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Abstract

Despite extensive pre-training on a large au-
dio corpus, the Whisper and Distil-Whisper
models exhibit considerable challenges in han-
dling Thai speech. This paper presents an ap-
proach to enhance pre-trained vanilla Whisper
models for Thai automatic speech recognition
(ASR). The process involves combining audio
datasets, applying audio augmentations during
training, and incorporating an audio segmen-
tation strategy. In addition, we show that dis-
tilling whisper models can be achieved with
less than 1,500 hours of audio while preserv-
ing accuracy of student models. The improved
models achieve a word error rate (WER) of
11.01%, 6.62%, 5.49%, 11.23%, 7.57% for
the small, medium, large, distill-small, and
distill-medium Whisper models on Common-
voice 13 dataset. Our models establish as a
fine-tuned baseline Whisper ASR for Thai. Fur-
thermore, we demonstrate accuracy of our mod-
els with out-of-distribution (OOD) financial
datasets while maintaining robustness under
environmental noise. The code and pretrained
models are available at https://github.com/
biodatlab/thonburian-whisper/.

1 Introduction

Automatic Speech Recognition (ASR) converts
spoken language into text, which enables several
applications such as audio transcription and con-
versational analysis. Contemporary deep learning-
based systems such as Wav2Vec2 (Baevski et al.,

2020), Conformer (Gulati et al., 2020), Mas-
sively Multilingual Speech (MMS) (Communica-
tion et al., 2023), Whisper (Radford et al., 2023),
and Seamless M4T (Communication et al., 2023)
have demonstrated impressive capabilities in the
conversion of spoken languages into text in both
English and multilingual audios. However, their
performance diminishes when applied to languages
with limited audio resources (Bansal et al., 2019).
Moreover, adapting these models to accurately tran-
scribe audio in language-specific and specialized
domains remains challenging.

Previous efforts to improve Thai ASR models
include Wav2Vec2-XLSR (Baevski et al., 2020),
Thai Wav2Vec 2.0 (Phatthiyaphaibun et al., 2022) ,
MMS and Seamless M4T (Communication et al.,
2023), which scaled up the Wav2Vec2 architec-
ture to over 1,000 languages. Even though these
models perform well in English speech, their per-
formance limitations have been observed in bilin-
gual datasets (Abushariah et al., 2023) and out-
of-domain language specific datasets (Jain et al.,
2023). This is common in Thai financial audio
reports and conference calls, in which most finan-
cial terms and company names are dominated by
non-native accented English. Inaccurate recogni-
tion not only increases the word error rate (WER)
but also degrades downstream tasks such as infor-
mation extraction. End-to-end transformer-based
architectures such as OpenAI’s Whisper (Radford
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et al., 2023) have shown promising results in ASR
tasks. Whisper is extensively pretrained on a large
multilingual audio corpus of 680,000h, potentially
making it a robust and reliable ASR system for
Thai speech. This presents an opportunity to com-
bine the strength of transformers and a larger and
more diverse datasets to improve the performance
of ASR models for Thai.

In this study, we enhance the existing Whisper
ASR models by creating a collection of open Whis-
per models specifically designed for Thai. We com-
bine multiple audio corpora from various sources
for fine-tuning. Our main objective is to build a
diverse corpus that captures the range of speech
nuances, dialects, and accents in Thai language. To
enhance the robustness of our models, temporal
and spectral augmentations were introduced dur-
ing fine-tuning. We experimented with models
trained using these enhancements to understand
their impact on improving model performance and
resilience against varying quality and background
noise. Balancing model accuracy with computa-
tional efficiency is an important consideration es-
pecially for environments with limited resources.
Previous works (Gandhi et al., 2023) show that it is
possible to compress the Whisper models through
knowledge distillation. However, a substantial
amount of training data is needed for the distilled
models to achieve comparable performance to their
counterparts. Our work showed that it is possible
to achieve successful model compression for Whis-
per models using a fraction of training data used in
(Gandhi et al., 2023). We show significant reduc-
tions in word error rates (WER) in all model sizes
compared to vanilla Whisper and other ASR mod-
els for Thai. Finally, we demonstrate our model’s
adaptability on OOD financial data. We release the
code and pretrained models which can be used as
baselines for Thai Whisper ASR.

1.1 Related Works

Availability of transformer-based multilingual ASR
models pretrained on massive datasets marks a
milestone in the field of low-moderate resource
ASR. Yet, few works have addressed the challenges
associated with building a robust ASR for Thai.
Naowarat et al. introduced contextualized con-
nectionist temporal classification (CCTC) loss to
address spelling inconsistencies in code switch-
ing Thai ASR. The contextual prediction capabil-
ities inherent in transformer architectures such as

those seen in Whisper models align with the ob-
jectives of the CCTC loss. The study focusing on
ASR technology for Thai dialects (Suwanbandit
et al., 2023) highlighted the importance of under-
standing tonal variations and employing targeted
learning approaches to enhance Thai ASR accuracy.
Due to the diverse language landscape of Thailand,
models capable of handling dialectical differences
are needed. Another advancement is the intro-
duction of fine-tuned Wav2Vec2 models for Thai
(Phatthiyaphaibun et al., 2022). Here, they utilized
a self-supervised pretrained Wav2Vec2 model and
fine-tuned on the Commonvoice dataset. However,
the total training data was only 128 hours. A more
comprehensive evaluation and pretrained models
were needed to understand the model’s capabilities.
Recent development of transformer-based models
such as Whisper (Radford et al., 2023) and Distil-
Whisper (Gandhi et al., 2023) have shown to effec-
tively capture robustness in multiple languages. By
extending the scope of training to languages with
limited resources, such as Thai, we can acquire crit-
ical insights into the process of fine-tuning these
models. This effort will contribute to the accessi-
bility of Thai ASR within the research community.

2 Materials and Methods

2.1 Datasets

2.1.1 Pretraining datasets
We aim to improve Whisper models to robustly
transcribe Thai audios. The first stage is to col-
lect data sets to pretrain the Whisper models. We
combine multiple primary data sources for pre-
training from publicly available speech and internet
audio datasets, including Thai CommonVoice 13
(CMV13) (51.41h) (Ardila et al., 2020), Google
Fleurs (8.49h) (Conneau et al., 2023), Gowajee
(15h) (Chuangsuwanich et al., 2020) and Thai El-
derly Speech (26.56h)1, and Thai Central Dialect
corpus (683.9h) (Naowarat et al., 2021). To make
the model generalize to most domains, we scrape
audio from various sources on the Internet, first list-
ing 250 generic Thai keywords and exploring their
associated queries or topics using Google Trends2

. We then used the associated queries to search
for audios over the Internet and acquired 5,100 un-
cleaned captioned audios. To clean the captioned
audio, the audios are selected if they are (i) pub-

1https://github.com/VISAI-DATAWOW/
Thai-Elderly-Speech-dataset/releases/tag/v1.0.0

2https://trends.google.com/trends/
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Figure 1: Schematic of model pretraining: The Whisper model is fine-tuned on a collection of more than 1.3k
hours of Thai audios with additional augmentations including audio clip concatenation, waveform augmentation
(Gaussian noise, time stretch, and pitch shift), and spectral augmentations.

licly accessible, (ii) in Thai, (iii) available with
Thai subtitles, and (iv) not categorized as music,
resulting in a total of 631.89 hours of additional
audios. Combining these datasets results in a total
of 1,316.76 hours.

2.1.2 OOD Financial audio dataset
We have assembled a specialized dataset tailored
for the financial domain to see adaptability and us-
age of the models in domain-specific use cases. The
rationale behind this lies in the presence of distinc-
tive terminology within the financial sector, which
is not typically encountered in general-purpose
databases. In this effort, we collected around 18
hours of financial reports from earnings call videos,
“Oppday”3. These records cover quarterly reports
from various companies from 2020 to 2021. We
used VAD (Team, 2021) to segment each audio file
into short snippets ranging approximately from 2
to 4 seconds, resulting in 30,185 audio snippets.
We annotate these snippets using the web-based
tool ’Audino’ (Grover et al., 2021). The audio sam-
ples are divided into 28,568 (96.64%, 17.69h) and
1,617 (5.36%, 1.08h) samples of training and test-
ing, respectively. We use the OOD data to evaluate
zero-shot generalization and fine-tune our models
to see their adaptability compared to other Whisper
models.

2.2 Thonburian Whisper Pretraining

The performance of the fine-tuned Whisper for
Thai depends on the size of the pre-training and
the fine-tuning strategy. Here, we select small,
medium, and large (v3) Whisper model sizes for
fine-tuning for Thai. We fine-tuned the models us-
ing a straightforward approach without augmenta-

3https://listed-company-presentation.setgroup.
or.th/en

tion. In addition, we propose a set of augmentation
techniques applied during training to make Whis-
per more robust for Thai audios, which include

• Concatenation of audio clips: The concatena-
tion of short audio to reach the default Whis-
per input length (30s) improves the efficiency
of the sample and training.

• Waveform augmentation: Raw waveform aug-
mentations for collected audios are applied
randomly. Techniques include Gaussian noise
injection, temporal waveform dilation, and
pitch shifting (Jordal et al., 2023).

• SpecAugment: We applied SpecAugment
(Park et al., 2019) to mask the features of
the spectrogram along the temporal and fre-
quency axes. We set a probability of 0.3 for
time masking and apply masking along 10
consecutive time steps. We applied frequency
masking across 64 frequency bands with a
probability of 0.1.

All models were trained for 10,000 iterations with
and without proposed augmentation. We used a
batch size of 16, using the deep-speed ZeRO opti-
mizer (Rajbhandari et al., 2020). Pretrained models
are evaluated and compared with the vanilla Whis-
per models, Thai Wav2Vec 2.0, and Seamless-M4T
large models.

2.3 Model Distillation

We use the distillation technique proposed by
(Gandhi et al., 2023) using layer-based compres-
sion of the Whisper decoder layers. Four maxi-
mally spaced decoder layers are copied from the
teacher model to the student model, while the

https://listed-company-presentation.setgroup.or.th/en
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teacher’s encoder layers are kept intact (Supple-
mentary Table 4). During distillation, the predic-
tion probabilities of the student model are trained
to match those of the teacher model by minimizing
the Kullback-Leibler (KL) divergence across the
entire spectrum of possible tokens. In contrast to
Gandhi et al. which used more than 21k hours of
audio, including pseudo-labels, our approach uti-
lizes a more modest distillation dataset of around
1,317 hours. Distillation is carried out in two steps:
for the first 10,000 iterations, the optimal align-
ment between the encoder and decoder layers of
the student model is achieved through the guidance
of the teacher. Next, the student model is fine-
tuned for another 10,000 iterations using the same
dataset without relying on KL divergence loss. This
approach of dual-step distillation and fine tuning
allows the proposed distilled models to preserve
accuracy despite utilizing significantly fewer hours
of data.

2.4 Zero-shot Performance and Fine-tuning
on OOD Financial Dataset

For vanilla Whisper (Radford et al., 2023) models,
ThaiWav2Vec 2.0 (Phatthiyaphaibun et al., 2022)
and Seamless M4T large (Communication et al.,
2023), we evaluated their zero-shot performances
on CMV13 test, FLEURS test and Thai Central
dev datasets. Furthermore, we test all the models’
zero-shot generalization on the OOD dataset and
perform fine-tuning of both vanilla and Thonburian
Whisper models to see their adaptability in the fi-
nancial domain.

2.5 Model Robustness Under Environmental
Noises

To evaluate the robustness of our pretrained mod-
els, we inject environmental disturbances sourced
from the ESC-50 dataset (Piczak, 2015) into the
FLEURS test set (Conneau et al., 2023). We used
2,000 environmental audio recordings that span 50
semantic categories, each lasting 5 seconds. We
selected 40 longest-duration samples and adjusted
the amplitude, using the noises according to the
signal-to-noise ratio (SNR). Noise samples are du-
plicated or trimmed depending on the length of the
audio to be inserted. This process is repeated across
9 SNR levels, ranging from - 20dB to 20dB with
5dB increments. This results in a corrupted test set
that contains 2,000 corrupted audios for each SNR.

2.6 Model Evaluation

We perform naive text post-processing to normal-
ize the output transcript, such as vowel correc-
tions, tone mark orders, and extra white space re-
moval. Evaluation is carried out by calculating the
the word error rate (WER), the deletion error rate
(DER), the substitution error rate (SER) and the
insertion error rate (IER) with Thai word tokenizer,
deepcut (Kittinaradorn et al., 2019). IER can be
used to indicate the hallucination of the model, i.e.,
predicting repeated words. Other evaluation in-
cludes measurement of the latency in predicting
short- and long-form audios (Supplementary Table
4).

3 Results and Discussion

3.1 Model Performance

We evaluate all models on the short-form au-
dios without timestamp prediction on Common
Voice 13, FLEURS, and Thai Central develop-
ment datasets (Table 1). Thonburian Whisper
have shown improved performance in all model
sizes. They have shown less vulnerability to hal-
lucinations as seen in the lower IERs. The small
model gained the highest WER improvement after
fine-tuning on the combined Thai dataset where
the large Thonburian models obtained the lowest
WERs on all our test sets. An interesting obser-
vation is that the augmented large model demon-
strates a minor decline in performance on Common-
voice 13 and FLUER while slightly outperforming
the non-augmented variant in Thai Central develop-
ment dataset. The augmented models show a higher
robustness after a noise corruption with SNR less
than -5 dB (Figure 2).

Distilled Thonburian Whisper (S, M) with 1.3k
hours of audios have shown comparable perfor-
mance (less than 1 WER difference on CMV13
and Thai Central Dev) to the original model in all
evaluated dataset (Table 1). They have 68.6% and
56.02% less parameters compared to the original
S, M models. Hence, the distilled models achieve
1.26x and 3.89x speed up in short-form inference
and 1.72x and 2.41x for long-form inference (Ta-
ble 4). Therefore, the trade-off between accuracy
and computational complexity may be justifiable
in resource constrained scenarios.



Table 1: Evaluation Results on Different Datasets

Model Params CMV13-Test Google Fleurs Test Thai Central Dev

(M) WER IER SER DER WER IER SER DER WER IER SER DER

Vanilla (S) 242 38.8 8.6 26.7 3.5 43.0 8.6 30.5 3.9 61.5 5.0 41.3 15.1
Vanilla (M) 764 23.9 4.5 16.8 2.6 30.5 6.5 20.6 3.5 50.6 2.3 32.0 16.3
Vanilla (L) 1,543 12.8 2.1 9.1 1.5 14.7 3.2 9.4 2.0 37.9 1.9 22.6 13.3

Thonburian (S, A) 242 13.1 3.5 8.5 1.1 15.4 3.9 9.5 1.9 8.9 2.6 5.4 0.9
Thonburian (S) 242 11.0 2.2 7.7 1.1 14.1 3.3 8.8 2.0 8.7 2.6 5.1 1.0
Thonburian (M, A) 764 7.4 1.5 5.1 0.8 10.5 2.8 6.2 1.6 6.2 1.7 3.7 0.9
Thonburian (M) 764 6.6 1.0 4.8 0.8 10.2 2.8 5.9 1.5 6.8 2.4 3.7 0.8
Thonburian (L, A) 1,543 6.6 1.4 4.5 0.7 9.1 2.3 5.3 1.5 5.4 1.3 3.2 0.9
Thonburian (L) 1,543 5.5 0.8 4.0 0.7 8.7 2.0 5.2 1.5 6.0 1.8 3.3 0.9

Distilled Thonburian (S) 166 11.2 2.2 7.8 1.2 16.6 4.8 9.8 2.0 8.9 2.6 5.2 1.0
Distilled Thonburian (M) 428 7.6 1.2 5.5 0.9 12.5 3.4 7.3 1.8 6.5 1.6 3.9 1.0

Wav2Vec2 (L) 316 10.3 4.0 5.4 0.9 25.4 9.9 14.0 1.5 26.2 3.5 20.0 2.7
Seamless-M4T (L) 2,360 12.8 1.9 9.3 1.6 20.0 5.1 12.1 2.9 34.2 2.1 23.4 8.7

1 S,M,L - Small, Medium, Large; A - Augmented

Table 2: Zero-Shot Performance on the OOD Financial
Domain Test

Model WERIER SER DER

Vanilla (S) 72.7 26.6 31.8 14.4
Vanilla (M) 59.7 21.8 24.0 13.9
Vanilla (L) 25.2 3.3 12.4 9.5

Thonburian (S) 32.1 8.2 13.8 10.1
Thonburian (S, A) 33.2 10.9 14.0 8.3
Thonburian (M) 23.6 5.2 10.0 8.4
Thonburian (M, A) 25.4 8.2 10.0 7.2
Thonburian (L) 18.7 2.5 8.7 7.5
Thonburian (L, A) 19.7 2.6 8.4 8.7

Distilled Thonburian (S) 32.4 8.2 14.3 9.9
Distilled Thonburian (M) 27.5 5.4 11.5 10.6

Wav2Vec2 (L) 46.9 10.1 33.1 3.7
Seamless-M4T (L) 37.4 7.2 24.7 5.5

3.2 OOD in financial domain and fine-tuning
capability

Table 2 provides an analysis of how Thai ASR mod-
els perform when faced with OOD data without
any additional fine tuning. Vanilla whisper mod-
els, especially small (72.7% WER) and medium
(59.7% WER) ones, exhibit a significant struggle
when dealing with audio samples from specific do-
mains such as finance. Frequent code-switching

Table 3: OOD Fine-Tuning Results on Oppday Test Set

Model WERIER SER DER

Thonburian (S) 15.3 3.4 10.0 1.9
Thonburian (S, A) 15.2 3.3 9.9 1.9

Thonburian (M) 11.9 2.6 7.7 1.5
Thonburian (M, A) 11.5 2.5 7.5 1.5

Distilled Thonburian (S) 17.3 4.2 10.4 2.6
Distilled Thonburian (M) 13.3 3.0 8.6 1.7

Vanilla (S) 21.8 5.5 14.0 2.3
Vanilla (M) 14.7 3.3 9.6 1.7

between domain specific terms in English and Thai
coupled with non-native accents makes it particu-
larly challenging. In contrast, Thonburian Whisper
models show remarkable improvements in perfor-
mance compared to their vanilla counterparts. Mod-
els such as Wav2Vec2 (L) and Seamless-M4T (L)
demonstrate higher WERs than Vanilla Whisper
(L). In particular, their substitution error rates are
much higher. This underscores the varying levels of
success in zero-shot generalization across different
model architectures. Table 3 shows the results on
Oppday test set after fine-tuning on the domain spe-
cific data. All Thonburian models perform better
than their vanilla Whisper counterparts. Interest-
ingly, even the distilled models can adapt better to
OOD data. This suggests that the proposed training



Figure 2: Robustness of the models under environmental
noise.

scheme can enhance the adaptability of baseline
Whisper models.

3.3 Model robustness under environmental
noise

Augmented Thonburian Whisper large consistently
outperforms all other models across different SNR
levels of environmental noise corruption (Figure
2). From 0 to 20 dB, the non-augmented Thoun-
burian models (S, M, L) show average WERs of
23.3, 16.18 and 13.15 respectively. The augmented
models perform similarly under milder noise con-
ditions with average WERs of 23.38, 15.83 and
13.56. As the noise corruptions become more se-
vere (0 to -20 dB), the augmented variants outper-
form their counterparts. The standard deviations of
WER for Thonburian Whisper small, medium and
large are 5.10, 3.37, and 2.71 respectively. This
suggests their performance is consistent across the
SNR levels from 20 to 0, which is a good indicator
of the model robustness. The proposed training
scheme seems to have significantly improved the
performance of the Whisper models under noisy
conditions.

4 Conclusion

This study shows that Whisper based automatic
speech recognition models can be successfully
adapted and enhanced for Thai language. The pro-
posed fine-tuning scheme and a combined corpus of
Thai audios have led to substantial improvements
in word error rate (WER) over existing baselines
and previous works. Furthermore, we show that
it is feasible to compress Whisper models through
knowledge distillation with a fraction of data used
in (Gandhi et al., 2023). This highlights the po-

tential for creating lightweight yet strong ASR so-
lutions for low resource languages. The strong
performance of Thonburian Whisper models on the
OOD financial dataset showcases their effective-
ness and adaptability. This is notable considering
the complex terminology, code switching tenden-
cies and accented speech.

Limitations

The suggested audio augmentation methods can
help create robust ASR systems designed for noisy
environments. However, the differing levels of
noise resistance among the models call for a further
exploration of optimization tactics that can consis-
tently improve robustness regardless of model sizes.
The distilled models, especially the small one, are
more adversely affected by noise corruptions. This
indicates that there is still room for improvements
in the distillation process to enhance robustness.
Finally, while this study demonstrated the adapt-
ability to financial domain data, further efforts are
necessary to assess how well the models would
work in a range of fields and situations for a lan-
guage as complex and tonally varied as Thai.
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Table 4: Computational Resources Comparison Across Distilled Models

Model Encoder Decoder GPU Memory Usage Memory Efficiency1 Short-Form
Speed Up2

Long-Form
Speed Up3

Thonburian (S) 12 12 461MB - - -
Thonburian (M) 24 24 1,420MB - - -
Distilled Thonburian (S) 12 4 317MB 1.45x 1.26x 1.72x
Distilled Thonburian (M) 24 4 816MB 1.74x 3.89x 2.41x

1 Memory efficiency indicates the relative GPU memory usage effectiveness in FP16.
2 Short-Form speed up is the time taken to transcribe approximately 6 seconds of audio.
3 Long-Form speed up refers to the time taken to transcribe approximately 60 seconds of audio.
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