
Deep Information Maximisation to Mitigate Information Loss in Text
Independent Speaker Verification

Nipun Fonseka, Nirmal Sankalana, Buddhika Karunarathne, Uthayasanker Thayasivam
Dept. of Computer Science & Engineering

University of Moratuwa
Sri Lanka

{nipunf.19, nirmalsankalana.19, buddhika, rtuthaya}@cse.mrt.ac.lk

Abstract

This paper presents a novel approach to mit-
igate information loss in text-independent
speaker verification by leveraging Deep Infor-
mation Maximisation (DIM). The proposed
method aims to enhance the retention of
speaker-specific information during the pooling
process, which is crucial for creating accurate
and high-level speech signal representations.
By incorporating mutual information maximi-
sation techniques, the DIM method optimises
the statistical dependency between frame-level
features and their corresponding high-level em-
beddings. Experiments conducted on the Vox-
Celeb1 dataset demonstrate the efficacy of the
approach, showing a significant reduction in
the Equal Error Rate (EER). Our best configu-
ration achieved an EER of 1.5376, an improve-
ment over the baseline model’s EER of 1.6119.
These findings indicate that the integration of
DIM can effectively enhance the performance
and accuracy of speaker verification systems.

1 Introduction

Speaker verification is the task of determining
whether a speaker’s claimed identity is true. This
process involves two main phases: the first is con-
verting a speech signal into a fixed-dimensional,
high-level representation called an embedding; the
second is measuring the similarity between such
embedding to verify identity.

In text-independent speaker verification, pool-
ing is essential for combining frame-level features
into a single, higher-level representation. How-
ever, this process can lead to the loss of crucial
speaker information, vital for accurate speaker veri-
fication. Various techniques have been proposed to
address this issue, including attention-based pool-
ing (Okabe et al., 2018), multi-level pooling (Tang
et al., 2019), and vector-based attentive pooling
(Gao et al., 2020). Despite these advancements,
significant information can still be lost due to the
inherent compression involved in pooling.

With the rise of deep learning, deep neural net-
works have become widely used in speaker verifi-
cation for producing consistent, high-level repre-
sentations of speech signals. Starting with x-vector
systems (Snyder et al., 2018), various methods have
been developed over time, including Time Delay
Neural Networks (TDNNs) (Liu et al., 2022), Long
Short-Term Memory networks (LSTMs) (Mobiny
and Najarian, 2018), Extended Context-Aware
Permutation-Invariant TDNNs (ECAPA-TDNNs)
(Desplanques et al., 2020), Convolutional Neu-
ral Networks (CNNs) (Zhou et al., 2019; Zhao
et al., 2020; Kim et al., 2022), and more recently,
transformers (Peng et al., 2023). While these
neural networks are effective at feature extrac-
tion, the pooling process is crucial for creating
fixed-dimensional high-level representations. Re-
searchers have developed several pooling meth-
ods, evolving from statistical (Variani et al., 2014)
techniques to advanced methods like multi-headed
attentive pooling (Zhu et al., 2018), aiming to opti-
mise the pooling process.

Mutual information is a measure that quanti-
fies the statistical dependence between two ran-
dom variables. Belghazi et al. introduced a neu-
ral network-based method called the Mutual Infor-
mation Neural Estimator (MINE) (Belghazi et al.,
2018) for estimating the mutual information be-
tween two variables. This method was adapted
by Hjelm et al. to create deep representations of
images by maximising the mutual information be-
tween an image and its high-level representation
(embedding) (Hjelm et al., 2019).

In this research, we apply the Deep Informa-
tion Maximisation technique proposed by Hjelm
et al. to mitigate information loss during pooling
in speaker verification. Our approach aims to en-
hance the retention of speaker-specific information,
thereby improving the performance and accuracy
of text-independent speaker verification systems.



2 Related Work

Our baseline model for speaker verification builds
on the work of Peng et al., which introduces an
attention-based backend for fine-tuning pre-trained
Automatic Speech Recognition (ASR) Transformer
models. This approach leverages the ability of
pre-trained Transformers to capture meaningful
acoustic and phonetic representations while intro-
ducing a lightweight backend to extract speaker-
discriminative features effectively (Peng et al.,
2023).

The core component of the attention-based back-
end is the Multi-Head Factorised Attentive Pooling
(MHFA) mechanism (Peng et al., 2023). It aims to
condition the speaker representations on the pho-
netic content of the input utterance, enabling the
model to capture both speaker and phonetic infor-
mation simultaneously. The output feature map
of each layer of the transformer is utilised here by
assigning two types of attention weights.

Given the output representations Zl ∈ RT×F

from the l-th Transformer layer of the pre-trained
model, where T is the number of frames and F
is the feature dimension, the MHFA method com-
putes two factorised representations: keys K and
values V, as follows:

K =
L∑
l=1

wlkZlSk, V =
L∑
l=1

wlvZlSv (1)

Here, wl
k and wl

v are learnable weights that ag-
gregate the layer-wise outputs, and Sk ∈ RF×D

and Sv ∈ RF×D are linear projections that reduce
the dimensionality of keys and values, respectively,
to D.

The multi-head attention mechanism is then ap-
plied to aggregate the values V over frames, condi-
tioned on the keys K:

A = softmax(KQ⊤) (2)

ch =

T∑
t=1

AhtVt (3)

c = concat(c1, . . . , cH) (4)

Here, Q ∈ RD×H contains the learnable query
vectors for each of the H attention heads, A ∈
RT×H is the attention matrix, and ch ∈ R1×D and
c ∈ R1×HD are the sub-representations and the
final utterance-level speaker representation, respec-
tively.

The key idea behind MHFA is that the keys K
capture phonetic information, allowing each atten-
tion head to focus on a specific set of phonetic units.
Simultaneously, the values V encode speaker dis-
criminative information, ensuring that the final rep-
resentation c is conditioned on both speaker and
phonetic characteristics.

To stabilise the fine-tuning process and improve
performance, propose two strategies (Peng et al.,
2023):

1. Fine-Tuning Regularisation: An L2 regular-
ization term is added to the overall loss function,
encouraging the fine-tuned model’s weights to re-
main close to the initial pre-trained weights:

L = Lspk + λ

|Θ|∑
j=1

∥θj − θpj ∥
2
2 (5)

Here, Lspk is the speaker classification loss, Θ
denotes the model parameters, θpj are the corre-
sponding parameters from the initial pre-trained
model, and λ is a hyperparameter controlling the
strength of the regularisation.

2. Layer-wise Learning Rate Decay (LLRD): In-
stead of using the same learning rate for all Trans-
former layers during fine-tuning, LLRD assigns
lower learning rates to the bottom layers and higher
rates to the top layers, as follows:

LRl = LR1 · ξl−1 (6)

Here, LRl is the learning rate for the l-th Trans-
former layer, LR1 is the base learning rate for the
bottom layer, and ξ is a weight decay factor con-
trolling the rate of increase in learning rates across
layers.

The authors demonstrate that these fine-tuning
strategies, combined with the MHFA backend,
achieve state-of-the-art performance in speaker ver-
ification while significantly reducing training time
compared to previous approaches.

3 Proposed Method

The proposed method is inspired by the research
presented in Deep Information Maximiser (Hjelm
et al., 2019). Here we introduce a regularisation
mechanism aimed at increasing the mutual infor-
mation between the high-level final embedding and
the frame-level features. This enhancement seeks
to retain valuable information from the frame-level
features.



Figure 1: baseline model (Peng et al., 2023)

Figure 2: Proposed Model



An additional discriminator, taking a pair of
frame-level and high-level embedding as input, is
introduced to estimate and maximise the mutual
information between these two sets of features.
This process effectively functions as a regularis-
ing term for the pooling layer, encouraging the
embedding vector to capture as much meaningful
information from the frame-level features as possi-
ble. The discriminator, which functions as a neural
network, assesses whether a given concatenated
pair of frame-level (low-level) feature maps and
high-level embedding corresponds, thereby esti-
mating the common information shared between
them.

Two specific discriminators, Global InfoMax
(GIM) and Local InfoMax (LIM), which are tai-
lored to capture local and global structures, are em-
ployed to estimate and maximise local and global
mutual information, respectively.

3.1 Global Information Maximisation (GIM)
Global Information Maximisation (GIM) seeks to
increase the mutual information between the output
feature map from the ASR encoder and the final
speaker embedding. This approach is designed
to enhance consistency and contextual understand-
ing within the speaker verification process. GIM
optimises Eψ : X → Y with neural network pa-
rameters ψ, by maximising the mutual information
I(X,Eψ(X)) between X and Eψ(X). Here, X
is the intermediate feature map, and Eψ(X) is the
final embedding created after pooling.

(ω̂, ψ̂)G ∈ argmax
ω,ψ

Îω(X;Eψ(X)), (7)

To achieve this, GIM flattens the ASR trans-
former’s feature maps along the feature axis and
then concatenates them with the final speaker em-
bedding. Based on this concatenation, GIM assigns
a score to measure the mutual information, thereby
providing a more accurate representation of the
speaker’s unique characteristics.

3.2 Local Information Maximiser (LIM)
While GIM can introduce irrelevant dependencies,
such as noise, that are not useful for classification,
the Local Information Maximiser (LIM) addresses
this by focusing on maximising the average mutual
information between the high-level embedding and
all local frames of the feature map. This approach
encourages high-level representation to maintain

high mutual information with all frames, promot-
ing the encoding of aspects of data that are shared
across frames.

LIM optimises Eψ with neural network param-
eters ψ, by maximising the average mutual infor-
mation I(X,Eψ(X)) between all the frames F
and Eψ(X). Here, X represents the intermediate
feature map, and Eψ(X) is the final embedding
created after pooling.

(ω̂, ψ̂)L = argmax
ω,ψ

1

F

F∑
i=1

Iω,ψ(xi;Eψ(X)) (8)

In this formulation, the final embedding is con-
catenated with each frame of the ASR transformer
feature map (intermediate representation). By max-
imising mutual information between each local
frame and the high-level embedding, LIM ensures
that the high-level embedding captures the most
relevant and shared information across all frames,
enhancing the robustness and accuracy of the clas-
sification task.

4 Loss Function

Both LIM and GIM are applied together to train
the model, optimising the classification loss during
training. The overall loss function can be described
as follows:

LTotal = LClassification

+αÎωG,ψ(X;Eψ(X))

+βÎωL,ψ(xi;Eψ(X))

(9)

The first term, LClassification, is the speaker
classification loss. The Additive Angular Margin
(AAM) Softmax loss function is used as the clas-
sification loss. The second and third terms are the
global and local MINE objectives ωG and ωL are
the parameters for the global and local discrimina-
tors, respectively). These MINE objectives act as
regularisation terms with weights α and β during
the training of the entire system. The total loss
function is calculated as follows:

T̂
(JSD)
ω,ψ (X;Eψ(X)) =

EP [−sp(−Tψ,ω(x,Eψ(x)))]
−EP̃ [sp(Tψ,ω(x′, Eψ(x)))]

(10)

The Jensen-Shannon Divergence (JSD) is used
as the objective function for MINE. It returns the



Figure 3: Global Information Maximiser

Figure 4: Local Information Maximiser

difference between the softmaxed estimated mutual
information of positive pairs (marginal distribution)
and the softmaxed estimated mutual information
of negative pairs. The JSD provides better and
more stable results (Ravanelli and Bengio, 2019)
compared to the Kullback-Leibler (KL) divergence
used by Belghazi et al.

5 Experiments

5.1 Experiment Setup

To train our proposed model, we utilised the Vox-
Celeb1 development set (Nagrani et al., 2017),
a widely recognised large-scale dataset for text-
independent speaker verification. We evaluated
the model’s performance using the VoxCeleb1 test

corpus. For the ASR transformer, we employed
the WaveLM-Base-Plus (Chen et al., 2022) model
due to its strong performance in previous studies
(Peng et al., 2023). The transformer’s output had
dimensions of 150 x 768, with 150 representing the
total number of frames and 768 representing the
feature dimension for each frame. Model training
was conducted on two 16GB NVIDIA Tesla GPUs
in a distributed manner, with a batch size of 32. We
conducted experiments both with and without the
Deep Information Maximisation (DIM) method,
adjusting parameters such as α, β.

The learning rate was set to 0.0001, with a
decay rate of 0.95. Both the Local Informa-
tion Maximiser (LIM) and the Global Information
Maximiser (GIM) were implemented using one-



Layer in channels out channels feature dimension kernel size
conv 1 768 256 150 3
conv 2 256 64 148 3
fc 1 9600 512 - -
fc 2 512 1 - -

Table 1: Layer configuration for GIM

Layer in channels out channels feature dimension kernel size
conv 1 256 + 768 512 150 1
conv 2 512 512 150 1

Table 2: Layer configuration for LIM

dimensional Convolutional Neural Networks (1D
CNNs) and fully connected layers.

We used one-dimensional Convolutional Neural
Networks (1D CNNs) for both Local and Global In-
formation Maximisation (InfoMax) because; firstly,
audio data is inherently sequential, with each time
step represented by a feature vector, making 1D
convolutions ideal for capturing temporal depen-
dencies and local patterns along the time axis. This
approach also reduces computational complexity
and the number of model parameters compared to
2D convolutions, enhancing efficiency.

5.2 Experiment Results

The experiment evaluated the proposed Deep In-
formation Maximisation (DIM) approach inte-
grated with an attention-based backend for text-
independent speaker verification. The primary met-
ric used for performance evaluation was the Equal
Error Rate (EER), where a lower EER indicates
better performance.

No attention heads EER
1 1.877
2 1.681
4 1.612
8 1.485
16 1.419
32 1.336

Table 3: Experimental Results for baseline model with
different number of attention heads

As the number of attention heads increases, the
EER consistently decreases, demonstrating that us-
ing more attention heads improves the accuracy of
the speaker verification system. The lowest EER
of 1.336 is achieved with 32 attention heads.

No of Baseline DIM integrated
attention heads EER baseline EER
1 1.877 1.845
2 1.681 1.677
4 1.612 1.538
8 1.485 1.441
16 1.419 1.389
32 1.336 1.392

Table 4: Comparison of Baseline and DIM integrated
baseline for different attention heads

β = 0.01 β = 0.05 β = 0.1
α = 0.01 1.8664 1.5376 1.7656
α = 0.05 1.6278 1.7073 2.0308
α = 0.1 1.7709 1.7232 1.9618

Table 5: Experiment results(EER) of the DIM inte-
grated base for different α and β values with four atten-
tion heads.

The DIM method was tested with various con-
figurations of the hyperparameters α and β, which
control the weights of the global and local mutual
information maximisation terms, respectively. The
results are presented in the table below, comparing
different values of α and β with the baseline model,
which had an EER of 1.612.

The experiment results indicate that the integra-
tion of the DIM method can improve the perfor-
mance of the speaker verification system. The con-
figuration with α=0.01 and β=0.05 achieved the
best EER of 1.5376, which is an improvement over
the baseline EER of 1.612.

In high levels, increasing the number of atten-
tion heads generally leads to lower EER, indicating
better performance. With up to 16 attention heads,
DIM-integrated models outperform the baseline.



Optimal values for α and β significantly impact
performance, with lower values generally resulting
in better EER, with the optimal combination being
α=0.01 and β=0.05. Compared to α, the β has a
stronger influence on EER, which emphasizes the
importance of Local InfoMax. Overall, the DIM
integrated baseline shows consistent improvements
over the baseline, confirming the effectiveness of
the DIM integration.

Possible Reasons for Variations in Experimen-
tal Results for baseline and DIM Integrated in 32
attention heads. (1) Increasing the number of atten-
tion heads enhances the model’s ability to capture
detailed speaker-specific characteristics by simulta-
neously focusing on multiple aspects of the input
features. While this can reduce the Equal Error
Rate (EER), it also increases model complexity,
which can lead to overfitting if the training data
lacks sufficient diversity. (2) There appears to be
a saturation point beyond which adding more at-
tention heads does not significantly improve per-
formance. Beyond this point, additional attention
heads provide diminishing returns, potentially lead-
ing to inefficiency and a low performance/cost ratio.
(3) The DIM method aims to maximise mutual in-
formation between frame-level and high-level fea-
tures, preserving discriminative features essential
for effective speaker verification. In models with
32 attention heads, the high-dimensional space cre-
ated can make it difficult for DIM to preserve and
maximise relevant information without introduc-
ing noise or redundancy, thus conflicting with the
model’s complexity. (4) The hyperparameters α
and β are crucial for model performance as they
control the emphasis on mutual information max-
imisation. Lower values are generally preferred to
prevent the model from overly focusing on mutual
information at the expense of classification accu-
racy. However, if set too low, the model might not
fully leverage the benefits of Deep InfoMax.

6 Conclusion

The research investigated the use of Deep Informa-
tion Maximisation (DIM) to mitigate information
loss in text-independent speaker verification sys-
tems, focusing on the impact of attention heads
and DIM integration on performance. Findings re-
vealed that Local Information Maximisation (LIM)
plays a significantly larger role than Global Infor-
mation Maximisation (GIM) in maximising mutual
information, highlighting the importance of pre-

serving local context for accuracy improvement.
Experiments showed that up to 16 attention

heads, the DIM-integrated model outperformed the
baseline by reducing the Equal Error Rate (EER).
Beyond this point, the EER increased, indicating
limitations in handling higher complexity and po-
tential noise introduction. This suggests that while
DIM is beneficial, its integration with numerous
attention heads requires careful balancing to avoid
overfitting and diminishing returns. The results
emphasize the potential of attention mechanisms
in capturing detailed speaker-specific characteris-
tics but also underline the need to manage model
complexity for optimal performance.

7 Future Work

Future research should aim to identify the opti-
mal number of attention heads to balance model
complexity and performance, involving further ex-
periments and validation across diverse datasets,
introducing data augmentation techniques, such as
noise addition, which will allow us to evaluate the
robustness and generalisation capability of our pro-
posed method in more challenging and realistic
conditions.

Advanced techniques to integrate DIM with
more attention heads should be explored, includ-
ing refining mutual information maximisation and
incorporating additional regularisation to reduce
noise.

Robust hyperparameter tuning for α and β is
crucial. Studies should explore a broader range of
these parameters to better understand their impact
and identify the most effective configurations. Fi-
nally, future work should address the computational
demands of training models with many attention
heads by optimising training stability and efficiency
or exploring alternative architectures.
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