
Double Decoder: Improving latency for Streaming End-to-end ASR Models

Riqiang Wang∗, Shreekantha Nadig∗, Daniil Kulko, Simon Vandieken,
Chia-Tien Chang, Seyyed Saeed Sarfjoo, Jonas Robertson

Dialpad, Canada
{riqiang.wang, shreekantha.nadig, daniel.kulko, svandieken,

karol.chang, saeed.sarfjoo, jonas}@dialpad.com

Abstract
In this paper, we propose a novel decoding al-
gorithm for streaming End-to-end (E2E) auto-
matic speech recognition (ASR) models, the
double decoder. By comparing it with exist-
ing decoding algorithms, we argue that this
new method achieves a better balance between
word error rate, latency and streaming sta-
bility, notably by reducing latency without
WER degradation but with degradation in sta-
bility. The algorithm also does not require any
change in model weights. We show results on
a Conformer-CTC model trained on the Lib-
riSpeech dataset, which indicates that the pro-
posed double decoder maintains the same WER
as buffered decoding while reducing the latency
by the size of the look-ahead used in decod-
ing. We also show that the proposed method
is generalizable. For example, we apply it to
the Zipformer-CTC-Transducer model, which
traditionally uses the default decoding, and it
achieves better WER and latency at the expense
of increased computational cost.

1 Introduction

Real-time automatic speech recognition (ASR) sys-
tems are a critical part of many of the industrial
speech understanding applications. For example,
delays in the ASR cause delays in downstream natu-
ral language processing (NLP) tasks. Other factors
like accuracy, measured by word error rate (WER),
and streaming stability (Shangguan et al., 2020a)
are also important factors to ensure a good overall
user experience in real-time language processing
systems.

While deep neural network-hidden Markov
model (DNN-HMM) hybrid ASR models have
traditionally been used for efficient streaming
ASR inference, many advancements in end-to-
end (E2E) ASR research have shown that E2E
models have more performance potential. For in-
stance, the connectionist-temporal-classification

*Equal contribution.

(CTC) loss (Graves et al., 2006) models longer
context without pre-defined alignment and allows
for low frame-rate decoding (Pundak and Sainath,
2016). RNN-Transducers (RNN-T) (Graves, 2012)
jointly train an internal language model with an
acoustic model, further improving the modelling
capabilities of a single model. Attention encoder-
decoder (AED) models such as the Listen-Attend-
Spell (LAS) (Chan et al., 2016) models exploit the
attention mechanism to model much longer context.
With the introduction of Transformer (Vaswani
et al., 2017) and its variants (Gulati et al., 2020),
E2E models have been pushing the state-of-the-art
WER on various ASR datasets (Chen et al., 2023).

However, for streaming ASR, the search for a
good trade-off between latency, stability and ac-
curacy remains an open problem. The aforemen-
tioned E2E models achieve good WER by incor-
porating more audio context, and exploiting more
parameters, translating to higher latency and more
compute cost. For example, an AED model for
ASR requires the entire input sequence before start-
ing to generate output tokens; the Transformer
model uses absolute positional embeddings, lim-
iting its applicability to streaming real-time ASR
systems (Dai et al., 2019).

In our study, we propose an algorithm we call
the double decoder. In essence, we run the decoder
twice on the encoder outputs - once on the look-
ahead or the most recent chunk of audio to specu-
latively display low latency results, then once on
the chunk behind it, with a delay. No change in
the weights of the model is needed. The algorithm
builds on the existing buffered decoding method,
which is designed for inference time and addresses
the limitation of Transformers, which typically re-
quire the complete sequence for inference.

This simple algorithm has not been published at
the time of writing and we believe many ASR engi-
neers can benefit from this method. We show that
our proposed method can improve the suitability of

E2E models for streaming ASR by achieving a bet-
ter balance between latency, accuracy, and stability.
In particular, it enables streaming for Conformer-
CTC (Graves et al., 2006; Gulati et al., 2020) and
other CTC models, which would otherwise have
undesirable performance for streaming. This is
achieved by reducing the latency while keeping
the WER of the buffered decoding method. We
also show an example with the Zipformer-CTC-
Transducer model where we reduce the WER and
latency when we use the right most part of the
original chunk size as look-ahead.

2 Traditional Decoding Algorithms for
Streaming

There are a few assumptions and definitions to clar-
ify for the description of decoding algorithms. For
simplicity, we assume there is no sub-sampling so
the model stride at output time is the same as the
input. We also define model to be the neural net-
work outputting log probabilities for each frame,
whereas the external decoder is the external decod-
ing algorithm, not to be confused with the decoder
inside an AED model. Its forward function takes
the log probabilities from the model given the latest
input chunk, and outputs the text hypothesis for the
entire audio so far. It updates its internal state for
caching the history: for greedy decoding, the latest
text output is appended to the text history; for beam
search, the beam gets updated.

2.1 Default Method

The most straightforward default method is to de-
code using the same duration for input length and
step size. This can be sufficient if the model incor-
porates an RNN component, where the left context
is inherently represented in the RNN cell state. In
this method, no computation is wasted as every in-
put frame passes through the model exactly once.
Conceptually, Figure 1a shows this decoding algo-
rithm. At each time step t, the model reads input
chunk xt and outputs the log probabilities, and the
external decoder processes them into text.

2.2 Buffered Decoding

For Transformer or Transformer-like models such
as the Conformer (Gulati et al., 2020), every layer
attends to the exact same context as the input au-
dio. It does not incorporate history context directly,
therefore we need to explicitly include history au-
dio ht besides xt as input. Moreover, we have seen

in the literature (Moritz et al., 2020) as well as em-
pirically that adding the right context (look-ahead
lt) improves WER. This is called buffered decoding
as we need to keep ht, xt and lt together in a buffer,
run the model on everything at each time frame
and only keep the log probabilities for xt. This
method has been the default streaming method for
Transformer-like models1, and it is illustrated in
Figure 1b. In practice, lt is the actual latest chunk.
To only output the results for xt means a constant
additional delay of |lt| after getting xt.

3 Proposed Decoding Algorithm

Our proposed method, the double decoder, builds
on the buffered decoding with one simple modifica-
tion: we use a temporary decoder on top of the main
external decoder. For each time step t, the model
produces output log probabilities pt for ht, xt and
lt, where only the log probabilities given xt are
passed into the main external decoder. The state of
the external decoder gets updated, then it is copied
to be the state of the temporary decoder. Subse-
quently, the log probabilities given lt are decoded
by a temporary decoder to produce the partial hy-
pothesis yt, which is the text hypothesis given in
the audio so far. The partials get replaced with
new ones at each time step. See Algorithm 1 and
Figure 1c.

Algorithm 1: Double Decoder
input :audio stream x, same |ht|, |xt|,

|lt| for every t
output :partial hypotheses y
Initialize model, ext_decoder, t← 0;
while x not ended:

Get latest chunks ht, xt, lt from x;
pt ← model.forward(ht + xt + lt);
t′0 ← start time of xt;
t′1 ← end time of xt;
ext_decoder.forward(pt from t′0 to
t′1);

temp_decoder←
copy(ext_decoder);

yt ← temp_decoder.forward(pt from
t′1 onward);

t← t+ |xt|;

Using this algorithm, we ensure that the final
1Example code using the NeMo toolkit at

https://github.com/NVIDIA/NeMo/tree/main/
examples/asr/asr_chunked_inference

https://github.com/NVIDIA/NeMo/tree/main/examples/asr/asr_chunked_inference
https://github.com/NVIDIA/NeMo/tree/main/examples/asr/asr_chunked_inference

audio stream: x

ext. decoder

model at t xt

xt+1

audio stream: x

ext. decoder

model at t

model at t+1

yt+1 = "she had your"

xt

xt+1

model at t xt

ext.
decoder

temp. decoder

ht

ht

lt

lt

copy

audio stream: x

yt+1 = "she had your"

yt = "she had your"

model at t+1 lt+1ht+1

(a) Default decoding: decoding each
current chunk

audio stream: x

ext. decoder

model at t xt

xt+1

audio stream: x

ext. decoder

model at t

model at t+1

yt+1 = "she had your"

xt

xt+1

model at t xt

ext.
decoder

temp. decoder

ht

ht

lt

lt

copy

audio stream: x

yt+1 = "she had your"

yt = "she had your"

model at t+1 lt+1ht+1

(b) Buffered decoding: decoding with look-
ahead

audio stream: x

ext. decoder

model at t xt

xt+1

audio stream: x

ext. decoder

model at t

model at t+1

yt+1 = "she had your"

xt

xt+1

model at t xt

ext.
decoder

temp. decoder

ht

ht

lt

lt

copy

audio stream: x

yt+1 = "she had your"

yt = "she had your"

model at t+1 lt+1ht+1

(c) Double decoder: using a temporary
decoder for outputting the look-ahead

Figure 1: Three decoding methods. The chunks xt and the context ht and lt represents what the mdoel (encoder)
has access to, and we skip the steps where the model encodes the audio and output log probabilities. The copy
action copies the internal state of the external (ext.) decoder to the temporary (temp.) decoder, which includes the
information about the history. Notice that yt from the double decoder outputs the same text for yt+1 from the other
two methods. This is to demonstrate that the double decoder can output the same text earlier than the other methods.
Light grey colour means the result is cached and used for the final output, while dark grey means the content is
discarded after one time step.

hypothesis is made up of the outputs given xt where
the accuracy is better. The hypothesis given the
look-ahead lt is only displayed but never saved
into the main decoder’s state. At the same time,
we avoid waiting for getting lt purely as context,
compared to buffered decoding.

4 Related Work

Many previous studies on streaming ASR have
focused on improving the internal efficiency of
the models. Modifications to the Transformer
are proposed to make it more suited for real-
time streaming ASR - this includes relative posi-
tional embeddings (Shaw et al., 2018), caching
and reusing intermediate network states (Dai
et al., 2019), limiting the look-ahead acoustic con-
text (Noroozi et al., 2024) and using time-restricted
self-attention (Moritz et al., 2020). Most of the pro-
posed methods require changes to the original ASR
architecture and re-training of the model, whereas
our proposed method works on pre-trained models.

Other studies take a more holistic view of opti-
mizing for streaming ASR, considering the trade-
off between context size, latency, accuracy, and
streaming stability, i.e. whether the displayed
words gets revised as the transcript becomes more
complete (Bruguier et al., 2016; Moritz et al., 2020;
Shangguan et al., 2020a,b, 2021). In Shangguan
et al. (2020a), the authors proposed increasing par-
tial emission latency, unifying text normalization
for different domains and using domain ID to im-
prove the stability of partials. Whereas in Bruguier

et al. (2016), the authors proposed an algorithm to
select more stable hypotheses during beam search
decoding. We take inspiration from these studies
and analyze the stability of our proposed method.

In terms of architectures used for streaming, re-
cent studies of streaming ASR have focused on
improving RNN-T models as they showed superior
WER performance. To further improve the final
WER, earlier efforts use a second pass LAS model
to do beam search or to rescore the RNN-T hypothe-
ses (Sainath et al., 2020, 2019). He et al. (2019);
Narayanan et al. (2021); Sainath et al. (2021);
Shangguan et al. (2020b) use cascaded encoders,
with a causal encoder which passes its output to an-
other non-causal encoder. This eliminates the need
for training a separate re-scoring model, unifying
streaming and non-streaming models while improv-
ing the final transcription. Related, Yu et al. (2021)
presented a more detailed exploration of a unified
streaming and non-streaming RNN-T model.

Our proposed method is similar to the cascaded
encoders (Narayanan et al., 2021), besides the fact
that we make use of only a single model with a
single encoder, saving the compute of running an
extra encoder. It can be seen as a special case of
cascaded encoders where the second encoder is just
copying the embeddings from the first one. How-
ever, since we are using only one model, the final
WER is bound by the offline model performance,
whereas the cascaded encoders’ second pass im-
proves WER.

A similar idea of fast-slow two-head decoding is

explored for older hybrid ASR in Li et al. (2020).
However, Li et al. (2020)’s method also involves
changing the model architecture and training a sec-
ond encoder. Our method is purely a decoding
algorithm. It can be argued that their method is
suitable for LSTM models without explicit access
to look-ahead data, and our method is preferable
for Transformer-like E2E models.

Finally, as many of the techniques mentioned
above focus on RNN-T, we show that our decod-
ing algorithm can be applied to not only RNN-Ts
but also CTC models. Models trained with CTC
are typically outperformed by RNN-T or AEDs
in WER, but they have a lower real-time factor
(RTF) (Zhang et al., 2021), making them suitable
candidates for streaming ASR where latency is cru-
cial.

5 Evaluation Metrics

5.1 Accuracy

We use WER to measure the accuracy performance
of the streaming inference. For WER, if we use
the same context (buffer) size, we expect the WER
to be the same for buffered decoding and double
decoder, since the chunks used to generate the final
hypothesis are exactly the same.

5.2 Streaming Stability

To discuss streaming stability, we first define the
relevant terms used: A partial hypothesis is a text
sequence outputted by the ASR system before the
end of an utterance is reached. A final hypothesis
is produced after end-pointing - either the end of
the audio is reached or the end-pointer detects the
boundary of the utterance. As we replace previous
partials on the display with new partials, the words
may get revised which can be seen as the effect
of instability. It should be noted that we do not
measure the WER of partial hypotheses for the
stability since both the reference and the hypothesis
are incomplete and changing.

We employ the unstable partial word ratio
(UPWR) introduced in Shangguan et al. (2020a) to
measure instability. To calculate UPWR, we sum
up the revised or unstable tokens in each partial
hypothesis when compared to the next partial hy-
pothesis, then divide it by the number of tokens
in the final. The closer UPWR is to 0, the more
stable the system. As an example, for the partial
hypotheses produced by the double decoder in Ta-
ble 1, we have three unstable tokens, but, please

and him. The final hypothesis has 10 tokens, there-
fore UPWR = 0.3. It should be noted that we can-
not directly compare the results of partial stability
with the original paper, since they use formatted
transcripts.

As we compare with the buffered decoding
method, we expect stability to degrade, since we
are incorporating more speculative text outputs in
the hypothesis. As the buffered decoding method
always takes the middle chunk which forms the
final hypothesis, we expect the UPWR to be almost
0. On the other hand, double decoder will produce
mostly non-zero scores.

5.3 Latency

To simplify the calculation of latency differences,
we consider three parts of latency that make up
the total latency in a continuous, streaming ASR
system, presuming I/O and other system latency to
be negligible. Firstly, there is the delay for accu-
mulating audio stream Ta, composed of |lt + xt|
which makes up a constant delay. It should be noted
that the history size |ht| corresponds to a one-time
delay at the start of the audio stream. However,
by padding the beginning of the audio with artifi-
cial silence, we can effectively reduce this delay to
zero.

Furthermore, for every audio input x, we con-
sider the model forward latency Tm(x), which is
the inference time for producing frame-wise log
probabilities. Independently, we consider decod-
ing latency Td(x), which is the time taken by the
external decoder to produce one partial hypothesis,
given the probabilities.

In this context, we can calculate the theoretical
latency of buffered decoding as |lt+xt|+Tm(ht+
xt + lt) + Td(xt). Given our algorithm, if we
compare it with the buffered decoding approach,
we can see that by outputting the hypotheses for
the right contexts of each time step, we reduce the
theoretical latency to |xt| + Tm(ht + xt + lt) +
Td(xt + lt), where ∆T = |lt| − Td(lt). We show
∆T in Section 7.

6 Experiment Setup

We have chosen two models to illustrate the effec-
tiveness of the algorithm with or without explicit
historical context. First we apply it to the small
Conformer-CTC model from NVIDIA NGC2 to

2https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_ctc_small_ls

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small_ls
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_small_ls

Table 1: Sample comparison of partials generated by buffered decoding vs. double decoder decoding. It is taken
from Test-clean and the context size is 1.2 seconds.

Buffered partial hypotheses Double decoder partial hypotheses
i never

i never knew i never knew of
i never knew but i never knew but
i never knew but one ma i never knew but one man
i never knew but one man who coul i never knew but one man who could ever
i never knew but one man who could ever pleas i never knew but one man who could ever please him
i never knew but one man who could ever pleasing i never knew but one man who could ever pleasing

show its effectiveness comparing to buffered decod-
ing. The model has 13M parameters. For the de-
coding method, we utilize a streaming beam search
decoder built on PyCTCdecode3. For the beam
search, we use a 3-gram language model (LM) with
LM weight of 0.2, insertion penalty of 0.3. The
beam width is set to 100, and max active tokens is
20. When we decode with buffered decoding or the
double decoder, the middle chunk |xt| is 0.6 s. We
evaluate WER, latency and streaming stability for
Conformer-CTC given different context sizes.

We also show that our algorithm can be applied
to a Zipformer-CTC-Transducer model to improve
its WER against default decoding. We trained
a 66M parameter Zipformer-medium(Yao et al.,
2024) streaming cache-aware model. The final
loss for the model was computed as a weighted
sum of a CTC (Yao et al., 2023) and pruned RNN-
T loss (Kuang et al., 2022) using K24 with CTC
weight of 0.2. The decoding method for this model
is greedy decoding. The training recipe can be
found on the Icefall repository5. The model does
not require history input, i.e. |ht| = 0. Instead, it
keeps a cached state of intermediate layers for the
past history.

Both models are trained on the 960 hours of
LibriSpeech data(Panayotov et al., 2015), and are
evaluated on LibriSpeech test-sets. Latency is com-
puted on a virtual machine using intel Cascade
Lake CPUs.

7 Results

7.1 Results on Conformer-CTC

Table 2 shows the WER for both buffered decod-
ing and double decoder, as well as the latency dif-

3https://github.com/kensho-technologies/
pyctcdecode

4https://github.com/k2-fsa/k2
5https://github.com/k2-fsa/icefall/tree/

master/egs/Librispeech/ASR/zipformer

ference between the two decoding methods. As
discussed in Section 5.1, WER is the same for
buffered decoding and double decoder. We see that
on LibriSpeech Test-clean and on Test-other, WER
decreases by approximately the same rate. This
demonstrates the benefit of using longer context,
whose effect is consistent across different testing
conditions.

Regarding latency, as discussed in Section 5.3,
double decoder reduces latency from buffered de-
coding by |lt| − Td(lt). We can clearly see from
Table 2 Td(lt) is an order of magnitude smaller
than the look-ahead size |lt|, and does not increase
linearly with |lt|. Therefore, we can conclude that
with the studied context size the double decoder al-
ways provides a latency reduction of approximately
the same duration as the look-ahead size. As the
WER decreases when the context size increases, we
can effectively achieve better WER while maintain-
ing latency, or reduce latency while maintaining
WER, by using the double decoder.

Figure 2 and 3 shows the UPWR results on Test-
clean and Test-other. We confirm that using the
double decoder results in higher UPWR scores.
However, there are other interesting trends with
regards to partial stability. Firstly, we observe a
downward trend for the buffered decoding as we in-
crease the context size. This indicates an improve-
ment in the quality of the middle chunk. At the
same time, UPWR for double decoder decreases
in Test-clean, but increases in Test-other, as we in-
crease the context size. This indicates that in noisy
conditions, the lookahead becomes much more un-
stable, reflected both in raw UPWR score and its
variation. As the acoustic condition in real-life
ASR applications are not always clean, this trend
suggests that we cannot blindly increase the context
size, but we need to combine this metric together
with latency and WER for hyper-parameter tuning.

Another interesting difference between the two

https://github.com/kensho-technologies/pyctcdecode
https://github.com/kensho-technologies/pyctcdecode
https://github.com/k2-fsa/k2
https://github.com/k2-fsa/icefall/tree/master/egs/Librispeech/ASR/zipformer
https://github.com/k2-fsa/icefall/tree/master/egs/Librispeech/ASR/zipformer

Table 2: WER (both buffered and double decoder have the same value) for the Conformer-CTC given different
context sizes. |xt| = 0.6 s. |ht| and |lt| are shown in the table. Latency reduction by employing double decoder
compared to buffered decoding is calculated by |lt| − Td(lt) as shown in Section 5.3.

Context size (s) |ht|, |lt| (s) Test-clean (%) Test-other (%) Td(lt) (ms) / 95% CI
1.2 0.28, 0.32 11.84 23.76 4.4 / [3.1,5.2]
1.8 0.56, 0.64 5.61 13.65 3.4 / [1.9,4.0]
2.4 0.88, 0.92 4.53 11.22 3.0 / [1.8,3.6]
3.0 1.2, 1.2 4.04 10.06 3.0 / [1.8,3.7]
4.0 1.68, 1.72 3.6 9.01 3.2 / [1.8,4.3]

decoding algorithms becomes clear as we look into
the raw partial hypotheses in text. In Table 1, we
can clearly see that buffered decoding produces
unfinished non-word tokens such as ma, coul. On
the other hand, the unstable tokens produced by the
double decoder are actual words, which account
for the high UPWR. It is arguable which provides a
better user experience. For instance, we can argue
that the partial hypothesis provided by the double
decoder with please him is more grammatically
correct than pleasing. Future studies with different
metrics more targeted to partial hypotheses’ accu-
racy and user studies are still needed.

1.5 2.0 2.5 3.0 3.5 4.0
Context size (s)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

UP
W

R

Buffered
Double

Figure 2: UPWR for LibriSpeech Test-clean, lower is
better. The coloured band around the line is the 95%
confidence interval.

7.2 Results on Zipformer-CTC-Transducer
As we have shown in the Conformer results that
the trend in WER stays the same for Test-clean
and Test-other, we feel that Test-clean is sufficient
to capture the relevant metrics for the Zipformer
demonstration. Table 3 shows the WER results of
applying the double decoder on the cache-aware
Zipformer model. Since this model incorporates
a cache for history context, we typically decode
with the default method. Comparing with row 1 in
Table 2, we can see that this model achieves much
better WER even with the default method.

1.5 2.0 2.5 3.0 3.5 4.0
Context size (s)

0.00

0.05

0.10

0.15

0.20

0.25

UP
W

R

Buffered
Double

Figure 3: UPWR for LibriSpeech Test-other.

Nonetheless, the results highlights the impor-
tance of adding look-ahead context, using either
buffered or double decoding in different ways. For
example, if we compare the results with the same
|xt|, by adding 0.6 s of look-ahead, we reduce the
WER from 4.45 to 2.98 for cache size of 1.28 s.
Similarly, if we compare results given the same
context size (see results on the same row), we see
WER reduction. Lastly, if we compare row 3 to
row 2 and row 6 in Table 3, we can see that for the
double decoder, decreasing either the look-ahead
or history by 0.6 s degrades WER by approximately
the same amount, 0.2 for CTC and 0.1 for RNN-T
decoding.

Both the buffered and double decoder utilizes a
look-ahead, but the double decoder provides bet-
ter latency than buffered decoding, given the small
Td(lt) results in Table 3, making it a better candi-
date for streaming applications.

Additionally, Table 3 highlights the suitability
of double decoder for CTC models. We can see
that CTC decoding generally provides worse WER,
but the improvement from adding context is greater
than RNN-T. CTC models also show smaller de-
coding overhead Td(lt).

It should be noted, however, as we are keeping
the context sizes constant between default decod-

Table 3: WER (%) on Test-clean of RNN-T greedy decoding for Zipformer-CTC-Transducer for different context
sizes. For default decoding, |xt| is variable while |lt| = 0, for buffered / double decoder, |xt| is fixed at 0.6 s. We
also show Td(lt) just as in Table 2.

Context size (s) Default Buffered/Double Td(lt) (ms)
Cache |xt + lt| CTC RNN-T CTC RNN-T CTC RNN-T
1.28 0.6 8.43 4.45 N/A N/A N/A N/A
1.28 1.2 6.85 3.91 3.35 2.98 0.06 6.75
1.28 1.8 4.99 3.04 3.16 2.87 0.10 10.17
0.64 0.6 8.62 4.57 N/A N/A N/A N/A
0.64 1.2 6.91 3.99 3.45 3.12 0.06 6.75
0.64 1.8 5.06 3.05 3.36 3.00 0.10 10.17

ing and double decoder, we reduce the step size
|xt|. It means the model is running at smaller inter-
vals, therefore more times for the same duration of
audio. The increase in computational cost is non-
negligible and should be considered for real-life
applications.

8 Conclusions

In this study, we introduce a simple addition to the
buffered decoding algorithm, double decoder for
improving streaming E2E models. Firstly, we show
that the use of the double decoder improves the
appeal of Conformer-CTC models for streaming.
With the default or buffered method, it has either
unacceptable latency or WER. With the double
decoder, we reduce latency while maintaining low
WER. Secondly, for Zipformer-CTC-Transducer,
we show the importance of look-ahead context for
further improving the WER. Given the same con-
text size, we are able to achieve better WER and
better latency. Given the latency benefits from
the double decoder, we argue that it is the best
method for incorporating look-ahead context. We
also explore the side effect of this algorithm, for
example, using streaming stability metric UPWR.
We observe the degradation in streaming stability
by using double decoder, and we argue that the
context size cannot be too large in real-life noisy
conditions. Similarly, we note that extra compute is
needed to achieve the result for the Zipformer-CTC-
Transducer. For future work, we will investigate
whether there are other metrics to fully measure
the user perceived readability of partial hypotheses,
further improve stability and latency for the stud-
ied models, and further investigate the effect of the
algorithm when it is applied to different architec-
tures.

Limitations

The main limitation, as we have noted in the main
text, is that streaming stability or computational
cost worsens when WER or latency improves with
our proposed method. Unfortunately the increase
in computational cost for the Zipformer is unavoid-
able, since we are running the encoder at shorter
intervals. However, the stability of the partial hy-
potheses can be further investigated and improved.

Furthermore, we have limited our study to a spe-
cific type of E2E models - the Transformer-like
models such as the Conformer or the Zipformer.
This is due to the fact that Transformer-like models
generally achieves better accuracy but have poorer
streaming suitability. It can be noted that the pro-
posed method would not provide significant im-
provement on models such as the LSTM which
does not make use of lookaheads or future context,
unless it is a bidirectional LSTM. Additionally, we
do not have comparisons with other types of fast-
slow two-head methods, since their slow head typi-
cally involves training a different set of weight and
is bound to achieve overall better WER but with
more computational cost. We argue that our algo-
rithm is more suitable for smaller-scale research
or applications, while it does not achieve the most
competitive WER scores.

Lastly, we note that we have used a small set of
data for the experiments. Future work is needed to
fully evaluate this algorithm on other larger models
trained on a variety of datasets.

References
Antoine Bruguier, David Qiu, Trevor Strohman, and

Yanzhang He. 2016. Flickering Reduction with Par-
tial Hypothesis Reranking for Streaming ASR. In
2022 IEEE Spoken Language Technology Workshop
(SLT), pages 38–45. IEEE.

https://doi.org/10.1109/SLT54892.2023.10023016
https://doi.org/10.1109/SLT54892.2023.10023016

William Chan, Navdeep Jaitly, Quoc Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 4960–4964.

William Chen, Brian Yan, Jiatong Shi, Yifan Peng,
Soumi Maiti, and Shinji Watanabe. 2023. Improv-
ing Massively Multilingual ASR with Auxiliary CTC
Objectives. In ICASSP 2023 - 2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive Language Models beyond
a Fixed-Length Context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Alex Graves. 2012. Sequence Transduction with Re-
current Neural Networks. In n International Confer-
ence on Machine Learning: Representation Learning
Workshop.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist Tempo-
ral Classification: Labelling Unsegmented Sequence
Data with Recurrent Neural Networks. In Proceed-
ings of the 23rd International Conference on Machine
Learning - ICML ’06, pages 369–376. ACM Press.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang.
2020. Conformer: Convolution-augmented Trans-
former for Speech Recognition. In Interspeech 2020,
pages 5036–5040.

Yanzhang He, Tara N. Sainath, Rohit Prabhavalkar,
Ian McGraw, Raziel Alvarez, Ding Zhao, David Ry-
bach, Anjuli Kannan, Yonghui Wu, Ruoming Pang,
Qiao Liang, Deepti Bhatia, Yuan Shangguan, Bo Li,
Golan Pundak, Khe Chai Sim, Tom Bagby, Shuo-yiin
Chang, Kanishka Rao, and Alexander Gruenstein.
2019. Streaming End-to-end Speech Recognition
for Mobile Devices. In ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6381–6385.

Fangjun Kuang, Liyong Guo, Wei Kang, Long Lin,
Mingshuang Luo, Zengwei Yao, and Daniel Povey.
2022. Pruned RNN-T for fast, memory-efficient ASR
training. In Interspeech 2022, 23rd Annual Confer-
ence of the International Speech Communication As-
sociation, Incheon, Korea, 18-22 September 2022,
pages 2068–2072. ISCA.

Jinyu Li, Rui Zhao, Eric Sun, Jeremy H. M. Wong,
Amit Das, Zhong Meng, and Yifan Gong. 2020.
High-Accuracy and Low-Latency Speech Recogni-
tion with Two-Head Contextual Layer Trajectory

LSTM Model. In ICASSP 2020 - 2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7699–7703.

Niko Moritz, Takaaki Hori, and Jonathan Le. 2020.
Streaming Automatic Speech Recognition with the
Transformer Model. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6074–6078.

Arun Narayanan, Tara N. Sainath, Ruoming Pang, Jiahui
Yu, Chung-Cheng Chiu, Rohit Prabhavalkar, Ehsan
Variani, and Trevor Strohman. 2021. Cascaded En-
coders for Unifying Streaming and Non-Streaming
ASR. In ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5629–5633.

Vahid Noroozi, Somshubra Majumdar, Ankur Kumar,
Jagadeesh Balam, and Boris Ginsburg. 2024. Stateful
Conformer with Cache-Based Inference for Stream-
ing Automatic Speech Recognition. In ICASSP 2024
- 2024 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
12041–12045.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: An ASR
corpus based on public domain audio books. In 2015
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5206–5210.

Golan Pundak and Tara N. Sainath. 2016. Lower Frame
Rate Neural Network Acoustic Models. In Inter-
speech, pages 22–26.

Tara N. Sainath, Yanzhang He, Bo Li, Arun Narayanan,
Ruoming Pang, Antoine Bruguier, Shuo-yiin Chang,
Wei Li, Raziel Alvarez, Zhifeng Chen, Chung-Cheng
Chiu, David Garcia, Alex Gruenstein, Ke Hu, Anjuli
Kannan, Qiao Liang, Ian McGraw, Cal Peyser, Rohit
Prabhavalkar, Golan Pundak, David Rybach, Yuan
Shangguan, Yash Sheth, Trevor Strohman, Mirkó
Visontai, Yonghui Wu, Yu Zhang, and Ding Zhao.
2020. A Streaming On-Device End-To-End Model
Surpassing Server-Side Conventional Model Quality
and Latency. In ICASSP 2020 - 2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6059–6063.

Tara N. Sainath, Yanzhang He, Arun Narayanan, Rami
Botros, Ruoming Pang, David Rybach, Cyril Al-
lauzen, Ehsan Variani, James Qin, Quoc-Nam Le-
The, Shuo-Yiin Chang, Bo Li, Anmol Gulati, Jiahui
Yu, Chung-Cheng Chiu, Diamantino Caseiro, Wei
Li, Qiao Liang, and Pat Rondon. 2021. An Effi-
cient Streaming Non-Recurrent On-Device End-to-
End Model with Improvements to Rare-Word Model-
ing. In Proc. Interspeech 2021, pages 1777–1781.

Tara N. Sainath, Ruoming Pang, David Rybach,
Yanzhang He, Rohit Prabhavalkar, Wei Li, Mirkó
Visontai, Qiao Liang, Trevor Strohman, Yonghui Wu,
Ian McGraw, and Chung-Cheng Chiu. 2019. Two-
Pass End-to-End Speech Recognition. In Interspeech
2019, pages 2773–2777.

https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP49357.2023.10095326
https://doi.org/10.1109/ICASSP49357.2023.10095326
https://doi.org/10.1109/ICASSP49357.2023.10095326
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/https://doi.org/10.48550/arXiv.1211.3711
https://doi.org/https://doi.org/10.48550/arXiv.1211.3711
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.1109/ICASSP.2019.8682336
https://doi.org/10.1109/ICASSP.2019.8682336
https://doi.org/10.21437/INTERSPEECH.2022-10340
https://doi.org/10.21437/INTERSPEECH.2022-10340
https://doi.org/10.1109/ICASSP40776.2020.9054387
https://doi.org/10.1109/ICASSP40776.2020.9054387
https://doi.org/10.1109/ICASSP40776.2020.9054387
https://doi.org/10.1109/ICASSP40776.2020.9054476
https://doi.org/10.1109/ICASSP40776.2020.9054476
https://doi.org/10.1109/ICASSP39728.2021.9414607
https://doi.org/10.1109/ICASSP39728.2021.9414607
https://doi.org/10.1109/ICASSP39728.2021.9414607
https://doi.org/10.1109/ICASSP48485.2024.10446861
https://doi.org/10.1109/ICASSP48485.2024.10446861
https://doi.org/10.1109/ICASSP48485.2024.10446861
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.21437/interspeech.2016-275
https://doi.org/10.21437/interspeech.2016-275
https://doi.org/10.1109/ICASSP40776.2020.9054188
https://doi.org/10.1109/ICASSP40776.2020.9054188
https://doi.org/10.1109/ICASSP40776.2020.9054188
https://doi.org/10.21437/Interspeech.2021-206
https://doi.org/10.21437/Interspeech.2021-206
https://doi.org/10.21437/Interspeech.2021-206
https://doi.org/10.21437/Interspeech.2021-206
https://doi.org/10.21437/Interspeech.2019-1341
https://doi.org/10.21437/Interspeech.2019-1341

Yuan Shangguan, Kate Knister, Yanzhang He, Ian Mc-
Graw, and Françoise Beaufays. 2020a. Analyzing
the Quality and Stability of a Streaming End-to-End
On-Device Speech Recognizer. In Interspeech 2020,
pages 591–595.

Yuan Shangguan, Jian Li, Qiao Liang, Raziel Alvarez,
and Ian McGraw. 2020b. Optimizing Speech Recog-
nition For The Edge. In Third Conference on Ma-
chine Learning and Systems, On-Device Intelligence
Workshop.

Yuan Shangguan, Rohit Prabhavalkar, Hang Su, Jay
Mahadeokar, Yangyang Shi, Jiatong Zhou, Chunyang
Wu, Duc Le, Ozlem Kalinli, Christian Fuegen, and
Michael L. Seltzer. 2021. Dissecting User-Perceived
Latency of On-Device E2E Speech Recognition. In
Proc. Interspeech 2021, pages 4553–4557.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-Attention with Relative Position Representa-
tions. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Zengwei Yao, Liyong Guo, Xiaoyu Yang, Wei Kang,
Fangjun Kuang, Yifan Yang, Zengrui Jin, Long Lin,
and Daniel Povey. 2024. Zipformer: A faster and
better encoder for automatic speech recognition. In
The Twelfth International Conference on Learning
Representations.

Zengwei Yao, Wei Kang, Fangjun Kuang, Liyong Guo,
Xiaoyu Yang, Yifan Yang, Long Lin, and Daniel
Povey. 2023. Delay-penalized CTC Implemented
Based on Finite State Transducer. In Proc. INTER-
SPEECH 2023, pages 1329–1333.

Jiahui Yu, Wei Han, Anmol Gulati, Chung-Cheng Chiu,
Bo Li, Tara N Sainath, Yonghui Wu, and Ruoming
Pang. 2021. Dual-mode ASR: Unify and Improve
Streaming ASR with Full-context Modeling. In ICLR
2021. ICLR 2021.

Xiaohui Zhang, Frank Zhang, Chunxi Liu, Kjell Schu-
bert, Julian Chan, Pradyot Prakash, Jun Liu, Ching-
Feng Yeh, Fuchun Peng, Yatharth Saraf, and Geof-
frey Zweig. 2021. Benchmarking LF-MMI, CTC
And RNN-T Criteria For Streaming ASR. In 2021
IEEE Spoken Language Technology Workshop (SLT),
pages 46–51.

https://doi.org/10.21437/Interspeech.2020-1194
https://doi.org/10.21437/Interspeech.2020-1194
https://doi.org/10.21437/Interspeech.2020-1194
http://arxiv.org/abs/1909.12408
http://arxiv.org/abs/1909.12408
https://doi.org/10.21437/Interspeech.2021-1887
https://doi.org/10.21437/Interspeech.2021-1887
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://doi.org/https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/https://doi.org/10.48550/arXiv.2310.11230
https://doi.org/https://doi.org/10.48550/arXiv.2310.11230
https://doi.org/10.21437/Interspeech.2023-2508
https://doi.org/10.21437/Interspeech.2023-2508
https://doi.org/https://doi.org/10.48550/arXiv.2010.06030
https://doi.org/https://doi.org/10.48550/arXiv.2010.06030
https://doi.org/10.1109/SLT48900.2021.9383623
https://doi.org/10.1109/SLT48900.2021.9383623

