Efficient Few-shot Learning for Multi-label Classification of Scientific Documents with Many Classes

Tim Schopf, Alexander Blatzheim, Nektarios Machner, Florian Matthes


Anthology ID:
2024.icnlsp-1.21
Volume:
Proceedings of the 7th International Conference on Natural Language and Speech Processing (ICNLSP 2024)
Month:
October
Year:
2024
Address:
Trento
Editors:
Mourad Abbas, Abed Alhakim Freihat
Venue:
ICNLSP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
186–198
Language:
URL:
https://aclanthology.org/2024.icnlsp-1.21
DOI:
Bibkey:
Cite (ACL):
Tim Schopf, Alexander Blatzheim, Nektarios Machner, and Florian Matthes. 2024. Efficient Few-shot Learning for Multi-label Classification of Scientific Documents with Many Classes. In Proceedings of the 7th International Conference on Natural Language and Speech Processing (ICNLSP 2024), pages 186–198, Trento. Association for Computational Linguistics.
Cite (Informal):
Efficient Few-shot Learning for Multi-label Classification of Scientific Documents with Many Classes (Schopf et al., ICNLSP 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.icnlsp-1.21.pdf