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Abstract

The integration of artificial intelligence (AI)
into the medical field has revolutionized doc-
umentation and diagnosis. However, the de-
tection of AI-generated text within medical
records remains a crucial task. This paper
describes a dual-task learning framework us-
ing the ELECTRA model for detecting AI-
generated medical texts and performing named
entity recognition (NER). The dual-task model
includes a binary classification head for iden-
tifying AI-generated texts and an NER head
for extracting medical entities. Experiments
on radiology report and medical texts datasets
show that the proposed approach achieves ro-
bust performance, with F1 scores of 0.985 and
0.996 for classification and 0.51 and 0.68 for
NER. The model achieves a high accuracy of
0.996 for medical text classification and 0.985
for MiMic classification, enhancing automated
medical text analysis and supporting clinical
decision-making.

1 Introduction

The advent of large language models such as Chat-
GPT (Generative Pretrained Transformer) has rev-
olutionized various sectors (Radford et al., 2018),
including the medical field, by enabling the genera-
tion of coherent and human-like text (Hamad et al.,
2024; Hireche and Belkacem, 2024; Hireche et al.,
2023; Jamil et al., 2024). These advances have fa-
cilitated tasks such as automated report generation,
clinical documentation, and medical information
dissemination. However, the spread of artificial
intelligence (AI)-generated text in medicine raises
significant concerns regarding the accuracy, relia-
bility, and authenticity of the information contained
therein. Misleading AI-generated medical content
can have severe consequences, potentially compro-
mising patient care and medical research integrity.
Human medical writers, with their depth of under-
standing and expertise in the medical field, cannot
at present be fully replaced by ChatGPT (Homolak,

2023; Liao et al., 2023; Tan et al., 2024). Addition-
ally, there are concerns regarding potential bias in
AI-generated content and the necessity for trans-
parency in AI usage. This makes it essential to
ensure the integrity and accuracy of medical in-
formation, indicating the important role of human
oversight in creating medical content (Sajid and
ul Hassan, 2022).

Distinguishing between human-written and AI-
generated medical texts is challenging and requires
robust detection methods. There are several differ-
ences between medical texts authored by humans
and those generated by AI agents. Human-written
texts have a larger vocabulary, greater diversity, and
include specific information and numbers, making
them detailed and contextually rich. In contrast,
AI-generated texts use more common terminology,
emphasizing fluency and logical structure, and are
generally more neutral and positive in sentiment.
In terms of parts-of-speech, AI-generated texts con-
tain more nouns, determiners, plural nouns, and
coordinating conjunctions, indicating a structured
style, whereas humans use more cardinal digits and
adverbs, reflecting greater specificity. Similarly,
dependency parsing in AI-generated texts includes
more determiners and conjuncts, with human texts
having more numeric and adverbial modifiers. Fur-
thermore, text perplexity is lower for AI-generated
texts due to the replication of common patterns,
whereas human texts display a greater degree of
variation (Liao et al., 2023). Existing approaches,
such as linguistic feature analysis and machine
learning models, have shown promise, but often
fall short in handling the complexities of medical
language. To address these limitations, we propose
a multitask model that leverages the capabilities of
the ELECTRA (Efficiently Learning an Encoder
that Classifies Token Replacements Accurately)
(Clark et al., 2020) language model. ELECTRA
achieves superior performance in various natural
language processing (NLP) tasks due to its effi-



ciency in text encoding and understanding. Our
proposed model utilizes ELECTRA for two pri-
mary tasks: differentiating between human-written
and AI-generated texts and enhancing text compre-
hension through named entity recognition (NER).
By integrating these tasks, the proposed model not
only identifies AI-generated content, but also im-
proves the understanding of medical texts, thereby
increasing the accuracy of detection.

The integration of NER into the detection frame-
work enables the model to identify and classify es-
sential medical entities, thereby offering deeper in-
sights into the context and content of the text. This
dual-task approach ensures comprehensive analy-
sis, capturing subtle differences between human-
and AI-generated medical texts that may be over-
looked by single-task models. Moreover, the en-
hanced text understanding provided by NER aids
in the detection of inconsistencies and anomalies
indicative of AI-generated content. This approach
enhances parameter efficiency by sharing model pa-
rameters across tasks and leverages transfer learn-
ing, thereby allowing knowledge from one task to
benefit the other. In addition, our model produces
consistent predictions while simplifying deploy-
ment by reducing the need for separate models.

The remainder of this paper is organized as fol-
lows. Section 2 provides a brief review of the
previous literature, before Section 3 describes the
proposed methodology used to develop the model.
Section 4 covers the experiments and results. Fi-
nally, Section 5 concludes the paper.

2 Literature Review

In this section, recent papers on both AI-text detec-
tion and medical NER tasks are summarized.

2.1 AI-text detection task

Guo et al. (2023) evaluated ChatGPT’s perfor-
mance in mimicking human expert responses us-
ing the Human ChatGPT Comparison Corpus
(HC3), which includes around 40,000 questions
and answers from both human experts and Chat-
GPT across various domains. The study utilized
RoBERTa and GLTR models to analyze the text, re-
vealing that RoBERTa significantly outperformed
GLTR. Specifically, RoBERTa achieved F1 scores
of 99.82% in full-text detection and 87.17% in
sentence-level detection, compared with GLTR’s
98.31% and 70.91%, respectively.

Scheibe and Mandl (2023) explored the ef-
fectiveness of models in distinguishing between
human-written and machine-generated texts. Their
study was framed within the AuTexTification 2023
shared task, focusing on automated text identifi-
cation. The methodology uses the pre-trained De-
BERTaV2 model (He et al., 2020), selected for
its capabilities in handling text classification tasks,
and a dataset that comprises a balanced mix of hu-
man and machine-generated texts, resulting in a
robust training environment. In terms of results,
the DeBERTaV2 model achieved a macro-F1 score
of 67.2%, ranking 15th out of 76 submissions for
subtask 1.

Verma et al. (2023) introduced Ghostbuster, de-
veloped by UC Berkeley researchers to detect
AI-generated text. Ghostbuster uses the GPT-3
Davinci configuration to extract probabilistic fea-
tures, and employs a linear classifier to identify
machine-generated text. Token probabilities from
the text-generating AI are not required, making
Ghostbuster effective even with complex models.
Tested on three datasets covering student essays,
creative writing, and news articles, Ghostbuster
achieved a 99% F1 score, outperforming models
including DetectGPT and GPTZero.

Alamleh et al. (2023) explored machine learning-
based approaches to detect ChatGPT-generated
text. The authors evaluated their models on a
Kaggle dataset of 10,000 instances, half from hu-
man sources and half generated by GPT-3.5. They
employed a variety of machine learning and deep
learning algorithms, including random forests, lo-
gistic regression, decision trees, support vector ma-
chines, AdaBoost, bagging classifiers, multilayer
perceptrons, and long short-term memory (LSTM)
networks, with a special focus on the extremely
randomized trees classifier for its robustness in
handling random data points. Their methodol-
ogy involves sentence vectorization using the term
frequency–inverse document frequency (TF-IDF)
followed by classification. The highest achieved
accuracy for distinguishing between human- and
ChatGPT-generated texts was 77%.

Mitrović et al. (2023) investigated the abil-
ity of machine learning to detect AI-generated
short online reviews, comparing a Transformer-
based model with a perplexity-based approach.
Two datasets were created: one with ChatGPT-
generated texts from custom prompts and another
with rephrased human-written reviews. The Shap-



Figure 1: Medical NER tagging example using en-core-med7-lg pretrained model.

ley additive explanations were used to identify in-
fluential features. The Transformer-based model
proved more effective, achieving up to 98% ac-
curacy for straightforward AI-generated texts and
79% for rephrased texts.

Liao et al. (2023) highlighted the risks of AI-
generated content in medical contexts. The authors
constructed datasets of both human-written and
ChatGPT-generated medical texts, before analyz-
ing the linguistic properties and employing ma-
chine learning to identify AI-generated content.
The key differences were found to be the more
detailed and varied human texts versus more gen-
eral and fluent AI texts. A BERT-based model
achieved an F1 score of over 95% in identifying
AI-generated texts.

2.2 Medical NER tasks

For medical NER tasks, several studies have tar-
geted different languages using machine and deep
learning approaches. Review articles have specif-
ically addressed medical and clinical NER ap-
proaches (Ahmad et al., 2023; Pagad and Pradeep,
2022).

Gaschi et al. (2023) evaluated cross-lingual trans-
fer (CLT) and translation-based methods for med-
ical NER in English, French, and German. They
used the N2C2, MedNERF, and GERNERMED
datasets, and applied fine-tuned multilingual mod-
els (XLM-R, mBERT) to N2C2 for CLT, as well as
translating N2C2 for training (translate-train) and
testing (translate-test). CLT with the XLM-R base
yielded F1 scores of 79.1% for French and 72.2%
for German. The translate-train method achieved
F1 scores of 78.6% for French and 74.8% for Ger-
man, while DrBERT PubMed scored 78.8% for
French and 75% for German.

Park et al. (2023) developed a web service using
BioBERT to integrate NER and relation extraction
(RE) in the biomedical domain. The BioBERT
base was fine-tuned using the NCBI Disease Cor-
pus and BC2GM Corpus (for NER) and the Ge-
netic Association Database (for RE). The NER sys-

tem demonstrated high performance, achieving a
precision of 85.16%, recall of 83.65%, and an F1
score of 84.4% for gene/protein recognition, and
89.04%, 89.69%, and 89.36%, respectively, for
disease recognition. The Django-based web ser-
vice allows users to input PubMed IDs, retrieve
abstracts, and view color-coded NER results and
interactive RE graphs.

Xu et al. (2018) presented a combined deep
learning approach for medical NER. Utilizing
datasets from the 2010 i2b2/VA NLP Challenges,
their study implemented an attention-based LSTM
architecture combined with a conditional random
field to target document-level global information.
This method employs pretrained word embeddings
and bidirectional language models trained on the
MIMIC-III corpus, and addresses the limitations of
sentence-level NER by incorporating global con-
text through neural attention mechanisms. The
model achieved an impressive micro-F1 score of
85.71%.

Naseem et al. (2021) constructed BioALBERT,
a domain-specific language model optimized for
biomedical NER. The model was trained on
large-scale biomedical corpora from PubMed and
PMC, addressing the limitations of existing mod-
els through techniques such as factorized embed-
ding parameterization, cross-layer parameter shar-
ing, and sentence-order prediction. BioALBERT
demonstrated significant performance improve-
ments across various datasets: 7.47% for NCBI
Disease, 10.63% for BC5CDR-Disease, 4.61% for
BC5CDR-Chem, 3.89% for BC4CHEMD, 12.25%
for BC2GM, 6.42% for JNLPBA, 6.19% for LIN-
NAEUS, and 23.71% for Species-800.

Košprdić et al. (2023) proposed a biomedical
NER approach using zero- and few-shot learn-
ing with six public corpora: CDR, CHEMDNER,
BioRED, NCBI Disease, JNLPBA, and N2C2.
They fine-tuned the BioBERT and PubMedBERT
models, converting multiclass token classification
into binary token classification to recognize un-
seen entity classes through semantic similarities



from pretraining. The method achieved average
F1 scores of 35.44% for zero-shot NER, 50.10%
for one-shot NER, 69.94% for 10-shot NER, and
79.51% for 100-shot NER.

3 Proposed Model

This section describes the proposed model. Mul-
titask learning is used to train a single model on
multiple tasks simultaneously, improving both gen-
eralization and performance through shared repre-
sentations. This approach enhances parameter effi-
ciency by sharing model parameters across tasks,
which is beneficial when there are limited computa-
tional resources or datasets. Transfer learning lever-
ages knowledge from one task to enhance another.
Multitask models yield consistent and coherent pre-
dictions, simplifying deployment by reducing the
need for separate models. In a dual-task model for
text classification and NER tagging, shared linguis-
tic and entity recognition capabilities enhance the
overall performance. The following subsections
detail the proposed architecture. Figure 2 provides
an overview.

Figure 2: Proposed model architecture.

3.1 Data preprocessing
Data preprocessing makes a significant contribu-
tion to model performance. The following prepro-
cessing steps are implemented:

• Identification of null entries: an initial assess-
ment is performed to identify columns con-

taining missing values.

• Tokenization: text data are tokenized to con-
vert sentences into single tokens. This process
is essential for subsequent text processing and
model input preparation.

• Remove special characters: special characters
that do not add to the semantic meaning of the
text are removed. This step helps in cleaning
the data and minimizing noise.

• NER data annotation: the data are annotated
with medical NER tags using the SpaCy pre-
trained model (“en-core-med7-lg” version)
(AI, 2024). This model is specifically de-
signed for medical NER, identifying enti-
ties such as DRUG (names of medications),
DOSAGE (dosage information and units),
DURATION (duration of medication use or
treatment), FORM (medication forms, i.e.,
tablets or injections), FREQUENCY (how of-
ten a medication is taken), ROUTE (route
of administration, i.e., oral or intravenous),
and STRENGTH (strength of the medication).
The use of these NER tags ensures the pre-
cise identification and categorization of rele-
vant medical entities within the text. Figure 1
illustrates an example of an annotated medi-
cal report tagged using the “en-core-med7-lg”
pretrained model.

• Encoding extraction: encoding vectors and la-
bels are extracted from the tokenized datasets
for both classification and NER tasks. This
involves generating numerical representations
of the text data that are suitable for model
training.

• Label padding and conversion for NER: NER
labels are padded and converted from string
tuples to integer labels using a label map. This
ensures that the labels have a consistent for-
mat and are aligned with the input sequences,
which is necessary for effective model train-
ing.

3.2 Framework architecture

To overcome the challenges of distinguishing be-
tween human-written and AI-generated medical
texts, a multitask framework leveraging the ELEC-
TRA language model is proposed. This frame-
work is designed to perform two primary tasks



simultaneously: differentiating between human-
and AI-generated texts and enhancing text compre-
hension through NER. By integrating these tasks,
the model not only enhances the accuracy with
which AI-generated content is detected, but also
provides a deeper understanding of the context and
content of the medical texts. ELECTRA (Clark
et al., 2020) represents a pretraining approach for
text encoders, diverging significantly from tradi-
tional masked language modeling methods such as
BERT (Devlin et al., 2018). Rather than masking
random tokens and predicting their original forms,
ELECTRA modifies the input by replacing specific
tokens with plausible alternatives produced by a
smaller auxiliary network, known as the generator.

The primary model (discriminator) is then tasked
with identifying whether each token in the modi-
fied input is original or has been replaced. This
replaced token detection strategy leverages the en-
tire input sequence, thereby enhancing both sample
efficiency and computational effectiveness. The
discriminator plays a critical role, as it learns to
differentiate between authentic tokens and those
introduced by the generator using the full context
of the input data. This discriminative task not only
improves the training efficiency, but also enhances
performance on downstream tasks. The architec-
ture of ELECTRA integrates both a generator and
a discriminator, resulting in superior results with
fewer computational resources (Hao et al., 2021;
Ozyurt, 2020). Algorithm 1 in the appendix de-
scribes the proposed dual-task learning process for
both classification and NER tasks.

4 Experiments and Results

4.1 Dataset

The medical dataset utilized in this study comprises
two primary components, as described by Liao et al.
(2023). The medical abstract dataset is sourced
from a publicly available Kaggle dataset (Kamath,
2023) and includes texts related to five medical con-
ditions: digestive system diseases, cardiovascular
diseases, neoplasms, nervous system diseases, and
general pathological conditions. The radiology re-
port dataset, which is based on the work of Johnson
et al. (2016), includes selected radiology reports. A
total of 4400 samples were obtained from both the
radiology report and medical abstract datasets as
human-written medical texts. To create correspond-
ing ChatGPT-generated texts, a text continuation
method was applied, resulting in datasets contain-

ing 8800 samples each for the medical abstracts
and radiology reports. Both datasets were then di-
vided into 70% for training, 10% for validation,
and 20% for testing subsets, yielding 3080 samples
for training, 440 for validation, and 880 for testing
in each dataset.

4.2 Evaluation metrics
To evaluate the performance of the proposed model,
a comprehensive set of evaluation metrics was em-
ployed. The precision, recall, and F1 score are
essential metrics in the context of distinguishing
between AI-generated and human-written medical
texts.

4.3 Experimental settings
The experiments were conducted on the Kag-
gle platform using the GPU-enabled feature.
The applied model based on the “electra-small-
discriminator” checkpoint and tokenization was
handled by the ElectraTokenizer layer. For classifi-
cation tasks involving both the MiMic and medical
datasets, the batch size for classification tasks was
set to 16, whereas for NER tasks, it was set to 8.
NER tasks utilize seven labels, while classification
tasks are binary, involving two labels. The AdamW
optimizer was used (Loshchilov and Hutter, 2017)
with a learning rate of 5× 10−5. The training pro-
cess involved separate head optimization with five
epochs for both the classification and NER heads,
followed by joint optimization epochs.

4.4 Results and discussion
4.4.1 Evaluating dual-task performance
Table 1 compares the proposed model with other
models from the literature. The proposed model
performs robustly across all metrics for both NER
and classification tasks, outperforming ELECTRA,
RoBERTa (Liu et al., 2019), BioBERT (Lee et al.,
2020), and XLNet (Yang et al., 2019), and surpass-
ing the baseline model of Liao et al. (2023). Four
main models were used: Perplexity-CLS, CART,
XGBoost, and BERT. For Perplexity-CLS, BioGPT
calculates the text perplexity, with the optimal
threshold identified using the validation set. The
CART model uses TF-IDF for vectorization, a de-
cision tree with a maximum depth of four, and the
Gini impurity for feature division. The XGBoost
model also uses TF-IDF and sets the maximum
depth for base learners to four. The BERT model
achieves the best performance due to its advanced
text processing capabilities.



Table 1: Performance evaluation for models.

Classification Task
Model Medical text MiMic

Accuracy Precision Recall F1 Accuracy Precision Recall F1
Perplexity-CLS (Liao et al., 2023) - 0.728 0.724 0.723 - 0.831 0.828 0.828

CART (Liao et al., 2023) - 0.777 0.745 0.738 - 0.829 0.825 0.824
XGBoost (Liao et al., 2023) - 0.898 0.893 0.893 - 0.899 0.898 0.898

BERT (Liao et al., 2023) - 0.958 0.958 0.958 - 0.968 0.967 0.967
BioBERT 0.948 0.943 0.942 0.944 0.970 0.968 0.968 0.969
RoBERTa 0.999 0.999 0.999 0.999 0.989 0.990 0.989 0.989

XLNet 0.998 0.998 0.998 0.998 0.988 0.988 0.988 0.988
ELECTRA 0.996 0.996 0.996 0.996 0.985 0.985 0.986 0.985

Named Entity Recognition Task
RoBERTa 0.54 0.41 0.47 0.58 0.75 0.72 0.72 0.73

XLNet 0.72 0.42 0.48 0.51 0.45 0.31 0.36 0.38
ELECTRA 0.68 0.45 0.51 0.56 0.93 0.91 0.91 0.92

In comparison with the other models considered
in this study, ELECTRA demonstrates faster and
more robust performance. The ELECTRA model
utilizes a pretraining method that is more com-
putationally efficient than the traditional masked
language modeling employed by models such as
BERT. Instead of masking and predicting random
tokens, ELECTRA modifies the input by replacing
some tokens with plausible alternatives generated
by a small auxiliary network, and then trains a
discriminator to determine whether each token is
original text or substituted text. For the classifica-
tion task, ELECTRA demonstrates robust perfor-
mance on both the medical text and MiMic datasets.
Specifically, ELECTRA achieves an accuracy of
0.985 for the MiMic dataset, with precision and
recall scores of 0.985 and 0.986, respectively, re-
sulting in an F1 score of 0.985. For the medical
texts, ELECTRA achieves an accuracy of 0.996,
with precision, recall, and F1 scores all at 0.996.
This performance is comparable to, and in some
cases exceeds, that of other transformer-based mod-
els such as BioBERT. The high F1 scores indicate
that ELECTRA is highly effective at differentiat-
ing between AI-generated and human-written texts,
making it a strong candidate for this classification
task.

In the NER task, ELECTRA produces balanced
performance across the datasets. On the MiMic
dataset, ELECTRA achieves an accuracy of 0.93,
precision and recall of 0.91, and an F1 score of 0.92.
The medical reports dataset, however, presents a
more challenging environment for the model due to
the nature of the written text. ELECTRA achieves
an accuracy of 0.68 and an F1 score of 0.56 on this
dataset, with precision at 0.45 and recall at 0.51.

In the field of medical AI, the development of

a stable architecture capable of both classification
and NER tasks is essential. ELECTRA demon-
strates efficient classification, achieving high F1
scores on both the medical text and MiMic datasets,
thereby ensuring precise differentiation between
AI-generated and human-written texts. Although
there is potential for improvement in terms of NER
performance, the ability of ELECTRA to identify
and classify medical entities remains significant.
This stability across multiple tasks enhances the
reliability of automated medical text analysis, facil-
itating more accurate clinical decision-making and
efficient information processing.

To evaluate the effect of using a dual-task model
instead of a single classification model, the ELEC-
TRA classification model was tested alone and
achieved an accuracy of 0.967, precision of 0.968,
recall of 0.967, and an F1 score of 0.967. Using the
dual-task ELECTRA model, which integrates NER
parameters, enhances the results over those given
by the ELECTRA model alone. The integration
of NER allows the model to better understand and
classify complex medical texts by recognizing and
categorizing relevant entities within the text, thus
improving the overall accuracy and reliability of
the classification.

The receiver operating characteristic (ROC)
curves are shown in Fig. 3. These curves eval-
uate the performance of the classification and NER
tasks on the medical and MiMic datasets. The
top-left plot shows the overall ROC curves, with an
area under the curve (AUC) of 1.0 for both datasets,
indicating significant classification performance in
distinguishing AI-generated from human-written
text. The top-right plot displays the ROC curves
for the NER task, with slightly better performance
on the MiMic dataset than the medical dataset.



The bottom-left plot presents multiple ROC curves
for the medical dataset’s NER performance across
different classes (0–6, representing form, dosage,
route, frequency, drug, strength, and duration), with
Class 4 (Drug) and Class 0 (Form) having the high-
est and lowest AUCs, respectively. Similarly, the
bottom-right plot shows the MiMic dataset’s NER
performance, with Class 1 (Dosage) and Class 6
(Duration) being the most challenging and easiest
classes, respectively. The micro-average curves in
the bottom plots indicate good overall NER perfor-
mance.

Figure 3: ROC curves for both experimented tasks.

To add more explainability to the trained model,
the Local Interpretable Model-agnostic Explana-
tions (LIME) tool was utilized (Ribeiro et al., 2016).
LIME increases interpretability by approximating
the behavior of complex models around specific
predictions. The trained weights of the ELECTRA
model were used to plot these figures. In Fig. 4(a),
the model assigns a high probability of 0.99 to the
text being GPT-generated and only 0.01 to it being
human-written, with key terms such as “treatment”,
“outcomes”, “indicating”, and “intervention” high-
lighted in orange, indicating their significant contri-
bution to the model’s classification decision. Figure
4(b) shows the prediction probability of 0.75 for the
text being human-written, while the probability for
GPT generation is 0.25, where key terms such as
“proved”, “unsuccessful”, “confirms”, “attempts”,
and “placement” are highlighted in blue, indicating
their significant contribution to the human-written
classification. In contrast, the terms “of” and “Con-
ray” are highlighted in orange, showing their asso-
ciation with the GPT-generated classification. The
resulting predictions are both correct.

To evaluate the effect of using Transformer mod-

els on the NER task alone, additional explorations
were conducted. ClinicalBERT (Huang et al.,
2019), SciBERT (Beltagy et al., 2019), BlueBERT
(Peng et al., 2019), and BioBERT are variants of
the BERT model (Devlin et al., 2018) tailored for
medical and clinical usage. ClinicalBERT is pre-
trained on clinical notes and medical records, en-
hancing its effectiveness in healthcare-related tasks.
SciBERT is pretrained on scientific literature from
Semantic Scholar, making it suitable for scientific
and academic applications. BlueBERT is trained
on a combination of biomedical and clinical texts,
specifically PubMed abstracts and MIMIC-III clin-
ical notes, allowing it to handle both domains
proficiently. BioBERT is pretrained on extensive
biomedical literature, including PubMed abstracts
and full-text articles from PubMed Central, result-
ing in optimization for understanding biomedical
texts. Other models such as BERT, RoBERT, and
ALBERT (Lan et al., 2019) were also included in
this experiment. Table 2 presents the results ob-
tained using these Transformers for the NER task.

Table 2: NER task evaluation.

Model Dataset Acc Precision Recall F1-score
ClinicalBERT Medical 0.93 0.80 0.76 0.78

MiMic 0.99 0.98 0.99 0.99
SciBERT Medical 0.88 0.70 0.63 0.65

MiMic 0.95 0.95 0.93 0.94
BlueBERT Medical 0.91 0.77 0.69 0.72

MiMic 0.97 0.98 0.96 0.97
BioBERT Medical 0.91 0.78 0.71 0.74

MiMic 0.97 0.97 0.96 0.96
ELECTRA Medical 0.88 0.70 0.57 0.63

MiMic 0.97 0.97 0.96 0.96
BERT Medical 0.90 0.75 0.69 0.72

MiMic 0.99 0.99 0.99 0.99
RoBERT Medical 0.86 0.66 0.48 0.55

MiMic 0.93 0.92 0.87 0.89
ALBERT Medical 0.86 0.54 0.41 0.47

MiMic 0.62 0.26 0.26 0.26

Comparative analysis of the pretrained
Transformer-based models for NER tasks across
the medical and MiMic datasets reveals significant
performance variability. ClinicalBERT and BERT
demonstrate exceptional proficiency, achieving
the highest F1 scores of 0.99 on the MiMic
dataset and 0.78 on the medical dataset. This
outstanding performance can be attributed to
their architecture, which enhances their ability to
accurately identify and classify named entities.
SciBERT and ELECTRA achieve moderately good
performance on the medical dataset (F1 scores of
0.65 and 0.63), but perform strongly on the MiMic



(a)

(b)

Figure 4: Explainable examples using LIME. (a) Medical text example. (b) MiMic text example.

dataset (F1 scores of 0.94 and 0.96). BlueBERT
and BioBERT consistently perform well across
both datasets, achieving F1 scores of 0.72 and
0.74 on the medical dataset and 0.97 and 0.96
on the MiMic dataset. RoBERTa and ALBERT
display weak performance on the medical dataset
(F1 scores of 0.55 and 0.47), with ALBERT
underperforming on the MiMic dataset (F1 score
of 0.26).

In multitask learning, the separate tasks can in-
fluence each other’s outcomes. In a dual-task setup
with text classification and NER, classification is
often improved by joint training. This is due to
shared representations capturing general features
that are useful for both tasks, with NER enhancing
the model’s linguistic and semantic understand-
ing. This positive transfer acts as regularization,
reducing overfitting and boosting classification per-
formance. However, NER might perform better
alone due to task interference and complexity in
balancing losses in a dual-task model. Thus, while
multitask learning benefits classification, it poses
challenges for optimizing both tasks.

5 Conclusion and Future Work

This study developed a dual-task learning frame-
work using the ELECTRA model to detect AI-

generated medical texts and perform NER. The
integrated approach, combining a binary classi-
fication head and an NER head, showed robust
performance across medical text and radiology re-
port datasets. The framework effectively distin-
guishes human-written from AI-generated texts
and extracts critical medical entities, enhancing
detection accuracy and text comprehension. Ex-
periments demonstrated that the ELECTRA model
outperforms others in terms of inference speed and
prediction robustness, achieving high F1 scores for
both classification and NER tasks.

Future work will attempt to extend and refine
the proposed framework by exploring additional
datasets and domains to evaluate the model’s gen-
eralizability and robustness across various types
of medical texts. Moreover, incorporating more
advanced techniques for handling complex medi-
cal terminology and context-specific nuances could
further improve the framework’s performance and
applicability in real-world scenarios.
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A Appendix

Algorithm 1 Multitask learning for text classifica-
tion and NER.
Input:
1: D = {(xi, yi,Y

NER
i )}Ni=1: Dataset

2: M: Pretrained ELECTRA model
3: T : Tokenizer
4: Lmax: Maximum sequence length
5: L: Label set for NER
6: Ec, En: Epochs for classification and NER pretraining
7: Ej : Epochs for joint training

Output: Trained multitask model F
// Preprocessing

8: for i = 1 to N do
9: xt

i ← T (xi, Lmax)
10: YNER

i ← ConvertAndPad(YNER
i ,L, Lmax)

11: end for
// Model architecture

12: FBERT ←M
13: FNER ← LinearLayer(dBERT, |L|)
14: FCLS ← LinearLayer(dBERT + |L|, 2)

// Loss functions
15: LCLS ← CrossEntropyLoss()
16: LNER ← CrossEntropyLoss(ignore_index = −1)

// Separate pretraining
17: for e = 1 to max(Ec, En) do
18: if e ≤ Ec then
19: Train FBERT and FCLS using LCLS
20: end if
21: if e ≤ En then
22: Train FBERT and FNER using LNER
23: end if
24: end for

// Joint training
25: for e = 1 to Ej do
26: for (xt

i, yi,Y
NER
i ) in D do

27: Hi ← FBERT(x
t
i)

28: ZNER
i ← FNER(Hi)

29: hCLS
i ← Hi[0, :]

30: zCLS
i ← FCLS([h

CLS
i ;ZNER

i [0, :]])
31: LCLS ← LCLS(z

CLS
i , yi)

32: LNER ← LNER(Z
NER
i ,YNER

i )
33: Update F by minimizing LCLS + LNER
34: end for
35: end for=0


