decoding as we in-
crease the context size. This indicates an improve-
ment in the quality of the middle chunk. At the
same time, UPWR for double decoder decreases
in Test-clean, but increases in Test-other, as we in-
crease the context size. This indicates that in noisy
conditions, the lookahead becomes much more un-
stable, reflected both in raw UPWR score and its
variation. As the acoustic condition in real-life
ASR applications are not always clean, this trend
suggests that we cannot blindly increase the context
size, but we need to combine this metric together
with latency and WER for hyper-parameter tuning.

Another interesting difference between the two

https://github.com/kensho-technologies/pyctcdecode
https://github.com/kensho-technologies/pyctcdecode
https://github.com/k2-fsa/k2
https://github.com/k2-fsa/icefall/tree/master/egs/Librispeech/ASR/zipformer
https://github.com/k2-fsa/icefall/tree/master/egs/Librispeech/ASR/zipformer


Table 2: WER (both buffered and double decoder have the same value) for the Conformer-CTC given different
context sizes. |xt| = 0.6 s. |ht| and |lt| are shown in the table. Latency reduction by employing double decoder
compared to buffered decoding is calculated by |lt| − Td(lt) as shown in Section 5.3.

Context size (s) |ht|, |lt| (s) Test-clean (%) Test-other (%) Td(lt) (ms) / 95% CI
1.2 0.28, 0.32 11.84 23.76 4.4 / [3.1,5.2]
1.8 0.56, 0.64 5.61 13.65 3.4 / [1.9,4.0]
2.4 0.88, 0.92 4.53 11.22 3.0 / [1.8,3.6]
3.0 1.2, 1.2 4.04 10.06 3.0 / [1.8,3.7]
4.0 1.68, 1.72 3.6 9.01 3.2 / [1.8,4.3]

decoding algorithms becomes clear as we look into
the raw partial hypotheses in text. In Table 1, we
can clearly see that buffered decoding produces
unfinished non-word tokens such as ma, coul. On
the other hand, the unstable tokens produced by the
double decoder are actual words, which account
for the high UPWR. It is arguable which provides a
better user experience. For instance, we can argue
that the partial hypothesis provided by the double
decoder with please him is more grammatically
correct than pleasing. Future studies with different
metrics more targeted to partial hypotheses’ accu-
racy and user studies are still needed.

1.5 2.0 2.5 3.0 3.5 4.0
Context size (s)

0.00
0.02
0.04
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0.08
0.10
0.12
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0.16
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Figure 2: UPWR for LibriSpeech Test-clean, lower is
better. The coloured band around the line is the 95%
confidence interval.

7.2 Results on Zipformer-CTC-Transducer
As we have shown in the Conformer results that
the trend in WER stays the same for Test-clean
and Test-other, we feel that Test-clean is sufficient
to capture the relevant metrics for the Zipformer
demonstration. Table 3 shows the WER results of
applying the double decoder on the cache-aware
Zipformer model. Since this model incorporates
a cache for history context, we typically decode
with the default method. Comparing with row 1 in
Table 2, we can see that this model achieves much
better WER even with the default method.

1.5 2.0 2.5 3.0 3.5 4.0
Context size (s)

0.00

0.05

0.10

0.15

0.20

0.25

UP
W

R

Buffered
Double

Figure 3: UPWR for LibriSpeech Test-other.

Nonetheless, the results highlights the impor-
tance of adding look-ahead context, using either
buffered or double decoding in different ways. For
example, if we compare the results with the same
|xt|, by adding 0.6 s of look-ahead, we reduce the
WER from 4.45 to 2.98 for cache size of 1.28 s.
Similarly, if we compare results given the same
context size (see results on the same row), we see
WER reduction. Lastly, if we compare row 3 to
row 2 and row 6 in Table 3, we can see that for the
double decoder, decreasing either the look-ahead
or history by 0.6 s degrades WER by approximately
the same amount, 0.2 for CTC and 0.1 for RNN-T
decoding.

Both the buffered and double decoder utilizes a
look-ahead, but the double decoder provides bet-
ter latency than buffered decoding, given the small
Td(lt) results in Table 3, making it a better candi-
date for streaming applications.

Additionally, Table 3 highlights the suitability
of double decoder for CTC models. We can see
that CTC decoding generally provides worse WER,
but the improvement from adding context is greater
than RNN-T. CTC models also show smaller de-
coding overhead Td(lt).

It should be noted, however, as we are keeping
the context sizes constant between default decod-



Table 3: WER (%) on Test-clean of RNN-T greedy decoding for Zipformer-CTC-Transducer for different context
sizes. For default decoding, |xt| is variable while |lt| = 0, for buffered / double decoder, |xt| is fixed at 0.6 s. We
also show Td(lt) just as in Table 2.

Context size (s) Default Buffered/Double Td(lt) (ms)
Cache |xt + lt| CTC RNN-T CTC RNN-T CTC RNN-T
1.28 0.6 8.43 4.45 N/A N/A N/A N/A
1.28 1.2 6.85 3.91 3.35 2.98 0.06 6.75
1.28 1.8 4.99 3.04 3.16 2.87 0.10 10.17
0.64 0.6 8.62 4.57 N/A N/A N/A N/A
0.64 1.2 6.91 3.99 3.45 3.12 0.06 6.75
0.64 1.8 5.06 3.05 3.36 3.00 0.10 10.17

ing and double decoder, we reduce the step size
|xt|. It means the model is running at smaller inter-
vals, therefore more times for the same duration of
audio. The increase in computational cost is non-
negligible and should be considered for real-life
applications.

8 Conclusions

In this study, we introduce a simple addition to the
buffered decoding algorithm, double decoder for
improving streaming E2E models. Firstly, we show
that the use of the double decoder improves the
appeal of Conformer-CTC models for streaming.
With the default or buffered method, it has either
unacceptable latency or WER. With the double
decoder, we reduce latency while maintaining low
WER. Secondly, for Zipformer-CTC-Transducer,
we show the importance of look-ahead context for
further improving the WER. Given the same con-
text size, we are able to achieve better WER and
better latency. Given the latency benefits from
the double decoder, we argue that it is the best
method for incorporating look-ahead context. We
also explore the side effect of this algorithm, for
example, using streaming stability metric UPWR.
We observe the degradation in streaming stability
by using double decoder, and we argue that the
context size cannot be too large in real-life noisy
conditions. Similarly, we note that extra compute is
needed to achieve the result for the Zipformer-CTC-
Transducer. For future work, we will investigate
whether there are other metrics to fully measure
the user perceived readability of partial hypotheses,
further improve stability and latency for the stud-
ied models, and further investigate the effect of the
algorithm when it is applied to different architec-
tures.

Limitations

The main limitation, as we have noted in the main
text, is that streaming stability or computational
cost worsens when WER or latency improves with
our proposed method. Unfortunately the increase
in computational cost for the Zipformer is unavoid-
able, since we are running the encoder at shorter
intervals. However, the stability of the partial hy-
potheses can be further investigated and improved.

Furthermore, we have limited our study to a spe-
cific type of E2E models - the Transformer-like
models such as the Conformer or the Zipformer.
This is due to the fact that Transformer-like models
generally achieves better accuracy but have poorer
streaming suitability. It can be noted that the pro-
posed method would not provide significant im-
provement on models such as the LSTM which
does not make use of lookaheads or future context,
unless it is a bidirectional LSTM. Additionally, we
do not have comparisons with other types of fast-
slow two-head methods, since their slow head typi-
cally involves training a different set of weight and
is bound to achieve overall better WER but with
more computational cost. We argue that our algo-
rithm is more suitable for smaller-scale research
or applications, while it does not achieve the most
competitive WER scores.

Lastly, we note that we have used a small set of
data for the experiments. Future work is needed to
fully evaluate this algorithm on other larger models
trained on a variety of datasets.
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