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Abstract

Scientific document classification is a critical
task and often involves many classes. How-
ever, collecting human-labeled data for many
classes is expensive and usually leads to label-
scarce scenarios. Moreover, recent work has
shown that sentence embedding model fine-
tuning for few-shot classification is efficient,
robust, and effective. In this work, we pro-
pose FusionSent (Fusion-based Sentence Em-
bedding Fine-tuning), an efficient and prompt-
free approach for few-shot classification of
scientific documents with many classes. Fu-
sionSent uses available training examples and
their respective label texts to contrastively fine-
tune two different sentence embedding mod-
els. Afterward, the parameters of both fine-
tuned models are fused to combine the com-
plementary knowledge from the separate fine-
tuning steps into a single model. Finally, the
resulting sentence embedding model is frozen
to embed the training instances, which are
then used as input features to train a classifica-
tion head. Our experiments show that Fusion-
Sent significantly outperforms strong baselines
by an average of 6.0 F1 points across multi-
ple scientific document classification datasets.
In addition, we introduce a new dataset for
multi-label classification of scientific docu-
ments, which contains 203,961 scientific ar-
ticles and 130 classes from the arXiv cate-
gory taxonomy. Code and data are available at
https://github.com/sebischair/FusionSent.

1 Introduction

Scientific literature has grown exponentially over
the last few decades, with countless new publica-
tions being added every year (Dong et al., 2017).
To be searchable and accessible to researchers, pol-
icymakers, and the public, scientific literature must
be managed and categorized in digital libraries
(Toney and Dunham, 2022). However, this poses a
significant challenge due to the huge volume of doc-
uments and the variety of topics they cover (Sadat

and Caragea, 2022). In addition to the broad spec-
trum of possible topics, scientific documents often
cannot be assigned to just one topic due to their
interdisciplinary character. Consequently, automat-
ically categorizing scientific documents must be
approached as a multi-label classification problem
over large label spaces. Previous works approach
this task either in an unsupervised (Shen et al.,
2018; Salatino et al., 2019; Mustafa et al., 2021;
Toney and Dunham, 2022; Schopf and Matthes,
2024) or in a fully supervised (Gialitsis et al., 2022;
Sadat and Caragea, 2022; E. Mendoza et al., 2022;
Schopf et al., 2023) manner. While supervised ap-
proaches offer high prediction quality, they require
a large corpus of annotated data to perform. Often,
however, a large corpus of annotated data is un-
available, e.g., when a new categorization scheme
is being developed for an emerging scientific field.
Unsupervised approaches provide a possible cir-
cumvention of this limitation but are accompanied
at the expense of prediction quality.

To improve classification performance in sce-
narios where labeled data is unavailable, domain
experts may annotate a small part of the dataset.
However, annotating many classes naturally leads
to data scarcity, as collecting sufficient training data
for all classes causes significantly higher costs (Xu
et al., 2023a). Therefore, to support the classifica-
tion of scientific documents in such scenarios, we
consider the multi-label classification of scientific
documents as a few-shot task. Few-shot approaches
are designed to train an effective model with a few
labeled examples, reducing the cost of developing
models for new domains and tasks (Huang et al.,
2023).

In recent work, SetFit (Tunstall et al., 2022)
demonstrated strong few-shot classification perfor-
mance by contrastively fine-tuning (Koch et al.,
2015) sentence embedding models. Since this ap-
proach does not require prompts and is effective on
relatively small models, it is much more efficient

https://github.com/sebischair/FusionSent
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Figure 1: The training process of FusionSent comprises three steps: (1) Fine-tune two different sentence embedding
models from the same Pre-trained Language Model (PLM), with parameters θ1, θ2 respectively. θ1 is fine-tuned on
pairs of training sentences using cosine similarity loss and θ2 is fine-tuned on pairs of training sentences and their
corresponding label texts, using contrastive loss. Label texts can consist of simple label/class names or of more
extensive texts that semantically describe the meaning of a label/class. (2) Merge parameter sets θ1, θ2 into θ3 using
Spherical Linear Interpolation (SLERP). (3) Freeze θ3 to embed the training sentences, which are then used as input
features to train a classification head.

and consistent than common prompt-based meth-
ods such as In-Context Learning (ICL) (Brown
et al., 2020) and Pattern-Exploiting Training (PET)
(Schick and Schütze, 2021), which involve careful
prompt engineering and large-scale model sizes.

In this paper, we propose FusionSent, which
builds on the idea of contrastive sentence embed-
ding training for efficient few-shot classification.
As illustrated in Figure 1, FusionSent uses the few
annotated examples, as well as label texts, to con-
trastively fine-tune two separate sentence embed-
ding models from the same Pre-trained Language
Model (PLM) checkpoint. One model is fine-tuned
to maximize similarities between training examples
sharing the same class, and the other model is fine-
tuned to maximize similarities between training
examples and their corresponding label texts. After
fine-tuning, the weights of both models are merged
to obtain the model body of FusionSent. For subse-
quent classifier training, the model body is frozen
to embed the few training examples, which are
then used as input features to train a simple logis-
tic regression head. This approach works effec-
tively with relatively small model sizes, requires no
prompts, and merging fine-tuned sentence embed-
ding models incurs no additional inference or mem-
ory costs (Wortsman et al., 2022). Our experiments
show that FusionSent consistently outperforms var-
ious baselines on different datasets for multi-label
classification of scientific documents with many
classes. Furthermore, we show that FusionSent can

improve few-shot performance in multi-class set-
tings of different domains with a small number of
classes.

In addition to FusionSent, we introduce a new
dataset for multi-label classification of scientific
documents. The dataset consists of 130 classes and
203,961 scientific articles that have been manually
categorized by their authors into one or more topics
from the arXiv category taxonomy1.

2 Related Work

2.1 Classification of Scientific Documents

Unsupervised approaches typically use embed-
dings of topics as well as scientific documents and
perform classification based on their similarities
(Shen et al., 2018; Salatino et al., 2019; Mustafa
et al., 2021; Toney and Dunham, 2022). More re-
cently, classifying scientific documents has been
regarded as a fully supervised task. SciNoBo (Gi-
alitsis et al., 2022) uses the structural properties
of publications and their citations and references
organized in a multilayer graph network for predict-
ing topics of scientific publications. HR-SciBERT
(Sadat and Caragea, 2022) uses a multi-task learn-
ing approach for topic classification with keyword
labeling as an auxiliary task. Finally, E. Mendoza
et al. (2022) use ensemble models to classify scien-
tific documents into multiple research themes.

1https://arxiv.org/category_taxonomy
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2.2 Few-shot Classification

Prominent techniques for few-shot classification
involve ICL, utilizing task-specific prompts with a
few labeled examples (Brown et al., 2020). How-
ever, while avoiding gradient updates, ICL neces-
sitates large model sizes for good performance,
resulting in computationally expensive inference.
Conversely, prompt-based fine-tuning proves to be
effective with smaller models (Schick and Schütze,
2021; Tam et al., 2021; Gao et al., 2021). Addi-
tionally, Parameter Efficient Fine-Tuning (PEFT)
can further reduce training costs by fine-tuning a
considerably smaller module within a frozen PLM
(Houlsby et al., 2019; Li and Liang, 2021; Hu et al.,
2022; Karimi Mahabadi et al., 2022; He et al., 2022;
Liu et al., 2022; Aly et al., 2023). In contrast to
these methods, fine-tuning few-shot classification
models via contrastive sentence embedding train-
ing provides two primary advantages: (1) it re-
quires significantly smaller model sizes, and (2)
eliminates the necessity for prompts or instructions
(Tunstall et al., 2022; Huang et al., 2023; Bates
and Gurevych, 2024), which can cause significant
performance variance and require careful design
(Perez et al., 2021).

2.3 Model Fusion

Model fusion, which involves the integration of
capabilities from different models, can be mainly
divided into two categories. Firstly, ensemble ap-
proaches combine the output of multiple models to
enhance the overall prediction performance (Little-
stone and Warmuth, 1994; Sagi and Rokach, 2018).
Outputs are typically combined by weight aver-
aging (Littlestone and Warmuth, 1994) or major-
ity voting (Monteith et al., 2011). These ensem-
ble approaches can improve the prediction perfor-
mance of large-scale language models (Jiang et al.,
2023). Secondly, weight merging approaches en-
able model fusion at the parameter level. Worts-
man et al. (2022) show that weight averaging of
multiple models fine-tuned with different hyperpa-
rameters improves prediction accuracy and robust-
ness. Task vectors derived from model weights can
be modified and combined together through arith-
metic operations to steer the behavior of a resulting
model (Ilharco et al., 2023). This approach can be
enhanced by trimming task vectors and resolving
sign conflicts before merging them (Yadav et al.,
2023). In addition, Drop And Rescale (DARE) can
be used as a general preprocessing technique for

existing model merging methods to merge multiple
task-specific fine-tuned models into a single model
with diverse abilities (Yu et al., 2023).

2.4 Datasets for Topic Classification of
Scientific Documents

Various datasets for multi-label topic classifica-
tion of scientific documents have been introduced.
The Cora dataset (McCallum et al., 2000) contains
about 50,000 computer science research papers cat-
egorized into 79 topics. Several datasets have been
released based on the ACM Computing Classifica-
tion System2 (Santos and Rodrigues, 2009; Sadat
and Caragea, 2022). Schopf et al. (2023) introduce
a dataset of 179,349 scientific papers categorized
into 82 different NLP-related topics. Yang et al.
(2018) create a dataset of 55,840 arXiv3 papers,
in which each paper is assigned to several classes
covering 54 different topics. However, this dataset
is not publicly available.

3 Background

Sentence Embedding Model Fine-tuning for
Few-shot Classification Tunstall et al. (2022)
show that sentence embedding models can be used
in a two-step training process for efficient few-shot
classification. In the first step, a sentence embed-
ding model is fine-tuned in a contrastive manner by
sampling positive and negative sentence pairs from
few-shot labeled examples. In the second step, the
fine-tuned sentence embedding model is frozen to
encode all available few-shot examples. The result-
ing embeddings are then used as input features to
train a simple logistic regression classifier (Cox,
1958) as the model head.

Label Texts for Document Classification in
Label-scarce Scenarios Xu et al. (2023a) show
that mapping representation spaces of training in-
stances to their respective label descriptions in em-
bedding space can be effective in label-scarce clas-
sification scenarios. They reformulate classifica-
tion with many classes as a dense retrieval task and
train a dual encoder that learns to maximize the
similarity between embeddings of the training in-
stances and their respective label descriptions. Dur-
ing inference, they use the top-k retrieved labels of
each instance for classification. Similarly, WanDeR
(Xu et al., 2023b) and FastFit (Yehudai and Ben-
del, 2024) use label names and dense retrieval for

2https://dl.acm.org/ccs
3https://arxiv.org
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multi-class classification. However, dense retrieval
approaches are challenging to apply in multi-label
classification scenarios since the number of classes
per instance can vary significantly.

4 Method

As illustrated in Figure 1, our few-shot classifica-
tion method consists of separate training parts for
the model body and the model head. We fine-tune
a sentence embedding model as the model body,
while the model head consists of a simple logistic
regression classifier trained on the data encoded by
the model body.

4.1 Model Body
Given a base PLM, we fine-tune the model body
of FusionSent in three steps: (1) use SetFit’s con-
trastive learning approach to construct positive and
negative training pairs from the few training exam-
ples to fine-tune a sentence embedding model from
the base PLM (2) construct positive and negative
training pairs from the few training examples and
their corresponding label texts to fine-tune a dif-
ferent sentence embedding model using the same
base PLM, and (3) merge both fine-tuned sentence
embedding models to obtain the model body of
FusionSent.

In the first step, we fine-tune a sentence embed-
ding model from the base PLM using contrastive
learning and the few training examples. Specifi-
cally, from the few training examples, instances of
the same class are selected as positive pairs, which
are assigned a score of 1, and instances from dif-
ferent classes are selected as negative pairs, which
are assigned a score of 0. These training pairs are
then used to fine-tune a sentence embedding model
with the Cosine Similarity Loss:

Lcos = ∥y − cos_sim(u, v)∥2, (1)

where u, v ∈ RD are the D-dimensional sen-
tence embeddings of two sentences respectively,
and y ∈ {0, 1} is the pair label.

In the second step, we use a different contrastive
training approach to fine-tune a separate sentence
embedding model from the same base PLM, using
the few training instances and their corresponding
label texts. Specifically, positive pairs consist of
training instances and the label texts of the class
assigned to them. Negative pairs consist of train-
ing instances and label texts from different classes.
Label texts can consist of simple label/class names,

which are usually available in datasets, or of more
extensive texts that semantically describe the mean-
ing of a label/class. We assign the positive pairs
a score of 1 and the negative pairs a score of 0
to fine-tune a sentence embedding model with the
Contrastive Loss (Hadsell et al., 2006):

Lcont =
1

2

[
y · cos_dist(u, v)2+

(1− y) ·max{0,m− cos_dist(u, v)}2
]
, (2)

where u, v ∈ RD are the D-dimensional sen-
tence embeddings of two sentences respectively,
m = 0.5 is a margin, and y ∈ {0, 1} is the pair
label.

To obtain the contrastive training pairs for steps
one and two, we use an oversampling strategy. In
this approach, an equal number of positive and neg-
ative training pairs are sampled, with the minority
pair type (positive) being oversampled to align with
the majority pair type (negative).

In the third step, the parameters of the fine-tuned
sentence embedding models obtained in steps one
and two are merged using Spherical Linear Inter-
polation (SLERP) (Shoemake, 1985). Specifically,
let θ1 be the parameters obtained from the first fine-
tuning step and θ2 the parameters obtained from
the second fine-tuning step, we merge parameters
with SLERP:

slerp(θ1, θ2; t) =
sin(1− t)Ω

sinΩ
θ1 +

sin tΩ

sinΩ
θ2,

(3)

where θ1 ·θ2 = cosΩ and t = 0.5 is an interpola-
tion factor. Finally, the new parameters θ3 obtained
from SLERP merging are inserted into a sentence
embedding model derived from the same architec-
ture as the base PLM, resulting in the FusionSent
model body.

4.2 Model Head & Inference

In the second part of FusionSent training, we first
use the frozen model body to embed all available
training instances. Then, we train a logistic regres-
sion model using the embedded training instances
as input features. During inference, the model body
embeds the inputs to provide features for the logis-
tic regression head that subsequently classifies the
unseen instances.



5 Experiments

5.1 Data
We construct a dataset of scientific documents de-
rived from arXiv metadata (Clement et al., 2019).
The arXiv metadata provides information about
more than 2 million scholarly articles published in
arXiv from various scientific fields. We use this
metadata to create a dataset of 203,961 titles and
abstracts categorized into 130 different classes. To
this end, we first perform a stratified downsam-
pling of the metadata to only 10% of all articles
while retaining the original class distribution. Af-
terward, articles assigned to categories occurring
less than 100 times in the downsampled dataset
are removed. To obtain the final dataset, we then
perform a stratified train/validation/test split of the
processed dataset in an 80:10:10 ratio. The number
of examples in each set are shown in Table 1.

Dataset split Size
Train 163,168
Validation 20,396
Test 20,397

Table 1: Overview of the arXiv dataset.

Each article in the resulting arXiv dataset is cate-
gorized into one or more distinct categories. Figure
2 shows the distribution of papers across the 130
categories of the dataset.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

Category Index

0

5000

10000

15000

Co
un

t

Figure 2: Number of papers in each category of the
arXiv dataset.

In addition, we use the SciHTC dataset (Sadat
and Caragea, 2022), which contains computer sci-
ence papers categorized into one or more classes
of the ACM Computing Classification System. We
remove classes with less than 100 examples, re-
sulting in 46,372 training samples and 5,838 test
samples categorized into 62 different classes.

As a third dataset for scientific document classi-
fication, we use the NLP taxonomy dataset (Schopf
et al., 2023), which contains papers from the ACL

Anthology4, the arXiv cs.CL category, and Sco-
pus5, categorized into one or more Natural Lan-
guage Processing (NLP)-related classes. We per-
form a stratified 90:10 split between training and
test examples, resulting in 161,414 training and
17,935 test instances categorized into 82 different
classes.

5.2 Models
We experiment with two baselines and four differ-
ent few-shot learning approaches for multi-label
classification of scientific documents.

FineTune The first baseline consists of a stan-
dard encoder-only transformer that is fine-tuned for
text classification.

SetFit The second baseline consists of the SetFit
approach without any changes to the architecture
or the training procedure.

Label Embedding (LE) As an initial few-shot
learning approach, we experiment with only train-
ing one sentence embedding model that uses few-
shot examples and their corresponding label texts
in a contrastive learning approach. This approach
consists of training a model body, as described in
step 2 in Section 4.1, and training a logistic regres-
sion head on top of it.

SetFit→LE We also experiment with combin-
ing contrastive learning approaches to directly fine-
tune a single sentence embedding model rather than
separate models that are merged later. For this pur-
pose, we perform training steps one and two as
described in Section 4.1 sequentially on the same
sentence embedding model. For classification, we
then train a logistic regression head.

LE→SetFit This approach also only trains a sin-
gle sentence embedding model. However, we first
perform training step two followed by step one as
described in Section 4.1 on the same model. We
then train a logistic regression model head for the
classification.

FusionSent Finally, we experiment with the Fu-
sionSent approach as described in Section 4.

5.3 Experimental Setup
Systematically evaluating few-shot performance
is challenging due to the potential instability aris-
ing from fine-tuning on small datasets (Zhang et al.,

4https://aclanthology.org
5https://www.scopus.com
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Dataset → arXiv SciHTC NLP Taxonomy Average
Method ↓ F1 P R F1 P R F1 P R F1

|N | = 2∗

FineTune - - - - - - 13.13.2 78.35.5 7.22.0 -
SetFit 37.51.6 45.51.7 32.02.4 31.40.8 39.90.1 26.01.2 58.72.0 55.74.2 62.30.9 42.51.5
Label Embedding 43.20.1 45.31.9 40.40.5 34.14.3 46.16.3 27.13.3 65.82.2 66.05.5 66.01.6 47.72.2
SetFit→LE 41.50.9 45.31.5 38.31.7 32.31.9 41.63.2 26.31.4 64.61.8 62.74.4 66.82.1 46.11.5
LE→SetFit 39.20.5 41.51.1 37.10.5 34.01.6 38.91.6 30.22.0 61.31.6 55.03.4 69.31.5 44.81.2
FusionSent 44.40.4 50.51.2 39.60.1 36.71.9 48.04.2 29.70.9 66.22.1 67.44.6 65.20.8 49.11.5

|N | = 4∗

FineTune - - - 10.31.6 59.33.6 5.60.9 43.51.8 85.22.1 29.21.9 -
SetFit 45.61.0 46.41.6 45.10.9 35.00.3 42.61.1 29.70.3 63.61.5 60.72.3 66.91.8 48.10.9
Label Embedding 47.01.1 47.70.6 46.32.0 32.71.1 41.92.3 26.90.6 71.90.6 70.80.5 73.01.2 50.50.9
SetFit→LE 46.00.3 47.40.4 44.70.7 30.72.4 36.94.4 29.52.1 70.00.6 68.10.8 72.10.4 48.91.7
LE→SetFit 45.81.0 45.01.4 46.70.9 32.02.9 40.62.3 27.81.9 66.10.7 62.10.8 70.70.9 48.01.5
FusionSent 48.31.1 51.01.0 46.01.5 38.52.3 45.41.0 33.52.9 72.60.5 72.10.3 73.20.7 53.11.3

|N | = 8∗

FineTune 18.72.8 72.52.4 10.81.9 26.63.9 55.03.7 17.53.1 67.11.1 88.01.6 54.21.1 37.52.6
SetFit 46.00.6 44.10.5 48.11.1 37.53.7 46.23.2 31.53.8 66.20.2 66.40.4 66.00.4 49.91.5
Label Embedding 47.81.4 46.31.5 49.51.4 36.43.2 41.32.5 32.53.5 77.20.5 74.00.7 80.80.7 53.81.7
SetFit→LE 45.31.2 45.51.0 45.11.4 30.51.6 31.42.0 29.71.9 72.70.4 70.50.5 75.10.4 49.51.1
LE→SetFit 44.11.0 42.11.8 46.30.5 32.93.0 41.84.1 27.12.3 66.70.4 65.81.3 67.61.1 47.91.5
FusionSent 49.01.3 49.01.8 49.00.9 41.24.6 43.45.4 39.23.9 78.30.3 76.00.2 80.70.5 56.22.1

|N | = Full∗∗

FineTune 71.6 78.2 66.1 57.9 73.5 47.8 95.9 96.2 95.7 75.1

Table 2: FusionSent performance scores and standard deviations for few-shot classification of scientific documents
compared to different approaches across three test datasets and four training set sizes |N |. Micro F1, Precision (P),
and Recall (R) scores are reported. ∗Number of training samples per class. ∗∗Entire available training data used.
In some cases, insufficient training examples were provided for the FineTune model to learn, resulting in no class
predictions during testing.

2021). In our multi-label scientific document classi-
fication experiments, we use three random training
splits for each dataset and sample size to mitigate
this issue. For each method, we report the average
measure and the standard deviation across these
splits. We use SciNCL (Ostendorff et al., 2022) as
the base PLM for each model. While we train the
FineTune model for 50 epochs in the few-shot set-
ting, we use the same approach to train a model on
the full training datasets for 3 epochs. In both cases,
we use a batch size of 12. For sentence embedding
model training according to step 1 in Section 4.1,
we use a batch size of 4 for all models, and for
training according to step 2 in Section 4.1, we use
a batch size of 1. Both steps are trained for 1 epoch
for all models. In addition, each model is trained
with a learning rate of 2e−5.

For the arXiv dataset, we use the publicly avail-
able category descriptions as label texts. For the
SciHTC and NLP taxonomy datasets, we gener-
ate short descriptive texts from the provided label
names with GPT-4 (OpenAI et al., 2023) and use
them as label texts. Table 5 shows examples of the
used label names and label descriptions.

6 Results

Table 2 shows a comparison between FusionSent
and the other few-shot approaches for |N | ∈
{2, 4, 8} labeled training samples per class. We
observe that FusionSent consistently outperforms
F1 scores of all approaches investigated for each
dataset and training set size. Further, FusionSent
significantly outperforms SetFit across all training
set sizes by an average of 6.0 F1 points. While
the other approaches using label texts for sentence
embedding training on a single model can perform
better than SetFit, they fall short of the FusionSent
approach. The Label Embedding (LE) approach
shows consistent improvements over SetFit on av-
erage, while the SetFit→LE and LE→SetFit ap-
proaches only outperform SetFit in a few cases.

The results demonstrate that using label texts
for sentence embedding training can help to sepa-
rate instances of different classes in the embedding
space, providing a crucial property for the classifi-
cation head to perform well. However, combining
the contrastive sentence embedding training ap-
proaches of SetFit and LE in a single model does
not significantly increase performance. Using a
two-step contrastive training approach does not
enable a single sentence embedding model to effec-



tively encode information from both training steps,
as it may suffer from forgetting previously acquired
knowledge (Biesialska et al., 2020). Conversely,
the FusionSent results indicate that this limitation
can be circumvented by training separate sentence
embedding models with different contrastive learn-
ing approaches and subsequently merging their pa-
rameters. This approach ensures that the individu-
ally trained models encode different information,
whereas merging allows their respective knowledge
to complement each other, resulting in improved
model performance.

7 Experiments with Few Classes

To determine the generalizability of FusionSent to
few-shot settings with a low number of classes and
different domains, we perform experiments on the
SST-5 (Socher et al., 2013), CR (Hu and Liu, 2004),
Emotion (Saravia et al., 2018), AGNews (Zhang
et al., 2015), and EnronSpam (Metsis et al., 2006)
datasets as processed for few-shot classification by
Tunstall et al. (2022). These datasets each comprise
two to six classes and cover the fields of sentiment
classification, opinion detection from customer re-
views, emotion detection from Twitter tweets, news
article classification, and e-mail spam detection.
For all datasets, we generate short descriptive texts
from the provided label names with GPT-4 and use
them as label texts. Table 5 shows examples of
the used label names and label descriptions. We
experiment with all ten available randomized train-
ing splits for each dataset and sample size using
|N | = 8 and |N | = 64 few-shot examples. We
report the average accuracy and standard deviation
across the training splits for each method.

We use the paraphrase-mpnet-base-v26 model
(Reimers and Gurevych, 2019) as base PLM for
SetFit and FusionSent. Additionally, we use
RoBERTaLARGE (Liu et al., 2019) for the Fine-
Tune baseline. The other training parameters re-
main the same as in Section 5.3.

Results Table 3 shows the results of SetFit and
FusionSent training on the binary and multi-class
datasets. On average, FusionSent outperforms Set-
Fit for |N | = 8 by an average of 2.2 accuracy
points. However, as the number of training sam-
ples increases to |N | = 64, the gap decreases to
0.6 accuracy points. In addition, the improvements

6https://huggingface.co/sentence-
transformers/paraphrase-mpnet-base-v2

Dataset → SST-5 AGNews Emotion EnronSpam CR Average
Method ↓ Multi-class Classification Binary Classification

|N | = 8∗

FineTune† 33.52.1 81.73.8 28.76.8 85.06.0 58.86.3 57.55.0
SetFit 41.72.0 82.63.6 49.53.8 91.03.2 89.61.2 70.92.8
FusionSent 43.03.2 84.42.2 57.12.5 91.43.9 89.81.0 73.12.6

|N | = 64∗

FineTune† 45.96.9 88.40.9 65.017.2 95.90.8 88.91.9 76.85.5
SetFit 48.14.4 87.70.8 78.52.0 96.10.5 90.60.7 80.21.7
FusionSent 50.02.8 88.30.8 78.71.6 96.50.6 90.70.6 80.81.3

|N | = Full∗

FineTune† 59.8 93.8 92.6 99.0 92.4 87.5

Table 3: FusionSent accuracy scores and standard devi-
ations for few-shot classification with few classes com-
pared to the baselines across five test datasets for three
training set sizes. ∗Number of training samples per
class. ∗∗Entire available training data used. †Results
from Tunstall et al. (2022).

are more substantial for multi-class classification,
whereas they are only minimal in the binary case.

For binary classification, instances of different
classes must be pushed apart from each other as
far as possible to allow the logistic regression clas-
sifier to find a good decision boundary. For this
relatively simple problem, the results indicate that
SetFit can already effectively separate instances of
different classes in embedding space. For multiple
classes, however, it is more difficult to find posi-
tions in the embedding space that separate instances
of different classes from each other. In these cases
in particular, FusionSent shows its strengths and
helps the classification head to find good decision
boundaries between classes.

8 Robustness Against Label Text
Variations

To evaluate the robustness of FusionSent against
different label text variations, we conduct experi-
ments on the previous datasets using simple label
names instead of extensive label descriptions. In
these experiments, we simply use the label names
as provided by the respective datasets and com-
pare the classification results with those obtained
by using detailed label descriptions. Table 5 shows
examples of the used label names and label descrip-
tions. We use |N | = 8 few-shot examples and
report the average F1 performance over the respec-
tive training splits. Furthermore, we use the same
training parameters as in Section 5.3 and Section
7.

Results Figure 3 shows the performance of Fu-
sionSent using simple label names, as provided by
the respective datasets, compared to using exten-

https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
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Figure 3: FusionSent micro F1 scores for few-shot clas-
sification on 8 different datasets using either extensive
label descriptions or simple label names. We report the
average score over the random training splits of each
dataset using |N | = 8 training examples per class.

sive textual label descriptions generated by GPT-4.
We obtain similar performances across the different
label text variants with a mean performance differ-
ence of 0.48 and a standard deviation of 0.39 F1

points. Furthermore, there is no clear pattern as to
whether the use of extensive label descriptions or
simple label names leads to significantly improved
performance. In comparison, performance varia-
tions of 10 accuracy points and more when using
different prompts on the same model are charac-
teristic for prompt-based few-shot classification
approaches (Perez et al., 2021). Therefore, we con-
clude that FusionSent is relatively robust to label
text variations and the use of simple label names
is already sufficient to achieve good classification
performance.

9 Computational Costs

To compare the relative computational costs of Fu-
sionSent and SetFit, we follow the approach of Liu
et al. (2022) and use FLOPs-per-token estimates,
which can be obtained from Kaplan et al. (2020).
Specifically, encoder-only models with N parame-
ters have approximately 2N FLOPs-per-token for
inference and 6N FLOPs-per-token for training.
The resulting cost for inference and training is then
given by:

Cinf = 2N · ℓseq, (4)

Ctrain = 6N · ℓseq · nsteps · nbatch, (5)

where ℓseq is the input sequence length, nsteps

is the number of training steps, and nbatch is the

batch size. Since we are training two model bodies
for FusionSent, we calculate the training costs for
each model body separately and then add them up.
For inference, we can use the formula as provided,
since we only use one model body.

We estimate the costs using the scientific doc-
ument classification datasets from Table 2 and
SciNCL as base PLM with N = 110M param-
eters. Based on the median number of tokens per
instance in all datasets, we use ℓseq = 194 to esti-
mate the costs for training approaches that do not
use label texts. Since we perform inference on
these instances, we also use this value to estimate
the inference cost for all approaches. Taking into
account the shorter label texts, we use ℓseq = 130
to estimate the costs for training approaches that
utilize label texts. Additionally, we use fixed values
of nsteps = 1, 000, and nbatch = 8 for all training
estimates.

Method Inf. FLOPs Train FLOPs Avg. F1

SetFit 4.3e10 1.0e15 49.91.5
FusionSent 4.3e10 1.7e15 56.22.1

Table 4: Computational costs and average micro F1

scores of FusionSent and SetFit using |N | = 8 train-
ing samples on the scientific document classification
datasets listed in Table 2.

As shown in Table 4, the increase in F1 perfor-
mance is accompanied by increased training costs.
This is the result of training two sentence embed-
ding models instead of one. However, by merg-
ing the models, the inference efficiency remains
the same as when using the base PLM. Although
FusionSent incurs higher training costs, it can sig-
nificantly improve prediction performance while
maintaining SetFit’s inference efficiency.

10 Conclusion

We introduce FusionSent, a new approach for effi-
cient and prompt-free few-shot classification of sci-
entific documents. FusionSent uses label texts and
contrastive learning to improve classification per-
formances over several other few-shot approaches.
We show that FusionSent is particularly effective
in scenarios with many classes while being compu-
tationally efficient during inference. Additionally,
FusionSent is robust against label text variations.
Finally, we introduce a new arXiv dataset for multi-
label classification of scientific documents.
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Appendix

Dataset Label Names Label Descriptions
arXiv General Relativity and Quantum Cosmology General relativity and quantum cosmology focuses on gravitational

physics, including experiments and observations related to the
detection and interpretation of gravitational waves, experimental
tests of gravitational theories, computational general relativity,
relativistic astrophysics, solutions to Einstein’s equations and their
properties, alternative theories of gravity, classical and quantum
cosmology, and quantum gravity.

... ...
SciHTC Information retrieval The "Information Retrieval" class within the 2012 ACM Comput-

ing Classification System encompasses the study and design of
systems for indexing, searching, and retrieving information from
large datasets. It includes the development of algorithms and tech-
niques for processing and querying textual and multimedia data,
as well as evaluating the effectiveness of retrieval systems. Key
topics within this class involve search engine architectures, query
representation, relevance feedback, and information extraction.
The field also addresses challenges such as handling unstructured
data, understanding user context, and ensuring privacy and secu-
rity in the retrieval process.

... ...
NLP Taxonomy Named Entity Recognition Named Entity Recognition is the identification and classification

of entities (e.g., names of people, organizations) in text.
... ...

SST-5 very positive ’very positive’ is used for data samples that express strong or
intense positive sentiments, enthusiasm, or approval.

... ...
AGNews Sports ’Sports’ represents data samples related to sports news, events,

scores, and athlete performances.
... ...

Emotion sadness ’sadness’ is characterized by feelings of hopelessness, disappoint-
ment, melancholy, and vulnerability, often accompanied by a sense
of isolation or being overwhelmed.

... ...
EnronSpam spam ’spam’ is an unsolicited and often irrelevant or inappropriate mes-

sage sent over the internet, typically to a large number of users,
for the purpose of advertising, phishing, spreading malware, or
other malicious activities.

... ...
CR negative ’negative’ corresponds to criticisms, complaints, or expressions of

dissatisfaction with products or services.
... ...

Table 5: Examples of label names and extensive label descriptions for different datasets.


