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Abstract

The evolution of virtual spaces and live events
demands sophisticated methods for avatar ani-
mation. While existing techniques offer diverse
approaches, limitations persist in achieving
real-time responsiveness and natural communi-
cation. This paper proposes a novel approach
for real-time speech-driven avatar animation,
covering the prediction of 2D and 3D facial
landmarks, and deformation blendshapes from
ARkit. Specific models were trained to gener-
ate both emotional and neutral animated faces,
and using convolutional neural networks able to
deal with low latency requirements. The quality
of the generated animations was addressed both
objectively and subjectively. Both evaluations
suggest that our approach is accurate to gener-
ate high-fidelity and expressive animations. In
addition, we create a client-server application
that achieved real time performance, enabling
frame rates and latencies suitable for live in-
teractions, fostering a seamless and immersive
experience.

1 Introduction

Modern animated movies and games rely on ex-
pressive facial animation to convey emotions and
enhance storytelling. While vision-based technol-
ogy plays a vital role in capturing real actors’ per-
formances and translating them onto animated char-
acters, it often comes at a significant cost (Karras
et al., 2017). Elaborated hardware setups are fre-
quently required for computer vision systems, and
re-shoots necessitate the actors’ physical presence
and consistent appearance. Conversely, speech-
driven algorithms are a compelling alternative by
significantly reducing costs. For instance, animat-
ing vast amounts of in-game dialogue becomes sig-
nificantly cheaper through audio processing instead
of costly video capture setups (Karras et al., 2017).
Additionally, speech-driven systems can leverage
natural animations even from Text-to-Speech mod-

els, opening up new possibilities for character cre-
ation.

When generating facial animations from speech,
it is important not only to ensure lip-sync, but
also to transfer the emotions of the speaker into
the avatar to guarantee a more natural communi-
cation (Chen et al., 2023). Humans are experts
in facial reading, making inconsistencies between
speech and facial expression to be potentially dis-
tracting, unpleasant, and even confusing. This is
evident in the McGurk effect, where mismatched
visual and auditory speech can alter perceived
words (Alsius et al., 2018). Therefore, high-fidelity
speech animation becomes essential for conveying
emotions, intentions, and creating truly immersive
experiences.

Speech facial animation technologies fall into
two broad categories based on complexity and ex-
pressiveness. Some engines leverage large-scale
neural models for highly nuanced animation, as
described by Yang et al. (2023); Zhao et al. (2024).
However, these solutions often demand significant
computational resources, limiting their suitability
for resource-constrained projects. On the contrary,
simpler libraries based on viseme recognition (Ed-
wards et al., 2016) offer faster animation, but are
often criticized for lacking emotional expressive-
ness and intent transfer (Taylor et al., 2017).

Despite advancements in speech-driven anima-
tion, achieving real-time performance and seam-
less integration with animation software remains
a challenge. Current systems are based on facial
landmark predictions (Taylor et al., 2017; Eskimez
et al., 2019; Vidal and Busso, 2023) and 3D fa-
cial meshes (Chen et al., 2023; Thambiraja et al.,
2023; Zhao et al., 2024), which are able to produce
high fidelity and natural animations. However, they
have limitations in computational efficiency and
software compatibility. Additionally, approaches
directly mapping speech to video animations (R.
et al., 2023; Zhang et al., 2024) often prioritize



expressiveness over real-time performance, hinder-
ing practical applications. Existing models rely
on large-scale architectures like Recurrent Neural
Networks (RNNs) (Pham et al., 2017; Eskimez
et al., 2018; Y. et al., 2020; Zhou et al., 2020; Vil-
lanueva et al., 2022), Transformer models (Chen
et al., 2023; Yang et al., 2023; Xing et al., 2023;
Zhang et al., 2023), diffusion models (Thambiraja
et al., 2023), and Generative Adversarial Networks
(GANs) (K. and E., 2021; Zhang et al., 2021; Vou-
gioukas et al., 2020). RNNs effectively model
temporal dependencies in speech, transformers ex-
cel at long-range context analysis, and GANs can
generate highly natural animations. Although cur-
rent techniques offer high quality animations, they
struggle to achieve the real-time responsiveness
and natural communication cues necessary for truly
immersive experiences.

The growing sophistication of virtual spaces and
interactive live events demands new methods for
avatar animation that go beyond high fidelity. This
paper addresses current limitations by proposing
a novel, real-time speech-driven avatar animation
engine to bridge the gap between high-fidelity vi-
suals and smooth interaction during interactive
live events. We considered deep architectures to
generate several animation representation types in
real time, including 2D/3D facial landmarks, and
ARkit deformation blendshapes1. Several studies
have addressed the prediction of facial landmarks
based on speech (Taylor et al., 2017; Zhou et al.,
2020) as part of their pipelines. Studies relying
on ARkit blendhapes have focused on performing
audiovisual speech synthesis, using adaptations of
Tacotron2 (Hussen Abdelaziz et al., 2021). How-
ever, such approaches limits both the emotional ex-
pressiveness that real actors can transmit to the gen-
erated faces. To the best of our knowledge, this is
one of the first studies focused on predicting ARkit
blendshapes directly from speech, and the first one
aiming to generate them in real time, paving the
way for expressive and interactive avatars during
live animation events.

The performance of the proposed models is eval-
uated both objectively and subjectively in order
to check not only the accuracy of the predicted
landmarks and blendshapes, but also perceptual
indicators about expressiveness, coherence, qual-
ity, and lip-sync. In particular, subjective tests are

1https://developer.apple.com/documentation/
arkit/

conducted by a group of 3D animation experts, in-
creasing the novelty of the proposed approach with
respect to related studies that have perform subjec-
tive tests only with naive users (Y. et al., 2020). Fur-
thermore, we performed an extensive evaluation of
the run-time capabilities that are essential for real-
time animation production in live events. Unlike
previous studies focusing only on limited audio
samples and single frame prediction times (Tian
et al., 2019; Lu et al., 2021), our work provides
a more comprehensive assessment in production-
ready environments typically found in live events.

2 Methods

2.1 Facial Animation Representations

We incorporated three animation representation
types to address different application scenarios
when animating avatars: (1) 2D facial landmarks,
(2) 3D facial landmarks, and (3) deformation blend-
shapes. These animation types are intended to be
transmitted in real time to animation engines like
Unity2, Blender3, or Maya4 to animate cartoon-
type avatars that follow the facial expressions of an
actor. Each representation is considered depending
on the type and realism of the avatar to be animated.

Facial landmarks are key reference points on a
face, used to track movement, expression, and indi-
vidual facial structures on a coordinate system. We
considered both 2D and 3D facial landmark rep-
resentations that are automatically extracted from
video frames. The 2D landmark points correspond
to 68 x-y coordinates extracted using the DLib
library (King, 2009), and which have been used
in similar studies to map the general facial struc-
ture (R. et al., 2023; Eskimez et al., 2018) (see Fig-
ure 1a). The 3D landmark representation consists
of 478 x-y-z coordinates extracted using the Medi-
aPipe Facemesh model from Google (Grishchenko
et al., 2020; Yan, 2022), and which is able to ex-
tract more fine-grained information from the facial
structure and map it into more realistic 3D avatars
(see Figure 1b).

Complementary to facial landmarks, blend-
shapes are pre-sculpted variations of an object e.g.,
the face, used to smoothly animate complex de-
formations of its geometry. Blendshapes are stan-
dard animation mechanisms widely used in profes-
sional animation engines. We considered a stan-

2https://unity.com/
3https://www.blender.org/
4https://www.autodesk.es/products/maya
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dard set of 52 ARKit blendshapes5 that allow to
animate the eyebrows, mouth, jaw, and lips in dif-
ferent ways, and adapt the coefficients to a specific
avatar (Figures 1c and 1d). The set of blendshapes
was extracted using the MediaPipe Blendshape V2
model (Grishchenko et al., 2022).

a) 2D Landmarks b) 3D Landmarks

c) Blendshapes avatar 1 d) Blendshapes avatar 2

Figure 1: Facial representations for speech-driven avatar
animation, covering facial landmarks and deformation
blendshapes.

2.2 Deep Architectures

Several models for the three animation represen-
tations were trained using combinations of convo-
lutional and recurrent networks. In particular, we
considered the Long Short-Term Memory (LSTM)
network proposed in (Eskimez et al., 2018) as a
baseline, an adapted version of the 1D-CNN used
in (Eskimez et al., 2019), and a CNN built on top
of SincNet filters (Ravanelli and Bengio, 2018).
These architectures were selected with the purpose
of producing speech-driven animations in real time.
As a consequence, more complex and bigger mod-
els like those based on diffusion (Zhao et al., 2024;
Zhang et al., 2024; K. and H., 2023) or Transform-
ers (Chen et al., 2023; Xing et al., 2023) were not

5https://arkit-face-blendshapes.com/

considered.
The baseline model from (Eskimez et al., 2018)

uses the first and second order temporal difference
of log-Mel spectrograms as input of a four-layer
LSTM network. This network was trained to gener-
ate 2D landmark points with a temporal resolution
of 40 ms.

The second considered model is a 4-layer
1D-CNN (kernel size of 21 and number of
channels={64, 128, 256, 512}, respectively),
adapted from (Eskimez et al., 2019), and which
is trained to predict Point Distributed Models
(PDMs) for 2D/3D landmarks, and the 52 ArKit
blendshapes. PDMs reduce variability in land-
mark predictions due to face shape, scale, and
orientation (Cootes et al., 1995). These PDMs are
shape models that represent the high-dimensional
landmark space with a set of coefficients obtained
after PCA decomposition. The output of the last
convolutional layer is finally processed by a linear
layer to make the final predictions of the landmarks
and blendshape coefficients. The CNN receives
as input 280 ms of the raw speech waveform (7
frames of 40 ms) and predicts the PDM coefficients
of the central frame, using the remaining frames as
past and future context.

Finally, we propose the use of a SincNet
model (Ravanelli and Bengio, 2018) trained also
to predict the PDM coefficients for 2D/3D land-
marks, and the blendshapes. Our model consists of
a SincNet layer fed by 280 ms of the raw waveform
and which generates speech tokens with a 40 ms
resolution. The output of the SincNet layer is then
processed by two convolutional layers and two lin-
ear layers to make the final prediction of the PDMs
or the blendshapes.

For training all considered models, we employed
the Smooth-L1 loss function and implemented a 5-
fold speaker independent cross-validation strategy,
using four folds for training and development, and
the remaining one for independent testing. The
models are trained sing Adam, with a batch size
of 32 audio samples, a learning rate of 10−5 and
dropout of 0.1. The dimension of the PDMs was
set to 20 when predicting the landmarks, keeping
0.99 of the cumulative variance when computing
PCA. The models were trained during 20 epochs.

Finally, to reduce high-frequency noise, particu-
larly visible as tremors in the eyebrows and eyes,
the predicted blendshapes undergo post-processing
with a Savitzky-Golay filter (Schafer, 2011). This

https://arkit-face-blendshapes.com/


filter smoothes the data while preserving underly-
ing trends, resulting in more natural and visually
appealing facial animations.

2.3 Real Time Processing
We developed a client-server application utiliz-
ing FFmpeg6 and Websockets for real-time audio
stream processing. The client transmits continu-
ous audio streams of 1024 bytes (corresponding to
32 ms of audio sampled at 16 kHz and 16-bit resolu-
tion) to the server. The server continuously receives
and buffers the stream, maintaining a processing
buffer. Once the buffer reaches 280 ms (7 frames of
40 ms), the server predicts facial animations for the
central frame and sends the results back to the client
for visualization and integration with animation en-
gines. After processing, the server releases the cor-
responding 40 ms audio segment from the buffer
and waits for new frames to arrive. An overview of
the processing setup is shown in Figure 2.

CNN
model

t[0] t[1] t[2] t[n-1] t[n]

...

Speech
buffer

Figure 2: Overview of the proposed system for real
time avatar animation. An animation is generated every
40 ms from a buffer size of 280 ms. This distribution
guarantees a continuous stream of blendshapes and land-
marks at 25 FPS, with a delay of 280 ms.

This configuration ensures a continuous stream
of 2D/3D landmarks or blendshapes from the server
to the client with an average rate of 25 frames per
second (FPS) and a processing delay of 280 ms (re-
flecting the queue length used for context during
prediction). Crucially, single frame processing time
must be guaranteed to be less than 32 ms (duration
of the received audio stream) to avoid queue build-
up and maintain uninterrupted streaming. Sending
larger audio chunks leads to faster queue filling
and requires consecutive frame processing, poten-
tially causing server response delays and packet

6https://ffmpeg.org/

loss due to queue overflow. Finally, with the aim to
generate more natural animations, artificial blinks
were introduced in the server predictions every 5
seconds (with a certain probability) by modifying
the corresponding blendshape coefficients or the
2D/3D landmarks.

3 Data Description

The animation models were trained using the
CREMA-D (Cao et al., 2014) and the Grid (Cooke
et al., 2006) corpora. These datasets were selected
with the aim to have individual models for emo-
tional and neutral speech-driven facial animations
(see Table 1). Both corpora have been used in sim-
ilar studies, particularly in realistic talking face
generation (Vougioukas et al., 2020; Kefalas et al.,
2020). Labels for 2D/3D landmarks, and blend-
shape coefficients were extracted from videos using
the methods described in Section 2.1.

CREMA-D Grid

Emotions Six emotions Neutral
# Utterances 7,442 34,000
Duration (hours) 6.2 28.3
# Sentences 12 1000
# Speakers 91 34
Camera Panasonic AG-HPX170 Canon XM2
Video Flash at 30 FPS 480x360 MPEG at 25 FPS 360x288

Table 1: Information of source corpora used to train the
speech-driven facial animation models.

CREMA-D (Cao et al., 2014) is an emotional
multimodal acted dataset, used traditionally for
speech emotion recognition. Actors spoke a se-
lection of 12 sentences in six emotions (Anger,
Disgust, Fear, Happiness, Neutral, and Sadness)
and three emotion levels (Low, Medium, High), in
English. Models trained with this dataset will gen-
erate more expressive and emotional animations.

The Grid Corpus (Cooke et al., 2006) was de-
signed for audiovisual speech recognition, in En-
glish language. The dataset includes high-quality
audio and facial video recordings of 1,000 sen-
tences spoken by 34 subjects (18 male, 16 female).
The sentences spoken by each actor are composed
of six words randomly chosen from a limited dictio-
nary. Although this corpus has a restricted vocab-
ulary, it was selected to facilitate the development
of models capable of generating accurate anima-
tions with high lip-synchronization quality (Vou-
gioukas et al., 2020) and to serve as a benchmark
for measuring the potential performance limits of
the trained models.

https://ffmpeg.org/


4 Experiments and Results

4.1 Objective Evaluation

The 2D and 3D landmark prediction models were
evaluated using different metrics from the litera-
ture (Zhou et al., 2020). In particular, we included
the landmark distance (L-D), the landmark velocity
difference (L-VD), the L-D for jaw-lips, and the
difference in the open mouth area (OMA-D). We
introduced additional metrics to specifically evalu-
ate lip-sync quality such as the L-D and L-VD for
mouth-specific landmarks.

Table 2 shows the quality evaluation of the mod-
els to predict 2D landmarks. Both 1D-CNN and
SincNet networks achieved significantly lower er-
rors than the baseline (for L-D related metrics),
and especially for the landmarks defining the jaw-
lips and the mouth, as demonstrated by one-way
ANOVA with pairwise Tukey post hoc tests (p-
value ≪ 0.005). These results were observed for
both neutral and emotional models trained with
respective datasets (Grid and CREMA-D). For ve-
locity related metrics that evaluate the temporal dy-
namics of the facial animations, the baseline mod-
els exhibited lower error rates. This is expected
due to the nature of the LSTM-based model from
the baseline, which is better to model temporal
dependencies. However, note that the recurrent
nature of such model make it not being able for
real time processing, which is a key objective of
this work. In addition, no differences were found
between the 1D-CNN and SincNet predictions (p-
value = 0.652). Finally, the models performed bet-
ter at predicting facial landmarks for neutral faces
than the emotional ones from the CREMA-D cor-
pus (p-value ≪ 0.005). A separate analysis showed
that within the CREMA-D corpus, facial landmarks
of low-arousal emotions (sadness and disgust) had
lower prediction errors than high-arousal ones.

CREMA-D Grid
Metric Baseline 1D-CNN SincNet Baseline 1D-CNN SincNet

L-D 1.28 1.06 1.20 0.81 0.52 0.52
L-VD 5.00 5.41 5.38 4.21 4.37 4.55
L-D jaw-lips 0.73 0.56 0.59 0.77 0.37 0.36
L-VD jaw-lips 4.81 5.55 5.58 4.53 5.11 5.09
OMA-D 0.51 0.31 0.72 0.31 0.16 0.17
L-D mouth 1.54 1.21 1.56 1.00 0.54 0.55
L-VD mouth 5.79 6.11 6.36 4.49 4.63 4.99

Table 2: Error metrics (%) for the prediction of 2D
landmarks.

Table 3 presents the results predicting 3D facial
landmarks. The baseline models was not consid-
ered here considering again that our ultimate goal

is to perform real time predictions, which the base-
line model is not able to achieve. The errors were
higher than those reported for 2D landmarks, which
is expected because the significantly larger number
of points to predict (over 10 times more). How-
ever, the errors remained below 6 % for the entire
set of landmarks, and below 4 % for the ones re-
lated to the mouth movement. In this case, the
1D-CNN model surpassed SincNet, with statisti-
cally significant lower errors (p-value ≪ 0.005)
for both neutral and emotional datasets.

CREMA-D Grid
Metric 1D-CNN SincNet 1D-CNN SincNet

L-D 3.45 3.64 5.85 6.00
L-VD 9.92 13.1 6.32 7.47
L-D jaw-lips 1.54 1.83 5.97 5.92
L-VD jaw-lips 9.78 14.87 5.28 6.41
OMA-D 0.23 0.23 0.20 0.20
L-D mouth 3.51 3.69 3.75 3.79
L-VD mouth 10.74 14.73 8.03 9.88

Table 3: Error metrics (%) for the prediction of 3D
landmarks.

Finally, the quality of the blendshape predictions
is evaluated with the average Mean Absolute Error
(MAE) of the 52 blendshapes, and subsets related
to specific facial areas such as the mouth, cheeks,
jaw, eyes, and eyebrows. The results are shown in
Table 4. Similar to the 2D landmarks case, there
were no significant differences between the predic-
tions obtained with the 1D-CNN and the SincNet
models. Moreover, the neutral blendshapes from
the Grid corpus were more accurately predicted,
similar also to the 2D-landmark scenario. Regard-
ing the blendshape generation of specific parts of
the face, the cheek and jaw areas were the most
accurately modeled, while the eyes and eyebrows
were the most challenging to predict.

CREMA-D Grid
Face area 1D-CNN SincNet 1D-CNN SincNet

All 14.67 14.33 9.65 9.74
Mouth 13.78 13.55 8.14 8.12
Cheeks 1.21 0.61 1.15 0.43
Jaw 6.55 6.44 6.08 5.94
Eyes 19.26 19.10 15.01 15.44
Eyebrows 28.57 27.58 14.69 15.52

Table 4: MAE (%) for the prediction of Blendshape
coefficients.



4.2 Subjective Evaluation

Even though the previous results can evaluate the
deviation of the reconstructed landmarks and blend-
shapes from the ground truth values, they are not
able to measure the subjective aspects that come
naturally to human viewers. We considered the
emotional 1D-CNN model trained to predict ARkit
blendshapes, and generated 40 videos featuring
two emotions (euphoria and fear) on two different
avatars (Figures 1c and 1d). The videos were pro-
duced using 20 independent audio samples (10 per
emotion) recorded by an actress. 23 participants,
divided into two groups (12 naive users and 11 3D
animation experts), rated the videos. Each video
received scores from 1 to 5 (with higher scores
indicating better quality) across four criteria: (1)
expressiveness, (2) coherence between the emo-
tions conveyed by speech and facial expressions,
(3) quality, which refers to the global quality of the
animation in terms of realism, fluency and preci-
sion, and (4) lip-synchronization to measure how
well the lip movements of the speaker matches the
corresponding audio. The results are shown in Fig-
ure 3.

Our results are consistent with those reported in
similar studies when animation and lip-sync qual-
ity are subjectively rated (Y. et al., 2020). There
were no significant differences in the scores be-
tween the two rater groups (Mann Whitney U test,
p-value > 0.05), although we observed that 3D an-
imation experts usually assign higher scores than
naive users. This can be likely explained because
they are more aware of the difficulties of creat-
ing high-quality animations. In terms of emotions,
the scores assigned for fear were slightly higher.
However, they did not differ significantly from
the obtained for euphoria. Finally, we observed
that the perceived quality depends on the selected
avatar. Users rated the avatar 1 (yellow avatar in
Figure 1c) significantly higher, mainly because it
has less human-like features. Therefore, the im-
portance of correctly producing visemes was less
important, contrary to the avatar 2 (gray avatar in
Figure 1d).

4.3 Real Time Performance

The application was tested in an experimental set-
ting consisting of separate client and server ma-
chines connected via WiFi through a VPN. The
hardware specifications for both machines are
shown in Table 5.
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Figure 3: Subjective evaluations performed on the pre-
dicted ARkit blendshapes of 20 independent audio ut-
terances recorded by an actress. The evaluations are
discriminated in terms of the type of rater, the transmit-
ted emotion, and the type of avatar.

Client Server

CPU 13th Gen Intel(R) Intel(R) Xeon(R)
Core i7-1355U CPU E5-2683 v4 @ 2.10GHz
10 cores 16 cores (x2 Threads)

RAM 16 GB 128 GB
GPU - NVIDIA TITAN X (Pascal) 12GB

Table 5: Hardware specifications of the client and server
machines for the real time evaluation



We evaluated the Real Time Factor (RTF) when
predicting 2D landmarks from the CREMA-D cor-
pus using the baseline, the 1D-CNN, and the Sinc-
Net models. The results are shown in Figure 4.
Both the 1D-CNN and the SincNet models are
suitable for real-time predictions as they achieved
RTF ≪ 1. Conversely, the recurrent nature of
the LSTM model from the baseline resulted in an
RTF > 1, making it unreliable for real-time pre-
dictions. Considering also that the 1D-CNN is the
most accurate model for predicting landmarks and
blendshapes, this model was used to test the reli-
ability of a real application for performing avatar
animations during continuous audio streams.

10 1 100 101

RTF

1D_CNN

SincNet

Baseline

M
o
d
e
l

Figure 4: RTF when predicting 2D landmarks from the
CREMA-D corpus using the baseline, the 1D-CNN, and
the SincNet models.

To further evaluate the run-time performance,
a one-hour speech stream was transmitted from
client to server for real-time prediction of 2D/3D
landmarks and blendshapes. Table 6 and Figure 5
summarize the performance in terms of several
resources and quality metrics.

Run-time Metric 2D Land. 3D Land. Blendshapes

RTF model prediction 0.07 0.14 0.07
Processed packages (%) 99.9 99.9 99.9
Maximum latency (ms) 21.2 22.6 19.7
Average FPS 24.9 25 24.9
Single frame processing time (ms) 2.77 5.84 2.66
Client RAM (MB) 182.1 183 181
Server RAM (MB) 480 477 489
Server GPU VRAM (MB) 2117 2139 2090
Queue time (ms) 285 260 283

Table 6: Runtime-performance of a continuous one-hour
audio stream for real-time speech-driven facial avatar an-
imation in terms of 2D/3D landmarks and ARkit blend-
shapes.

The system achieved real-time animation at
25 FPS with minimal latency (maximum of
22.6 ms) and no packet loss for all three scenarios.
Individual frame processing consistently met the
32 ms requirement, ensuring uninterrupted stream-
ing. Differences in processing time and RTF
between 3D landmarks and the other animation
modes arose from transforming predicted PDM
coefficients into 3D landmarks (478 × 3 coordi-

nates) and transmitting them back. While 3D land-
marks required more computational and network
resources than 2D landmarks and blendshapes, they
did not hinder continuous transmission. Through-
out the process, memory consumption remained
low and stable across client, server RAM, and GPU
memory. Notably, only 1/6th of GPU capacity was
utilized, indicating potential cost reduction in fu-
ture deployments.

The results obtained offer a more comprehensive
overview of the requirements and run-time perfor-
mance of a real application. Related studies that
reported run-time performance have focused solely
on generating predictions for a limited number of
pre-existing audio samples, basing their conclu-
sions exclusively on the time the model takes to pre-
dict a single animation frame (Tian et al., 2019; Lu
et al., 2021). These studies did not consider critical
factors during live events, such as connectivity is-
sues, audio queuing, and memory overflow, which
can occur during extended live transmissions.

5 Conclusion

We introduced a novel approach to produce facial
animations in real time, specifically designed for
interactive live events and virtual spaces. Differ-
ent configurations of facial representations were
considered, including 2D and 3D landmarks, and
ARkit blendshapes, the latter one being a standard
in professional animation engines. The modeling
and prediction of the facial representations was per-
formed using different configurations of CNNs due
to the low latency requirements of the addressed
application. The quality of the considered meth-
ods was evaluated both objectively using metrics
from the state-of-the-art, and subjectively, where
naive and expert raters estimated the quality of the
generated animations. Finally, the best performing
models were used to create a client-server applica-
tion able to produce facial animations in real time.

The results indicated that both the 1D-CNN and
the SincNet models were accurate enough to pre-
dict the three types of considered facial animations.
The results also confirmed that it is more chal-
lenging to generate emotional facial animations
than neutral ones. Additionally, the models demon-
strated greater accuracy in predicting landmarks
and blendshapes associated with mouth and jaw
movements, compared to other facial regions like
the eyebrows. Finally, the conducted runtime eval-
uations offer a broader understanding of real-time
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Figure 5: Latency and FPS of a continuous one hour audio streaming for the three different animation representation
types.

application requirements and performance. Our
real-time application showed that it is possible to
generate facial landmarks and blendshapes in real-
time at a constant rate of 25 FPS with a relative low
latency and delay, and with low requirements of
memory and GPU computation. Future work will
be related to improve the quality of the generated
animations in order to make them more natural and
expressive. In this sense, novel architectures that
also consider emotional classification can be pro-
posed and evaluated. Exploring the integration of
emotional intelligence into the system could be a
promising direction for enhancing the expressive-
ness of the avatar animations.

Limitations

Despite the advancements and promising results
from this paper, there are inherent limitations that
should be considered: The first one is related to
data availability. Although efforts were made to
curate diverse datasets, the availability of compre-
hensive corpora covering a wide range of emotional
expressions, linguistic diversity, and demographic
variability might have been limited. This could
potentially introduce issues in the generalization
of the model to broader scenarios. Capturing the

full spectrum of human emotions with high fidelity
remains a challenge. Therefore, the current mod-
els may oversimplify the representation of certain
emotional cues, leading to potential discrepancies
between the intended and perceived expressions.

The second limitation relies on the latency and
performance trade-offs when dealing with real-time
applications. Achieving real-time responsiveness
often requires optimizing for low latency, which
may come at the expense of animation quality
or computational resources. The study may have
made certain compromises in this regard, and fur-
ther optimizations could be explored to enhance
the overall user experience.

Finally, while subjective evaluations provide
valuable insights into the perceived quality of ani-
mations, they are inherently subjective and suscep-
tible to biases. Factors such as individual prefer-
ences, cultural background, or expertise in anima-
tion could influence the raters’ judgments. Employ-
ing diverse and representative rater groups, along
with structured evaluation methodologies, can help
mitigate bias to some extent but may not entirely
eliminate it.
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While the technology developed in this study
has positive applications, there is a potential for
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Finally, regarding transparency and accountabil-
ity, we have provided detailed descriptions of our
methodologies and evaluation metrics to ensure
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research community to engage with and scrutinize
our work to foster improvements and address any
ethical concerns.
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