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Abstract

While the impact of tokenization on language
modeling is well-researched in richly resourced
languages, fewer studies on this topic exist for
challenging low-resource languages. In this
work, we present the first systematic evalua-
tion of tokenization methods for Georgian, a
low-resource language with high morphologi-
cal complexity. We compare standard subword
tokenizers, such as WordPiece, Byte Pair En-
coding, SentencePiece with Unigram, and a re-
cently proposed token-free approach. We also
investigate the multilingual BERT tokenizer
(mBERT), which includes Georgian. In addi-
tion to these different classes of tokenization
algorithms we also evaluate the impact of differ-
ent vocabulary sizes, a key parameter for sub-
word tokenizers. We evaluate the performance
of all tokenizers on masked language modeling
and on four downstream tasks: part-of-speech
tagging, named entity recognition, toxicity de-
tection, and sentiment analysis. We observe
that larger vocabulary sizes for subword tok-
enizers generally lead to better performance
across most tasks, with a notable exception in
the toxicity detection task, where finer subword
granularity is more effective. For the remaining
tasks, pre-training tokenizers on Georgian text
consistently yield better results compared to
mBERT. Additionally, the token-free method is
consistently outperformed by all other tokeniz-
ers. Taken together, our comprehensive evalu-
ation of tokenizers will be highly valuable in
making informed tokenization choices in future
language model developments for Georgian.

1 Introduction

Tokenization is a fundamental process in most nat-
ural language processing (NLP) tasks that involves
breaking down a text into smaller units called to-
kens. It is one of the first processes conducted
in most approaches and is particularly crucial for
low-resource languages. Tokenization gains fur-
ther importance in morphologically complex lan-

guages where multiple types of prefixes and suf-
fixes simultaneously modify the meaning of a word,
making it vital to split each word into meaningful
pieces. That is why different tokenization meth-
ods have been investigated in languages such as
Turkish (Toraman et al., 2023), Arabic (Alyafeai
et al., 2023), or Korean (Park et al., 2020). Studies
on these languages have shown that appropriate
tokenization can significantly enhance model per-
formance, with subword-level tokenization often
providing a good balance between capturing lin-
guistic nuances and managing sequence lengths.

In contrast, no comprehensive study of tokeniza-
tion has been conducted for any of the languages
from the Kartvelian family to which Georgian be-
longs. The Kartvelian family has no known relation
to any other language group. It consists of four lan-
guages, all spoken in Georgia, with its first split
dating back to the 20-22th century BC (Gavashel-
ishvili et al., 2023). Georgian, the official language
of Georgia, serves as a common language for all
Kartvelian speakers. The language is phonetic and
is written in its unique alphabet, one of the world’s
approximately 15 base alphabetical systems. Geor-
gian, a low-resource language with complex mor-
phology, has seen limited progress in NLP research,
which remains in its early stages. Existing studies
have primarily focused on data curation (Beridze
et al., 2017; Stefanovitch et al., 2022a) and syntac-
tic and morphological analysis (Kapanadze, 2019;
Kardava et al., 2017; Lobzhanidze, 2022) rather
than tokenization. Conducting a comprehensive
evaluation of tokenizers for Georgian provides a
solid foundation for future research on building ef-
fective Georgian language models, addressing its
unique linguistic challenges, and improving NLP
applications.

In our work, we address this need by, for the first
time, systematically evaluating different tokenizers
in Georgian for language modeling and on a set
of four downstream tasks. In particular, we evalu-



ate four tokenization techniques: WordPiece (Song
et al., 2021), Byte Pair Encoding (Sennrich et al.,
2016), SentencePiece with Unigram (Kudo and
Richardson, 2018, Kudo, 2018), and a token-free
method (Xue et al., 2022). With these tokenizers,
we train a scaled-down BERT (Devlin et al., 2018)
architecture on a substantial Georgian language
corpus and fine-tune it on four downstream applica-
tions: sentiment analysis, toxicity detection, named
entity recognition, and part-of-speech tagging. In
addition, we investigate various vocabulary sizes
by training different-sized tokenizer models, iden-
tifying optimal strategies tailored to Georgian’s
morphological characteristics. Our results indicate
that (1) subword tokenization approaches trained
on Georgian pretraining corpora are superior to the
token-free approach as well as multilingual BERT’s
WordPiece tokenizer, and (2) that larger vocabu-
lary sizes tend to improve performance. The main
exception is the toxicity detection task, where tok-
enizers with finer granularity perform better. These
include multilingual BERT’s WordPiece with its
smaller vocabulary as well as the smaller vocabu-
lary versions of the subword tokenizers. With our
approaches, we set a new state of the art on the
recently introduced toxicity detection dataset by
Lashkarashvili and Tsintsadze (2022).

The source code developed in this study is avail-
able online1.

2 Related Work

2.1 Tokenizers in Language Modelling

We distinguish three major categories of tokeniz-
ers: word-level, subword-level, and token-free
(character/byte-level tokenizers).

Word-level tokenizers take all distinct words in
the corpus as tokens, which results in large vocab-
ularies that are, however, still rarely exhaustive.
While not requiring specific training, such tokeniz-
ers often suffer from numerous out-of-vocabulary
cases (Luong et al., 2015).

Subword-level tokenization is the most common
tokenization technique for modern language mod-
els. Such tokenizers are trained and selectively
combine characters, subwords, and words. Words
that are rarely used are usually split into smaller
units, resulting in smaller vocabulary sizes at better
coverage and fewer out-of-vocabulary cases.

1https://git.opendfki.de/philipp.mueller/
icnlsp24

GPT 2, 3 and RoBERTa (Radford et al., 2019,
Brown et al., 2020, Liu et al., 2019) utilize a Byte
Pair Encoding (BPE) tokenization method (Sen-
nrich et al., 2016). BERT and ELECTRA (De-
vlin et al., 2018, Clark et al., 2020) use a variant
of the BPE, the WordPiece tokenization method
(Song et al., 2021). XLM-RoBERTa, XLNet, and
T5 (Conneau et al., 2020, Yang et al., 2019, Raf-
fel et al., 2020), all rely on SentencePiece (Kudo
and Richardson, 2018) with the Unigram algorithm
Kudo (2018).

Token-free approaches treat all distinct charac-
ters or bytes in the corpus as tokens, resulting in a
small vocabulary and no out-of-vocabulary cases,
but also significantly longer input sequences and
less meaningful individual tokens. Byte-level to-
kenizers have been shown to be competitive with
their subword-level counterparts but usually need
more training time (Xue et al., 2022).

2.2 Tokenization for Morphologically Rich
and Low-Resource Languages

Toraman et al. (2023) show that for languages with
rich morphology, the choice of tokenizer can sig-
nificantly affect model performance. Word-level
tokenization often struggles due to the large num-
ber of possible word forms, whereas subword-level
tokenizers and token-free approaches can provide
more flexibility and robustness by capturing mean-
ingful subunits and handling out-of-vocabulary
words effectively. Similarly, Park et al. (2020) dis-
cuss the importance of appropriate tokenization
for Korean, a language with agglutinative morphol-
ogy. They highlight how different tokenization
strategies, such as character-level and subword-
level, affect the performance of NLP models on
diverse tasks and show that subword-level tokeniza-
tion strikes a balance between capturing linguis-
tic nuances and maintaining manageable sequence
lengths. Alyafeai et al. (2023) examine how differ-
ent tokenization methods perform on Arabic text
classification tasks. Given the rich morphology and
script variations, they show that tokenizers that can
effectively handle these complexities are required.
Subword-level tokenization, in particular, has been
shown to provide better performance by capturing
root and pattern morphemes.

2.3 Georgian Natural Language Processing
Georgian, a highly inflectional and agglutinative
language with complex morphology, poses unique
challenges for tokenization. Kartvelian, primarily

https://git.opendfki.de/philipp.mueller/icnlsp24
https://git.opendfki.de/philipp.mueller/icnlsp24


spoken in Georgia, has no known relation to any
other language groups, making it one of the world’s
primary language families.

Research on Georgian NLP is still in its early
stages and to the best of our knowledge, no exist-
ing study focuses on tokenization methods. The
majority of research has concentrated on data cura-
tion (Beridze and Nadaraia, 2009; Doborjginidze
and Lobzhanidze, 2016; Fkhakadze et al., 2017;
Beridze et al., 2017; Stefanovitch et al., 2022a)
and automated syntactic and morphological ana-
lyzers (Kapanadze et al., 2019; Kapanadze, 2019;
Kardava et al., 2017; Lobzhanidze, 2022). Some
studies have trained models for downstream ap-
plications (Khachidze et al., 2016; Lashkarashvili
and Tsintsadze, 2022; Stefanovitch et al., 2022a),
using standard tokenization techniques without ex-
ploring the impact of tokenizers on the model’s
performance. Several papers (Pires et al., 2019,
Conneau et al., 2020) with pre-trained multilingual
language models provide subword-level tokenizers
containing Georgian tokens. However, the current
state of research indicates a gap in understanding
how different tokenizers would perform for Geor-
gian.

While subword-level tokenization has proven
effective for large language models, even for mor-
phologically rich languages like Turkish, Korean,
and Arabic, the question of which subword-level
algorithm would be most effective for Georgian re-
mains open. The competitiveness of the token-free
approach is also uncertain.

3 Data

In the following Section we present pre-training
datasets and downstream task datasets used in our
study.

3.1 Pre-training Datasets

In this work, we ensured a comprehensive cover-
age of the various styles and contexts of Georgian.
We used three primary corpora to pre-train our to-
kenization models: Wikipedia 2, Leipzig (2016) 3,
and CorpusGE (Fkhakadze et al., 2017). Wikipedia
and Leipzig provide extensive text data across var-
ious domains, ensuring diverse language cover-
age. CorpusGE, a high-quality text corpus, was

2https://dumps.wikimedia.org/backup-index.
html

3https://wortschatz.uni-leipzig.de/en/
download/Georgian

NER POS TOXD SA

Epochs 10 30 10 10

Max. length 512 512 512 512

Batch size 384 24 192 192

Learning rate 2e-5 2e-5 2e-5 2e-5

Train Size 90,000 2,000 8,000 2,500

Val. Size 90,000 250 1,000 850

Test Size 92,000 250 1,000 850

Table 1: Training details for the four different tasks:
Named-Entity Recognition (NER), Part-of-Speech Tag-
ging (POS), Toxicity Detection (TOXD), and Sentiment
Analysis (SA). In train and test sizes, we provide la-
beled word counts for token classification and labeled
sentence counts for text classification tasks. Exception:
Maximum length for token-free ByT5 is equal to 2048.

collected over four years from well-known Geor-
gian media pages. Following previous work on
Maltese (Micallef et al., 2022), we employed one
million words from these corpora to pre-train our
models.

3.2 Downstream Tasks
To assess the performance of different tokenization
methods, we focused on four language understand-
ing tasks: two for text classification and two for
token classification. We present an overview over
downstream task dataset sizes in Table 1.

Named Entity Recognition (NER) Named En-
tity Recognition is a token classification task that
identifies person, organization, or location names in
the text. We utilized the Wikiann (pan-x) multilin-
gual benchmark (Pan et al., 2017), a comprehensive
dataset that includes Georgian. This benchmark,
which consists of approximately 30,000 Georgian
sentences and roughly 90,000 labeled words per
train, validation, and test splits, provides a thorough
dataset for NER.

Part-of-Speech Tagging (POS) Part-of-Speech
Tagging is a token classification task that detects
parts of speech with respect to each word in a sen-
tence, such as nouns, verbs, adjectives, etc. We em-
ployed the Universal Dependencies dataset (Nivre
et al., 2020) for Georgian, which contains approxi-
mately 2,500 words and 152 sentences. The dataset
was split, with 10% used for validation and 10%
for testing. We also provide the percentage break-

https://dumps.wikimedia.org/backup-index.html
https://dumps.wikimedia.org/backup-index.html
https://wortschatz.uni-leipzig.de/en/download/Georgian
https://wortschatz.uni-leipzig.de/en/download/Georgian


down of fourteen imbalanced class distributions:
Noun (29%), Punc (14%), Adj (13%), Verb (9%),
Pron (8%), Post (7%), Conj (6%), Adv (6%), Aux
(3%), Part (2%), Prop (2%), Num (1%), VerbalAdj
(0.3%), VerbalNoun (0.1%).

Toxicity Detection (TOXD) Toxicity detection
is a text classification task identifying harmful or
toxic comments in online discussions. For this
task, we used a dataset provided by Lashkarashvili
and Tsintsadze (2022). This data was gathered
from Georgian online discussion forums and man-
ually annotated for toxicity. The dataset comprises
10,000 sentences, divided into 46% toxic and 54%
non-toxic samples. We split the train, validation,
and test datasets as follows: 80%, 10%, and 10%.

Sentiment Analysis (SA) Sentiment Analysis is
a text classification task that determines the emo-
tional tone of the text. For this task, we used the
first publicly released annotated sentiment dataset
for Georgian (Stefanovitch et al., 2022b), referred
to as Georgian Sentiment Snippets (GSS). This
dataset contains approximately 4K text snippets,
each manually annotated by multiple annotators
using a four-tier scale: positive (33.5%), neutral
(41.0%), negative (18.1%), and mixed (7.2%). The
dataset is split into training, validation, and test
sets with the following proportions: 60%, 20%,
and 20%. This annotated dataset provides a ro-
bust resource for training and evaluating sentiment
analysis models.

4 Approach

We first discuss the different tokenizers we compare
in our study and subsequently present the training
procedure we utilized.

4.1 Tokenizers
In this study, we compare various tokenization
methods for Georgian. We focus on subword-level
tokenizers, including WordPiece, Byte Pair Encod-
ing (BPE), and SentencePiece with Unigram. Ad-
ditionally, we explore the byte-level token-free ap-
proach ByT5, assessing its performance relative to
traditional subword-level tokenizers.

Byte Pair Encoding (BPE) This approach was
initially introduced for data compression (Sennrich
et al., 2016). BPE minimizes the total number of
symbols (characters or bytes) needed to represent
the original text. First, the data is split into indi-
vidual symbols. Then, the most frequent adjacent

pairs of symbols are consecutively merged until the
desired vocabulary size is reached. In this study,
we employ BPE, which considers every distinct
byte as its initial vocabulary.

WordPiece (WP) WordPiece (Song et al., 2021)
is a variant of the BPE method. The primary dif-
ference lies in the merge rule, which is based on
likelihood rather than solely on frequency. Specifi-
cally, the algorithm prioritizes token pairs that have
a higher joint probability of how frequently the to-
kens appear together compared to how frequently
they appear separately. This method aims to re-
tain more meaningful linguistic units, potentially
providing a more nuanced tokenization. However,
training requires more computational resources due
to the complexity of calculating these probabilities.

SentencePiece with Unigram (SP-U) The Sen-
tencePiece (Kudo and Richardson, 2018) is a tool
that implements both the BPE and Unigram (Kudo,
2018) algorithms. This approach enables the tok-
enization of raw text strings without the need for
preprocessing, such as whitespace splitting, mak-
ing it particularly effective for languages without
clear word boundaries.

The Unigram algorithm, employed within the
SentencePiece framework, operates in two stages.
First, it populates its vocabulary with a large num-
ber of tokens similar to BPE, but for searching
the most frequent substrings, it uses the enhanced
suffix array algorithm. Second, it decreases the
vocabulary to the desired size. The Unigram model
iteratively prunes the least likely tokens based on
their probability contribution to the corpus, leverag-
ing the expectation maximization (EM) algorithm.

Token-Free Byt5 This approach treats all dis-
tinct bytes in the corpus as tokens. Xue et al. (2022)
used this approach and have increased the num-
ber of transformer parameters at the expense of a
large number of discarded vocabulary parameters.
They have been shown to be competitive with their
subword-level counterparts.

Multilingual BERT To provide a comprehensive
evaluation, we compare our pre-trained tokeniz-
ers with out-of-the-box multilingual BERT’s (Pires
et al., 2019) WordPiece tokenizer, containing 700
Georgian tokens. This comparison allows us to
assess the effectiveness of our tokenizers against
the established multilingual model.



4.2 Training Procedure
Tokenizer Training As the vocabulary size is a
critical factor for the subword tokenizers, we ensure
its optimization for each method. Each subword-
level tokenizer was trained to generate vocabularies
of four different sizes (8k, 16k, 32k, and 64k), en-
suring optimal performance for the BERT model.
All the tokenizers were adjusted to accommodate
BERT’s special tokens and post-processing require-
ments.

BERT Integration For the integration with
BERT, we followed related studies (Toraman et al.,
2023; Xue et al., 2022) and utilized a scaled-down
architecture. These studies indicated that differ-
ences between tokenizers are more pronounced
with smaller language models. Smaller models
also have the advantage of faster training, allowing
us to run more evaluations than would be possi-
ble with larger-scale models. For our scaled-down
BERT model, we used the following configuration,
consistent across all our experiments: Hidden size:
512; Number of hidden layers: 8; Number of at-
tention heads: 8; Intermediate-size: 3072; Max
position embeddings: 512 for subword-level tok-
enizers, 2048 for token-free approach.

Pre-training Setup The pre-training corpus, as
detailed in Sec. 3, comprises 1 million tokens from
high-quality Georgian text sources. Pre-training
was conducted by training multiple BERT models
sufficiently long to achieve stable training and eval-
uation loss plots. BERT models were pre-trained
using only the Masked Language Modeling (MLM)
task, with the following aspects deviating from the
original BERT configuration. We made use of dy-
namic masking adopted from RoBERTa, set the
training epochs to 30, the batch size to 264, and
employed mixed precision training.

Finetuning and Evaluation The pre-trained
BERT models were finetuned on four down-
stream language understanding tasks: Named En-
tity Recognition (NER) and Part-of-Speech (POS)
tagging for token classification, and Sentiment
Analysis and Toxicity Detection for text classifica-
tion. Details on these tasks and their corresponding
datasets are provided in Section 3. Each language
model was finetuned 26 times, and evaluation re-
sults were averaged across these runs to ensure sta-
bility and robustness. Performance was evaluated
using four metrics: accuracy, f1 score, precision,
and recall. These metrics provide a comprehensive

ByT5 mWP BPE WP SP-U

MLM acc 0.423 0.564 0.613 0.616 0.617

NER

acc 0.800 0.902 0.925 0.927 0.930

f1 0.552 0.758 0.797 0.794 0.787

pre 0.565 0.744 0.781 0.783 0.774

rec 0.539 0.774 0.813 0.806 0.800

TOXD

acc 0.879 0.955 0.917 0.933 0.941

f1 0.866 0.952 0.911 0.928 0.937

pre 0.890 0.948 0.912 0.923 0.929

rec 0.843 0.957 0.910 0.933 0.945

POS

acc 0.699 0.889 0.900 0.905 0.915

f1 0.045 0.709 0.817 0.824 0.820

pre 0.028 0.670 0.788 0.795 0.790

rec 0.121 0.754 0.849 0.856 0.852

SA

acc 0.493 0.588 0.672 0.668 0.675

f1 0.472 0.558 0.642 0.641 0.647

pre 0.470 0.535 0.637 0.649 0.663

rec 0.493 0.588 0.672 0.668 0.675

Table 2: Performance of different tokenizers across var-
ious NLP tasks in terms of accuracy, f1 score, precision,
and recall. Tokenizers: ByT5, multilingual BERT’s
WordPiece (mBERT), Byte Pair Encoding (BPE), Word-
Piece (WP), SentencePiece with Unigram (SP-U). Tasks:
Masked Language Modeling (MLM), Named-Entity
Recognition (NER), Part-of-Speech Tagging (POS),
Toxicity Detection (TOXD), and Sentiment Analysis
(SA).

view of the models’ effectiveness across the various
tokenization methods.

5 Results

5.1 Comparing Tokenizers

We present the results of different tokenizers on
language modeling and our four downstream tasks
in Table 2. All subword tokenizers in this table
were trained with a vocabulary size of 64k. For
masked language modelling, SentencePiece with
Unigram (SP-U) achieves the highest accuracy
of 0.617, closely followed by WordPiece (0.616
acc), and BPE (0.613). Both multilingual BERT’s
WordPiece tokenizer and the token-free ByT5 are
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Figure 1: Impact of vocabulary size on the performance of four downstream tasks: Toxicity Detection, Sentiment
Analysis, Named-Entity Recognition, and Part-of-Speech Tagging. The x-axis shows the vocabulary size in absolute
numbers as well as in proportion to the overall network parameters.

worse by a large margin (0.56 and 0.423 acc, re-
spectively). This general pattern is also present in
three out of four downstream tasks. For named en-
tity recognition, part-of-speech-tagging, and senti-
ment analysis, the subword tokenizers consistently
achieve better performance than ByT5 and multi-
lingual BERT’s WordPiece tokenizer. The differ-
ences between subword tokenizers on downstream
tasks are small. When measured in terms of f1,
BPE achieves the best performance in named entity
recognition (0.797 f1). For part-of-speech tagging,
WordPiece achieves the best f1 score of 0.824, and
for sentiment analysis, SentencePiece with Uni-
gram is leading with 0.647 f1.

We observed surprisingly bad POS results for
the ByT5 tokenizer in terms of f1 (0.045), preci-
sion (0.028), and recall (0.121). We conjecture this
is because f1, precision, and recall are directly re-
lated to the number of correctly predicted positive

instances. Because the tokenizer breaks the text
into tokens that are too granular or not meaningful
for the POS tagging task, combined with a small
number of training examples, there is a high num-
ber of false positives and false negatives, thereby
lowering the aforementioned metrics. Also, our
POS tagging benchmark is highly imbalanced and
involves a few frequent tags, like nouns and verbs,
and many infrequent ones, like rare numerals. Thus,
a high accuracy is misleading to some extent as the
model performs well on frequent tags while failing
on the rare ones.

5.2 Comparing Vocabulary Sizes
We present the results of our vocabulary size exper-
iments in Figure 1. There is a tendency that larger
vocabulary sizes lead to better performance. This
is clearly the case for both sentiment analysis and
part-of-speech tagging. For named entity recogni-
tion, the effect of vocabulary sizes is negligible - f1



Accuracy AUC

SOTA CNN 0.888± 0.007 0.942± 0.005

Ours (WP 8k) 0.944± 0.007 0.944± 0.007

Ours (mWP) 0.959 ± 0.009 0.959 ± 0.009

Table 3: Our Toxicity Detection approaches compared
with the SOTA by Lashkarashvili and Tsintsadze (2022).
We report accuracy and area under curve (AUC), along
with standard deviations across CV folds.

scores only vary between 0.78 and 0.80. However,
for toxicity detection, the positive connection be-
tween vocabulary size and performance is clearly
reversed. Here, tokenizers with a higher average
split of the words were more effective. This indi-
cates that a finer granularity in tokenization can
be beneficial for tasks requiring a nuanced under-
standing of potentially offensive language. This
statement is in line with the previously observed
fact that the multilingual BERT (mBERT) tokenizer
performs best for toxicity detection. The mBERT
tokenizer contains only 700 Georgian tokens, the
smallest vocabulary size among the subword-level
tokenizers we investigated.

5.3 Comparison with SoTA Approaches

Our scaled-down BERT models ( 42M parameters)
demonstrate strong performance on the Toxicity
Detection dataset introduced by Lashkarashvili and
Tsintsadze (2022). We employed two tokeniza-
tion methods for pretraining and fine-tuning: an
8K vocabulary WordPiece and the multilingual
BERT WordPiece. For comparability, we followed
Lashkarashvili and Tsintsadze (2022) by using
stratified 5-fold cross-validation, along with accu-
racy (ACC) and area under the curve (AUC) as eval-
uation metrics. Results, presented in Table 3, show
that while Lashkarashvili and Tsintsadze (2022) re-
ported an ACC of 0.888 and an AUC of 0.942 for
their best-performing CNN model, our approach
achieved an ACC of 0.9435 and an AUC of 0.9442
using the 8K WordPiece, and an accuracy of 0.9586
and an AUC of 0.9591 with the multilingual Word-
Piece, establishing a new state of the art.

6 Discussion

For most tasks, we observed that pre-training tok-
enizers on a small amount of Georgian text yield
better performance than relying on the mBERT

tokenizer. This suggests that language-specific pre-
training is crucial for achieving optimal results in
Georgian NLP tasks. The superior performance
of these tokenizers compared to the multilingual
WordPiece tokenizer from mBERT (except in tox-
icity detection) raises questions about the limita-
tions of the latter. Our findings indicate that this
multilingual tokenizer may not adequately capture
the nuances of highly divergent languages such as
Georgian.

Furthermore, our results indicate that ByT5 is
not competitive with the other tested methods. We
suspect two possible reasons for this. First, each
Georgian letter contains 3 bytes, so the LM training
input sequences for Georgian are three times longer
than for English. Second, in the original ByT5
paper, the authors Xue et al. (2022) increased the
number of transformer parameters at the expense of
a large number of discarded vocabulary parameters.
They increased input sequence length, embedding
size, and intermediate layer size. We only increased
the input sequence length due to the limited vocab-
ulary parameters, which might be another reason
for the suboptimal performance observed.

We found a general trend of improved perfor-
mance with larger vocabulary sizes for subword
tokenizers. This suggests that capturing a wide
range of morphological variations is crucial for ef-
fective language modeling in Georgian. However,
our findings on toxicity detection versus the other
downstream tasks also underscore the importance
of tailoring tokenization strategies to the specific
requirements of each task and dataset.

In our case, the toxicity detection benchmark in-
volves words that are not present in the tokenizer’s
vocabulary, specifically those that serve as key in-
dicators of toxic content. When a tokenizer en-
counters these unknown words, it splits them into
smaller subword units. This behavior is observed
even in tokenizers with large vocabularies. How-
ever, LMs using tokenizers with smaller vocabulary
sizes are inherently more robust at handling and
representing short tokens because their pretraining
data mostly contains short tokens. In contrast, LMs
using tokenizers with larger vocabularies tend to
rely on longer tokens, which can lead to a loss of
information when the input is split into less mean-
ingful or less frequent short tokens. We conjec-
ture that this is the reason for why tokenizers with
smaller vocabulary sizes perform better in the case
of toxicity detection.



The results highlight that a one-size-fits-all ap-
proach to tokenization is inadequate, and careful
consideration must be given to the nature of the
task and especially to the linguistic features of a
language.

7 Conclusion

In this study, we explored the impact of various
tokenization methods on Georgian language mod-
eling, including subword-level tokenizers, such
as BPE, WordPiece, and SentencePiece with Uni-
gram, a pre-trained multilingual BERT tokenizer,
and a recently proposed token-free approach ByT5.
Each method is evaluated by the performance of a
scaled-down BERT architecture on four indepen-
dent downstream tasks. Our findings suggest that
larger vocabulary sizes generally enhance perfor-
mance across most NLP tasks. However, on the
toxicity detection task, tokenizers with finer granu-
larity, like the multilingual mBERT with its smaller
vocabulary, performed better. In all the other tasks,
language-specific pre-training of tokenizers outper-
formed mBERT. Interestingly, the token-free ap-
proach did not perform competitively, highlighting
potential limitations of its applicability to Georgian,
our model’s architecture, or both.

In the future, we aim to explore the impact of
different tokenization strategies on more advanced
model architectures, as well as extend this analysis
to other Kartvelian languages, which could further
our understanding of effective NLP strategies for
Georgian and similar languages.

Georgian presents a challenging landscape for
NLP due to its complex morphology, limited train-
ing data, and sparse research focus. By conducting
the first rigorous comparative study of tokenization
methods for Georgian, this work lays a founda-
tional reference for future research and develop-
ment. Given that tokenization is the first step in
NLP model training, our study provides valuable
insights that can guide researchers and practitioners
in building models tailored to the needs of Geor-
gian and specific NLP tasks.

Limitations

While this study provides valuable insights into tok-
enization methods for Georgian, several limitations
should be acknowledged.

Architectural Diversity Our research is limited
to a scaled-down BERT. Exploring and experiment-
ing with other LM architectures could potentially

yield different results and even trends, and thus, it
is essential to consider alternative architectures in
future studies.

Language Scope The experiments and analyses
conducted in this study are restricted to Georgian.
Testing the generalizability of our findings to other
languages would provide a broader validation of the
tokenization methods. This is particularly impor-
tant for ensuring the robustness and applicability
of our approaches in multilingual contexts.

Downstream Tasks Our study evaluates the to-
kenization methods on a limited number of down-
stream tasks. Expanding the range of downstream
tasks in future research will help to understand
the effectiveness and limitations of the tokeniza-
tion methods in diverse applications, potentially un-
covering further task-specific strengths and weak-
nesses.

Comparison with Multilingual Models While
we compared our tokenizers to the multilingual
BERT model, we did not include XLM-RoBERTa
and mT5 (Conneau et al., 2020; Xue et al., 2021)
tokenizers in our evaluation. Future work should in-
corporate this and other recent multilingual models
to provide a more complete comparison.
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