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Abstract
Answer sentence identification and extrac-
tive answer span identification are crucial
components in the development of robust
question-answering (QA) systems. Despite
advancements in natural language process-
ing (NLP), there remains a gap in apply-
ing these technologies to Urdu due to the
scarcity of annotated datasets and linguis-
tic tools. This paper addresses this gap
by introducing a three-stage unified frame-
work aimed at improving both tasks.The
framework consists of three key compo-
nents: key sentence identification, extrac-
tive answer span identification, and a uni-
fied scoring model. For sentence identifi-
cation, the framework employs a sliding
window approach for text alignment, us-
ing noun term frequency for relevance scor-
ing and vector similarity from pre-trained
word embeddings to capture deeper seman-
tics. For extractive answer span identifi-
cation, the model uses a fine-tuned mul-
tilingual BERT (mBERT) model trained
on the Universal Dependencies (UD) Tree-
bank for Urdu to identify noun chunks for
linguistic relevance. The unified model in-
tegrates probabilities from sentence iden-
tification and span extraction to derive
a composite score for selecting the most
relevant answer span.Experimental results
show the proposed approach significantly
outperforms traditional methods, demon-
strating its potential for broader applica-
tion in other low-resource languages like
Urdu.

1 Introduction
Question Answering (QA) systems are essen-
tial tools for extracting precise information
from large text corpora in response to user
queries (Kazi et al., 2023). Developing such
systems for low-resource languages like Urdu
is particularly challenging due to the lack of
extensive annotated datasets and specialized

linguistic tools (Daud et al., 2017). Standard
QA approaches, which often rely on syntac-
tic and semantic similarities typical of high-
resource languages, struggle to capture the
linguistic nuances and rich morphology char-
acteristic of Urdu. This gap highlights the
need for methodologies tailored specifically
to the unique challenges posed by such lan-
guages (Otegi et al., 2020). Answer sentence
identification and answer extraction are criti-
cal components of QA systems. Answer sen-
tence identification involves identifying sen-
tences based on their likelihood of contain-
ing the correct answer, while answer extrac-
tion focuses on identifying the specific text seg-
ment within these sentences that directly an-
swers the question (Allam and Haggag, 2012).
Traditional models for these tasks often fall
short as they rely predominantly on surface-
level syntactic and semantic similarities, which
are insufficient for capturing the complex lin-
guistic features of Urdu (Chang et al., 2024).
This paper introduces a comprehensive three-
stage unified framework that integrates Key
sentence identification, extractive answer ex-
traction to enhance performance for Urdu text.
The proposed model employs combination of
traditional and advanced text processing tech-
niques to address the challenges posed by the
Urdu language. The first stage utilizes a
custom-designed weighted sliding window al-
gorithm (Richardson et al., 2013) for precise
text alignment, enhancing relevance scoring
through the term frequency of nouns. The
second stage leverages a fine-tuned multilin-
gual BERT (mBERT) model (Devlin et al.,
2018), trained on the Universal Dependencies
(UD) Treebank for Urdu (Bhat et al., 2017), to
identify noun chunks within the text. These
chunks are evaluated and grouped based on se-
mantic similarity, with the best chunk being



selected based on aggregated scores. The fi-
nal stage combines the probabilities from both
the identification and extraction stages into
a unified score, ensuring the identification of
the most relevant answer chunk from the top-
ranked sentences by leveraging both sentence-
level and phrase-level evidence. The research
contributions of this work are as follows:

1. Development of a three-stage unified
framework that integrates key sentence
identification and extractive answer span
identification, specifically tailored for the
Urdu language.

2. Introduction of a customized sliding
window algorithm for question-passage
alignment, enhancing relevance scoring
through the term frequency of nouns.

3. Demonstration of significant performance
improvements over traditional methods
on Urdu datasets, highlighting the
model’s potential for broader application
in other low-resource languages.

The rest of this paper is structured as follows.
Section 2 provides an overview of the relevant
background. Section 3 details our methodol-
ogy, focusing on the stages of answer sentence
identification, answer extraction, and the uni-
fied model for QA. Section 4 outlines the ex-
perimental setup, and Section 5 presents the
results, followed by a discussion of their signif-
icance.

2 Literature Review
Question Answering (QA) systems have ad-
vanced significantly in high-resource languages
like English, Chinese, and European languages.
Early multi-stage QA methods relied on fea-
ture engineering and traditional machine learn-
ing. Yao et al. (Yao et al., 2013) used
syntactic features and logistic regression for
answer ranking, highlighting linguistic struc-
ture’s role.With deep learning, neural mod-
els became prominent. Severyn and Mos-
chitti (Severyn and Moschitti, 2015) intro-
duced a CNN for sentence pair modeling, out-
performing previous methods. The advent
of transformer models, notably BERT (De-
vlin et al., 2018), revolutionized QA. Nogueira
and Cho (Nogueira and Cho, 2019) fine-tuned

BERT for passage ranking, setting new bench-
marks.Answer extraction has evolved from
rule-based systems like TextRunner (Banko
et al., 2007) to neural models. Named
Entity Recognition (NER) significantly aids
this process, with Lample et al. (Lample
et al., 2016) combining LSTMs and CRFs.
Span-based extraction models, like SpanBERT
(Joshi et al., 2020), further improved ex-
tractive QA tasks.End-to-end QA systems
like DrQA (Chen et al., 2017) have shown
strong performance, supported by datasets
like SQuAD (Rajpurkar et al., 2016), which
have become standard benchmarks. The in-
troduction of datasets such as Natural Ques-
tions (Kwiatkowski et al., 2019) has further
pushed open-domain QA research.These ad-
vancements have inspired research in low-
resource languages like Urdu, Arabic, and
Hindi (Kazi and Khoja, 2021) (Arif et al.,
2024) (Shaheen and Ezzeldin, 2014) (Gupta
et al., 2018). While transformer models like
T5 (Raffel et al., 2020) have been adapted,
challenges remain in effectively applying these
to Urdu due to linguistic nuances and re-
source constraints. Our work introduces a
lightweight, interpretable multi-stage frame-
work leveraging traditional techniques along-
side fine-tuned multilingual BERT, addressing
Urdu-specific challenges. Although it may not
match the accuracy of models like mT5, it pro-
vides a foundation for advanced hybrid sys-
tems.

3 Methodology
This section presents the two-stage approach
used to integrate key sentence identification
and extractive answer span identification into
a unified learning model, as illustrated in Fig-
ure 1. The methodology employs a sliding
window technique for measuring text overlap
between the passage and the question, incor-
porates term frequency of nouns for relevance
scoring, and computes semantic vector simi-
larity using word embeddings. Additionally,
a fine-tuned mBERT model, trained on the
UD Treebank for Urdu, is used for high-quality
chunk identification. The framework consists
of the following three components:

(i) Key sentence identification: A probabilis-
tic model is used to identify sentences in



Figure 1: Overall Architecure of Context-Aware
QA for Urdu Language

the passage that are most relevant to the
question.

(ii) Extractive Answer Span Identification:
Another probabilistic model is used to ex-
tract answer spans from the identified key
sentences.

(iii) Unified model: The outputs from the key
sentence identification and answer extrac-
tion stages are integrated into a unified
model. The probabilities from both task-
specific models are combined to improve
the overall performance of the system.

3.1 Key Sentence Identification
In this section, we describe the methods used
for key sentence identification, which involves
determining which sentences are most likely
to contain the correct answer to a given ques-
tion. This process is divided into two main
parts: Sliding Window Relevance Score Fea-
ture( SWRS) and Semantic Similarity Feature.
The SWRS feature identifies the most relevant
segment of the passage using a sliding window
approach, while the semantic vector similar-
ity measures the similarity between the ques-
tion and candidate sentences using word em-
beddings.After extracting both features logis-
tic regression model predicts the probability
that each sentence contains an answer.

3.1.1 Sliding Window Relevance Score
Feature(SWRS)

The SWRS feature begin by tokenizing the
question and passage into individual words us-
ing UrduHack (ALi, 2020). This allows for a
detailed comparison at the word level. Next,
the term frequency (TF) for nouns in the cor-
pus is calculated, as nouns often carry signifi-
cant meaning in sentences. Using a sliding win-
dow approach, the passage is segmented into

overlapping windows of a fixed size, and the
relevance score for each window is calculated
based on the overlap with the question words
and the term frequency of nouns within the
window. Additionally, a word co-occurrence
matrix is used to enhance the relevance scor-
ing by considering the contextual relationships
between words. The window with the highest
relevance score is then selected as the most
aligned segment, providing a focused area of
the passage that is most likely to contain the
answer , as described in Algorithm 1.

Algorithm 1 Algorithm of SWRS
Abbreviations:

• Qtext: Question string
• Ptext: Passage string
• W : Window size
• s: Step count
• C_m: Co-occurrence matrix
• TFnoun: Term Frequency of nouns
• IC(n): Inverse Count of nouns

1: Input:
• Qtext: Question string
• Ptext: Passage string
• W : Window size
• s: Step count

2: Tokenization:
• Split Qtext and Ptext into words
• Output: Qtokens, Ptokens

3: Calculate TF for Nouns:
• Identify nouns in Ptokens and calculate TFnoun

4: Calculate Co-occurrence Matrix:
• Compute C_m using Ptokens and Qtokens

5: Overlap Score (Os):
• For each window W in Ptokens:

– Os =
∑

n∈W∩Qtokens
TFnoun(n)× IC(n)

6: Co-occurrence Score (Cos):
• For each window W in Ptokens:

– Cos =
∑

w∈W

∑
q∈Qtokens

C_m(w, q)

7: Relevance Score (Rs):
• For each window W in Ptokens:

– Rs = Os + Cos

8: Sliding Window:
• Slide W across Ptokens with size w and step s.
• Calculate scores and find j∗ = arg maxj Rs(j)

9: Output:
• best_window = Wj∗

10: Return:
• best_window

3.1.2 Semantic Similarity Features
The initial phase involves utilizing pre-trained
word embeddings, specifically fastText embed-
dings (Bojanowski et al., 2016) trained on a



large corpus of question-answer pairs. Fast-
Text embeddings are preferred here as they
incorporate subword information, capturing
morphological nuances and effectively han-
dling out-of-vocabulary words. Training on
a QA-specific corpus ensures that the embed-
dings are tailored to the domain, enhancing
their representation of relevant semantic re-
lationships. Word embeddings map words
into a continuous vector space, where seman-
tically similar words are situated closer to-
gether. Each word w in the question and can-
didate sentences is transformed into a high-
dimensional vector vw that encapsulates its
semantic nuances. This transformation cap-
tures the contextual meaning of words, facili-
tating a sophisticated comparison between the
question and candidate sentences beyond mere
lexical similarity.Subsequently, a single vector
representation for the entire question and each
candidate sentence is constructed by aggre-
gating the vectors of content words, such as
nouns, verbs, and adjectives. This aggrega-
tion, achieved through vector summation:

Vsentence =
∑

w∈content words
vw

integrates the semantic information of all con-
tent words, resulting in a composite vector
that represents the overall meaning of the sen-
tence. This method enhances the capacity to
perform meaningful comparisons between the
question and the candidate sentences. The fi-
nal step involves computing semantic similar-
ity by calculating the cosine similarity between
the vector representation of the question VQ

and each candidate sentence VC :

Cosine Similarity =
VQ · VC

∥VQ∥∥VC∥

3.2 Extractive Answer Span
Identification

In this section, we focus on the process of ex-
tracting the specific span of the sentence that
answers the given question. The extraction
process ensures that the most relevant and pre-
cise text span is identified and selected, provid-
ing an accurate response to the user’s query.In
the end, another logistic regression model eval-
uates the likelihood of each candidate span be-
ing the correct answer.

3.2.1 Candidate span extraction
In the answer extraction process, the ini-
tial step involves identifying candidate spans
within the sentences that are likely to contain
the correct answer. To achieve this, we uti-
lize a fine-tuned mBERT (multilingual BERT)
model, specifically trained on the Universal
Dependencies (UD) Treebank for Urdu. This
model is proficient in identifying high-quality
noun phrases and other relevant text segments,
ensuring that the candidate span are both lin-
guistically coherent and contextually appropri-
ate for further evaluation. Let C represent the
set of candidate span identified as:

C = {c1, c2, . . . , cn}

where each ci represents an individual candi-
date span. Once the candidate spans are iden-
tified, the next step is to evaluate the quality
of each span based on several features. These
features include the length of the span, its po-
sition within the sentence, and its relevance
to the question posed. The evaluation process
can be represented by scoring each span ci as
follows:

S(ci) = α · len(ci) + β · pos(ci) + γ · rel(ci, Q)

where α, β, γ are weighting factors that adjust
the importance of each feature, and Q is the
vector representation of the question. This
scoring helps determine the likelihood that a
given span contains the correct answer, allow-
ing us to filter and retain only the most promis-
ing candidates for further consideration. Af-
ter evaluating the individual span, the subse-
quent step is to group semantically equivalent
span. This grouping is based on both word
overlap and semantic similarity, ensuring that
span conveying the same or similar informa-
tion are clustered together. Let G represent
these groups:

G = {g1, g2, . . . , gm}

where each group gj contains semantically sim-
ilar chunks. Semantic similarity between span
ci and cj can be computed using:

sim(ci, cj) =
vci · vcj

∥vci∥∥vcj∥

where vci and vcj are the vector representa-
tions of the spans. This step ensures that



we consolidate the information across sim-
ilar span, which aids in aggregating their
scores.The final step in the span extraction
process involves selecting the best span from
each group of equivalent span. This is
achieved by aggregating the scores within each
group and selecting the span with the highest
score:

c∗ = arg max
ci∈gj

S(ci)

This selection process ensures that the cho-
sen span not only aligns well with the ques-
tion but also represents the most reliable and
precise part of the text. By considering ag-
gregated scores, we enhance the robustness of
our selection, ensuring the extracted answer is
both relevant and accurate. This systematic
approach, encompassing candidate span iden-
tification, span evaluation, grouping of equiva-
lent chunks, and the final selection of the best
span, guarantees that the extracted span is
contextually appropriate and precise. This en-
hances the overall effectiveness of the question-
answering system by ensuring that semanti-
cally similar sentences, even without shared
lexical items with the question, are considered
relevant, thereby significantly improving the
accuracy of the answer retrieval.

3.3 Unified Model for Question
Answering

In this section, we introduce the methodol-
ogy for combining probabilities derived from
the key sentence identification and span ex-
traction processes. The objective is to unify
these probabilities into a single score that can
identify the most relevant answer span from
the top-ranked sentences. By integrating both
identification and extraction stages, we ensure
that the selected span is contextually appropri-
ate and precisely extracted. Our unified model
leverages advanced feature engineering and
probabilistic modeling to enhance the accu-
racy and relevance of extracted answers from
textual data. This sophisticated approach
combines the strengths of key sentence iden-
tification and extractive answer span identifi-
cation, tailored specifically to the nuances of
different question types in Urdu. Here’s an
overview of the methodology:

3.3.1 Feature Extraction
The model leverages features extracted from
various modules, including those specifically
designed for key sentence identification and ex-
tractive answer span identification. Addition-
ally, it incorporates a diverse set of features
tailored to capture both the lexical and seman-
tic nuances of the text, further enhancing its
ability to identify the most relevant answer:

Question Type Specific Features:
• Question-word Features: Extracts

and utilizes the POS, DEP, and NER tags
of the main question word (e.g., 〨ن/⸘ ,ㅏ),
appending these to the question type to
refine feature sensitivity.

• Question Focus: Determines the focus
noun phrase within the question, crucial
for aligning the model’s attention to the
most relevant part of the quer.

Query Ques:
Pairs the headword and question focus fea-
tures, creating compound indicators such as
question-type|question-focus-word|headword-
pos-tag.

Span Tags:
checking for the presence of significant noun
phrase that match expected answers based on
the question type.

3.3.2 Conditional Probability Learning
During training, the model learns the condi-
tional probabilities P (c | s, f):

• c: Candidate answer span.

• s: Sentence containing the answer span.

• f : Feature vector encompassing all ex-
tracted features for the answer span and
the sentence.

This probabilistic framework captures the
complex interdependencies between sentence
relevance, answer span quality, and the rich
contextual features derived from the text.

3.3.3 Unified Probability Score
In the prediction stage, the model calculates a
unified probability score(UPS) for each candi-
date answer span:

UPS(c) = P (c | f)× P (s | c, f)



where P (c | f) represents the probability of
the answer span being correct, based solely on
its features, and P (s | c, f) assesses the con-
ditional probability that the sentence is key,
given the span and its features.

3.3.4 Final Answer Selection
The model selects the candidate answer span
with the highest unified probability score.
This selection process prioritizes spans that
are not only plausible based on their intrin-
sic features but also originate from sentences
that are contextually aligned with the ques-
tion. This dual consideration ensures that the
chosen answers are both accurate and contex-
tually relevant, thereby significantly enhanc-
ing the performance of the question-answering
system.

4 Experiments

4.1 Data

For the experimental validation of our unified
model, we employed two significant datasets
tailored for Urdu question-answering systems:
UQuAD and UQA. These datasets are selected
and adapted to rigorously test both the answer
sentence identification and extraction capabili-
ties of our model. The Urdu Question Answer-
ing Dataset (UQuAD1.0) includes 46,481 Stan-
ford Question Answering Dataset(SQuAD 2.0)
(Rajpurkar et al., 2016) questions translated
using google translation API covering various
domains such as history, science, and general
knowledge. It also contains 4000 crowdsource
question annotated by humans based on Ques-
tion types. The UQA corpus on the other
hand features 136,211 questions, focusing on
domain-specific topics, created using the ”En-
close to Anchor, Translate, Seek” (EATS) tech-
nique from the Stanford Question Answering
Dataset (SQuAD 2.0). This technique ensures
that answer spans are preserved in the trans-
lated context paragraphs, making it suitable
for training and evaluating Urdu QA models.
It consists of 83,018 answerable and 41,727
unanswerable questions, providing a balanced
setup for models to not only retrieve accurate
answers but also to discern when no plausible
answer is present in the text.Table??shows dis-
trbution of dataset.

Dataset QA Pairs Question Types EM
UQuAD (MT) 45,000 No 0.66
UQuAD (CS) 4,000 Yes 0.50
UQA (MT) 124,745 No 0.85

Table 1: Distribution of UQA and UQuAD
Datasets.
’MT’ = Machine Translation, ’CS’ = Crowd-
Sourced.

4.1.1 Dataset Adaptation for Sentence
identification Evaluation:

To assess the identification capabilities of our
model adequately, we adapted both UQuAD
and UQA by an approach that includes:

1. Extraction of Candidate Answer Sen-
tences: We analyzed each paragraph
within the datasets to identify all sen-
tences that could potentially contain the
answer, based on their content overlap
with the gold-standard answer provided
(Charras and Lecroq, 2004).

2. Annotation of Candidate Sentences: Each
identified sentence was subsequently la-
beled as either ’1’ (containing the answer)
or ’0’ (not containing the answer). This
binary annotation serves as the definitive
ground truth for the key sentence identi-
fication task.

The adapted dataset was divided into training,
and test sets as shown in Table 2, ensuring
that no question-paragraph pair appeared in
multiple subsets.

Dataset Train Test
UQuAD(MT) 36,000 9,000
UQA 99,796 24,949

Table 2: Train/Test Split for Training Model

4.1.2 Evaluation Metrics
We adhere to standard evaluation procedures
and metrics for QA rankers as outlined in prior
research (Rajpurkar et al., 2016). Our evalu-
ation metrics for assessing the performance of
question answering systems include:

• Exact Match (EM): Measures the per-
centage of predictions that exactly match
any one of the ground truth answers.



• F1 Score: Computes the harmonic mean
of precision and recall at the individual
token level, considering both the partial
correctness of the answers.

• Average Precision at K : Defined as
the average of correct answer sentences
within the top K results to evaluate Key
sentence identification.

4.2 Baseline Models for Comparison
4.2.1 Word N-grams - Sliding Window

Baseline
To establish a comparative baseline, we used
the Word N-gram overlap method, a tradi-
tional technique used to determine textual sim-
ilarity (Richardson et al., 2013). This method
involves segmenting texts into fixed-length N-
grams and calculating similarity scores based
on the overlap of these N-grams. This ap-
proach has been validated in various applica-
tions such as plagiarism detection and text
reuse (Daud et al., 2017). For our purposes,
we adapt it to extract answer spans by tokeniz-
ing the text into N-grams and selecting spans
based on their overlap with the query, calcu-
lated as follows:

overlap =
|S(P1, n) ∩ S(P2, n)|

min(|S(P1, n)|, |S(P2, n)|)
(1)

4.2.2 TF-IDF - Feature-Based
Baseline

Additionally, we employ the traditional TF-
IDF (Term Frequency-Inverse Document Fre-
quency) vectorization technique, which repre-
sents text using term frequency-inverse docu-
ment frequency metrics. This method is en-
hanced with N-gram frequencies ranging from
unigrams to trigrams to capture local word or-
der, crucial for understanding contextual rel-
evance. The TF-IDF value for a term t in a
document d within a document set D is calcu-
lated as follows:

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D) (2)

where:

• TF(t, d) is the term frequency of term t
in document d, and

• IDF(t,D) is the inverse document fre-
quency of term t across the document set

D, defined as:

IDF(t,D) = log
(

|D|
1 + |{d ∈ D : t ∈ d}|

)
(3)

For N-grams, the terms t are extended to
include unigrams, bigrams, and trigrams,
thereby enhancing the textual representation
by capturing contiguous sequences of up to
three words. This enhancement allows for
a more nuanced understanding of the text’s
structure and semantics.

5 Results and Discussion

We employed various baseline approaches as
mentioned in section 4.2, which include tra-
ditional text representation techniques to re-
trieve answer.In evaluating the sentence iden-
tification capabilities of our model, we ob-
served differentiated performance across var-
ious question types, as shown in Table 3.
The model exhibited high precision in identify-
ing sentences relevant to ’Who’, ’When’, and
’Where’ questions, achieving AP@K scores of
0.55, 0.58, and 0.68, respectively. These ques-
tion types typically involve extracting specific
entities or temporal and locational informa-
tion, which are well-captured by our model’s
feature set. Conversely, ’What’ and ’Why’
questions, which often require understanding
broader contexts or causal relationships, posed
greater challenges, reflected in lower AP@K
scores of 0.35 and 0.40. ’How’ questions, di-
verse in their structure and intent, showed
moderate performance with an AP@K score of
0.44. Overall, the model achieved an average
precision across all question types of 0.44, indi-
cating a robust capability to identify relevant
answer-containing sentences but also highlight-
ing potential areas for enhancement in han-
dling complex question contexts and reason
behind lower accuracy of unified model shown
in tables 5 and 4. overall our unified model
achieved better results in answer extraction as
shown in 5 and 4 showcasing the effectiveness
of our unified model compared to the tradi-
tional approaches.

5.1 Discussion
The results indicate that our unified Model
significantly outperforms the baseline models,



Question Type Average Precision at K
What (ㅏ) 0.35
Who (〨ن) 0.55
When (䲷) 0.58
Where (〫ں) 0.68
Why (㈀ں) 0.40
How (ㆤ) 0.40

Table 3: Performance of the sentence identification
model across various question types using Average
Precision at K metric.

Dataset N-gram TF-IDF Unified Model
UQuAD 0.15 0.25 0.48
UQA 0.20 0.22 0.55

Table 4: F1: Performance comparison of different
models on UQuAD and UQA datasets.

Dataset N-gram TF-IDF Unified Model
UQuAD 0.12 0.28 0.60
UQA 0.10 0.31 0.50

Table 5: EM: Performance comparison of different
models on UQuAD and UQA datasets.

demonstrating its efficacy in leveraging com-
plex feature interdependencies to accurately
identify and extract answers. This superior
performance underscores the advantage of in-
tegrating sentence identification with extrac-
tion capabilities in a unified model, particu-
larly in the nuanced context of Urdu language
question answering. Our approach to inte-
grating sentence identification and span ex-
traction through unified probabilistic model-
ing has demonstrated promising results. For
example, in the UQuAD and UQA datasets,
we observed marked improvements in preci-
sion over traditional models, as evidenced by
the scores illustrated in our performance ta-
bles. To better understand the nuances of the
model’s performance, let’s consider practical
examples using Urdu question-answer pairs.
Imagine a question in Urdu like 䆀ٶا

Ǘ ǔ
ՙ䜫䗂⦇㯽"

ⶅلⵇمㅏ؟" (How many years did Mohammad
Ali work at Honda?). Our model might iden-
tify a sentence such as ǖل㧗ᨴ䆀ٶا

Ǘ ǔ
ՙ䜫䗂⦇㯽"

ⵇمㅏ۔" (Mohammad Ali worked at Honda for
40 years), scoring it highly due to the direct
match of numeric and contextual information.
Conversely, sentences without direct numer-
ical answers or only peripheral relevance to

Honda and Mohammad Ali would receive sig-
nificantly lower scores. This method effec-
tively discerns the relevance and specificity of
candidate answer sentences. However, when
evaluating our system against state-of-the-art
transformer-based models, such as those em-
ploying BERT or its derivatives, we notice a
gap in achieving top-tier performance metrics
like Exact Match (EM) and F1. This discrep-
ancy can largely be attributed to the inherent
limitations of N-gram and TF-IDF models in
capturing the deep semantic structures that
transformer models excel at.

Limitations

This study offers valuable insights into apply-
ing NLP techniques for Urdu language process-
ing, but it does face limitations. The primary
datasets used, UQuAD and UQA, while com-
prehensive, do not entirely capture the full
diversity of Urdu language use due to syn-
thetic nature of data. Additionally, this model
focus mainly on syntactic and semantic fea-
tures and do not extensively address other lin-
guistic elements such as pragmatics and dis-
course context, which are vital for fully un-
derstanding complex questions. Furthermore,
despite showing promising results in Urdu, the
model’s effectiveness in other low-resource or
morphologically rich languages have not been
explored. This may limit its broader appli-
cability and scalability, especially in contexts
where transformer-based models have shown
superior performance.

Ethics Statement

This research adheres to the highest ethical
standards. All datasets, including text and
question-answer pairs, were sourced from pub-
licly accessible repositories. We ensured that
no private or sensitive data was utilized with-
out explicit consent. All sources have been
meticulously cited, and the use of any copy-
righted material complies strictly with appli-
cable legal standards, ensuring transparency
and integrity in our research methodology.
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