
Detecting ChatGPT-Generated Text with GZIP-KNN:
A No-Training, Low-Resource Approach

Matthias Berchtold∗ and Sandra Mitrović† and Davide Andreoletti‡
and Daniele Puccinelli‡ and Omran Ayoub‡

∗ University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Switzerland
† Dalle Molle Institute for Artificial Intelligence (IDSIA), USI/SUPSI, Switzerland

‡ Institute of Information Systems and Networking (ISIN), SUPSI, Switzerland

Abstract

Text classification is a fundamental Natural
Language Processing task that is mostly
addressed with resource-intensive transformer
architectures. Researchers are continuously
investigating lightweight alternatives with-
out compromising predictive efficacy. A
lightweight alternative called Gzip-KNN that
combines the compression capability of Gzip
with the K-nearest neighbors (KNN) classifier
has been recently proposed. In this paper, we
investigate the potential of Gzip-KNN for
the detection of AI-generated text, notably
ChatGPT-generated content. We compare its
performance to several streamlined machine
learning models such as Logistic Regression,
eXtreme Gradient Boosting, and Gated Recur-
rent Unit. Our evaluation considers predictive
accuracy, training duration, and inference
speed, all while adjusting the available data
in in- and out-of-domain contexts. Our
experimental results highlight that Gzip-KNN
achieves high predictive performance, often
surpassing other models, especially when
operating on a limited dataset for inference.
Nonetheless, its extended inference time
restricts its utility in time-sensitive scenarios.
Intriguingly, Gzip-KNN manages to match the
performance of other tested approaches even
when utilizing a very limited percentage of the
available data.

Keywords ChatGPT, Generative Language
Models, Bots, GZIP

1 Introduction

The task of text classification, i.e., the categoriza-
tion of a text into predefined classes, is fundamen-
tal in the domain of Natural Language Processing
(NLP). The general approach involves designing
a function that maps texts to their corresponding
classes. Such function is generally obtained with
supervised machine learning. Specifically, super-
vised training is performed by tuning the parame-

ters of the models to minimize the error between
estimated and ground truth classes. The complexity
of the training process highly depends on the num-
ber of model parameters, which typically ranges
from a few to millions.

Conventional approaches for text classification
rely on complex models such as neural networks
and in particular, transformers-based architectures,
which are characterized by millions of parameters.
These models yield remarkable predictive perfor-
mance at the cost of a high training complexity. In-
deed, training these models is expensive in terms of
the amounts of data required, computational power,
and training time (Chollet, 2017; Thompson et al.,
2020). Therefore, employing such models for text
classification may be an overkill. Rather than rely-
ing solely on large models, there is a growing in-
terest in rediscovering lightweight approaches that
can match the predictive accuracy of more complex
models while requiring less computational power
and training data (Fournier et al., 2023; Gururangan
et al., 2019; Pan et al., 2019).

Recently, Jiang et al. (Jiang et al., 2023) pro-
posed a lightweight methodology for text classi-
fication based on the combination of data com-
pressing techniques (the Gzip compressor) and a
low-complexity classifier (KNN, i.e., the K-nearest
neighbors algorithm).

The proposed approach is referred to as Gzip-
KNN, and is discussed in detail in Section 3. One
of the distinctive traits of Gzip-KNN is the high
computational efficiency due to its simple underly-
ing components and non-parametric nature. In fact,
the absence of tunable parameters drastically sim-
plifies the training process. The intuition behind
Gzip-KNN is that samples belonging to the same
class are inherently more regular compared to sam-
ples from different classes. Hence, a lossless com-
pression technique, such as the well-known Gzip
algorithm, can be used to obtain representations
that capture this intrinsic regularity. Subsequently,



the representation of the sample undergoing clas-
sification is compared with the representations of
the training samples using a novel distance metric.
This process yields a distance matrix, which serves
as the input for a k-nearest-neighbor classifier. In
their study, the authors compare the predictive per-
formance of Gzip-KNN with that of deep learning
techniques and the Google Bidirectional Encoder
Representations from Transformers (BERT) model.
Experimental results show that Gzip-KNN is com-
petitive with deep learning methods and can outper-
form BERT in out-of-domain benchmark datasets,
exemplifying its robustness in handling unseen data
distributions.

In our work, we extend on the previous study
by focusing on the detection of AI-generated text.
More specifically, we evaluate the potential of Gzip-
KNN for the detection of texts generated by Chat-
GPT. We frame the problem as a supervised clas-
sification task, where the objective is to learn a
mapping between a representation of the text and a
binary variable, which is 1 if the text is generated by
ChatGPT, and 0 otherwise. Then, we compare the
performance of Gzip-KNN, in terms of predictive
power, training time, inference time and memory
footprint, to that of other approaches. In particu-
lar, we consider both lightweight models, such as
logistic regression and eXtreme Gradient Boost-
ing (XGB), and more complex approaches, namely
the Gated Recurrent Unit (GRU). We refrain from
considering pre-trained models as our aim is to
compare Gzip-KNN to low-resource approaches.
To systematically discuss our findings, we pose the
following research questions (RQs):

RQ1) To what extent can Gzip-KNN detect
ChatGPT-generated text? Can Gzip-KNN out-
perform traditional ML-supervised approaches in
terms of predictive performance?
RQ2) How does Gzip-KNN compare to other ap-
proaches in terms of training time and inference
time?
RQ3) Can Gzip-KNN outperform traditional ML
approaches in an out-of-domain context? And in
a data-constrained and inference-time-constrained
scenarios?

To address these RQs, we conduct two experi-
ments. In the first, we analyze the trade-off between
predictive performance and complexity of Gzip-
KNN and the supervised learning approaches in an
in-domain context. In the second, we perform eval-
uations considering constraints on available data

and on inference time in an out-of-domain con-
text. The experimental findings demonstrate that
Gzip-KNN exhibits strong predictive performance,
surpassing alternative methods, even when making
predictions with a limited amount of data. How-
ever, it does come with the drawback of increased
inference time, which restricts its suitability to situ-
ations where rapid decision-making is not critical.
Nevertheless, the results also indicate that Gzip-
KNN can deliver comparable performance to other
methods when utilizing only a small fraction of the
available data in an out-of-domain context.

The paper is organized as follows. Section 2 dis-
cusses related work. Section 3 describes the Gzip-
KNN approach proposed in (Jiang et al., 2023). In
Section 4 we describe the datasets and experimen-
tal setup, and in Section 5 we present and discuss
experiment results. Finally, Section 6 concludes
the paper.

2 Related Work

The detection of AI-generated text is currently re-
ceiving a great deal of attention, as the prolifer-
ation of AI-generated text, particularly from ad-
vanced language models such as ChatGPT, has led
to growing concerns about the authenticity and re-
liability of textual content across diverse domains
(Guo et al., 2023; Khalil and Er, 2023; Tian and
Cui, 2023). Moreover, as AI-generated content be-
comes more prevalent in online interactions, news
articles, customer support chats, and creative writ-
ing, the need to accurately distinguish between
human-generated and AI-generated text has gained
paramount significance.

The community has dedicated substantial efforts
to developing sophisticated machine learning mod-
els capable of detecting AI-generated content (Pe-
goraro et al., 2023; Liu et al., 2023; Guo et al.,
2023; He et al., 2023). In particular, zero-shot and
one-shot techniques have gained attention as inno-
vative approaches for text classification in general
and for identifying AI-generated text in particular
(Mitchell et al., 2023; Liu et al., 2023; Yan et al.,
2018).

Other approaches rely on statistical proper-
ties (Gehrmann et al., 2019), linguistic features
(Ma et al., 2023; Guo et al., 2023), information-
theorical metrics such as entropy (Gehrmann
et al., 2019) and perpexity (Tian and Cui, 2023;
Guo et al., 2023), topological features (of atten-
tion maps generated by the transformer model)



(Kushnareva et al., 2021), Transformers (Bleumink
and Shikhule, 2023), pretrained language mod-
els without (Bakhtin et al., 2019) or with fine-
tuning (Solaiman et al., 2019; Mitrović et al., 2023;
Chakraborty et al., 2023; Ippolito et al., 2019; Guo
et al., 2023; Chiang et al., 2023; Ma et al., 2023),
where in particular GPT-2 Output Detector is fre-
quently used (Gao et al., 2023; Anderson et al.,
2023).

While these proposed methods may achieve the
desired predictive performance on in- and out-of-
domain data, their demanding computational re-
quirements and memory footprint is a substantial
obstacle to their deployment. Gzip-KNN presents
a lightweight and resource-efficient alternative to
complex solutions for AI-generated text detec-
tion, leveraging an innovative combination of ap-
proaches (e.g., compression techniques) to perform
text classification without prior training.

3 Gzip and K-Nearest Neighbors for Text
Classification

Algorithm 1 Text Classification using Gzip-KNN
Sample t to be classified
Training dataset D = {s1, s2, . . . , sn}
Number of nearest neighbors k

1: function CLASSIFY(t,D, k)
2: Compress t using Gzip (denote as gzip(t))
3: for each sample s in D do
4: Compress s using Gzip (gzip(s))
5: Compute Normalized Compression

Distance (NCD) between gzip(s) and gzip(t)
6: Store NCD in a distance list
7: end for
8: Find the indices of the k smallest distances

in the distance list
9: Retrieve the corresponding k nearest neigh-

bors’ classes
10: Count the occurrences of each class among

the k neighbors
11: Pick the majority class as the target label

for t
12: end function

In this Section, we describe the various steps
executed by the Gzip-KNN algorithm to classify
a sample text t. The corresponding pseudocode is
shown in Algorithm 1. The first step involves com-
pressing t using the Gzip algorithm. Then, for each
sample s in the training dataset, the text is simi-

larly compressed using Gzip, and subsequently, the
Normalized Compression Distance (NCD) between
the compressed form of s and t is calculated (see
Equation 1).

NCD(t, s) =
C(st)−min{C(t), C(s)}

max{C(t), C(s)}
(1)

where st represents the concatenation of texts t
and s, while C(·) is the length of a text compressed
using Gzip.

The NCD serves as a measure that indicates the
extent of information shared between two distinct
texts. When two texts exhibit substantial shared
content, their concatenation yields a more efficient
compression outcome, resulting in a reduced NCD
value. Therefore, since texts belonging to the same
class typically share a greater degree of common at-
tributes compared to texts from distinct classes, the
NCD value can be leveraged in the task of text clas-
sification. Specifically, the Gzip-KNN algorithm
uses the NCD distance computation as the basis for
identifying the k-nearest neighbors of a reference
text t within the training set. Finally, the target text
t is classified based on the majority label among
the selected k-nearest neighbors.

The absence of tunable parameters makes train-
ing lightweight and straightforward. However, it
must be noted that classifying a text sample t re-
quires repeating the concatenation between t and all
the samples of the training set, which may result in
a high inference time, especially with large datasets.
In Section 5 we analyze the impact of the size of
the training set on both predictive performance and
inference time.

4 Dataset

We choose a labeled dataset consisting of human-
(class 0) and ChatGPT-generated (class 1) re-
sponses to a set of queries. Specifically, ChatGPT
answers were generated using GPT-3.5. These re-
sponses are provided in relation to a set of queries
that encompass a wide range of open-ended ques-
tions. These questions were drawn from five di-
verse datasets, each contributing queries represen-
tative of a specific domain:

• open_qa: General queries on various topics
sourced from the WikiQA dataset (Yang et al.,
2015).



• wiki_csai: Queries related to specific concepts
within the realm of information technology,
gathered from Wikipedia (Guo et al., 2023).

• finance: Queries centered around finance-
related subjects, obtained from the FiQA
dataset (Maia et al., 2018).

• medicine: Queries focused on the field of
medicine, collected from the Medical Dialog
dataset (Zeng et al., 2020).

• reddit_eli5: Open-ended questions spanning
various subjects, gathered from the ELI5
dataset (Fan et al., 2019).

The human- and ChatGPT-generated responses
are of similar length distribution (Guo et al., 2023).

5 Experimental Setup and Quantitative
Evaluation

In this section, we present the results of our ex-
periments, which aim to evaluate the Gzip-KNN
algorithm for text classification along various di-
mensions. Specifically, in Section 5.1 we first eval-
uate the classification performance and the com-
plexity of the approach, in terms of training time
and inference time. Then, in Section 5.2, we assess
the classification performance in an out-of-domain
setting, where the algorithm is tested on datasets
never seen during training.

5.1 Experiment 1: Performance vs.
Complexity

Experimental Setup: We conduct this experi-
ment while systematically varying the number
of responses used during the training phase, all
while ensuring a balanced distribution between
the human-generated and ChatGPT-generated re-
sponses. Specifically, we consider a range of re-
sponses n = 100, 300, 500, 1000, 2000, 5000,
which are randomly selected from the dataset. We
adopt a 5-fold cross-validation methodology for
each value of n. During the testing phase, we eval-
uate the approach using a set of 10,000 responses,
selected randomly from the dataset and equally
split between the two labels. We also ensure the
same testing sets are used to evaluate the differ-
ent models for fold. The aim of this analysis is to
comprehensively assess the model’s performance
across different training data volumes while main-
taining a consistent test set.

(a) Classification Accuracy for varying training size

(b) F1-score for varying training size

Figure 1: Classification performance of the LR, XGB,
GRU and Gzip-KNN models, for varying sizes of the
training set

We compare Gzip-KNN to Logistic Regression
(LR), eXtreme Gradient Boosting (XGB), and
Gated Recurrent Unit (GRU) along two main
dimensions, namely predictive performance and
model complexity. To evaluate the former, we con-
sider traditional classification metrics, such as ac-
curacy and F1-score. To evaluate the latter, we
consider the training time ttraining and the infer-
ence time tinference.

Predictive Performance: Figure 1(a) shows the
mean accuracy and standard deviation of the four
models with respect to the number of training sam-
ples, ranging between 100 and 5000 training sam-
ples. When only 100 training samples are used,
Gzip-KNN achieves an accuracy of 0.83, outper-
forming XGB (0.75), GRU (0.69), and LR (0.65).
The significant gap in accuracy reveals Gzip-KNN’s
capability in text classification, and particularly, in
detecting ChatGPT-generated text, with very little
training data. The accuracy of all models shows a
general upward trend in performance as the training
dataset size increases with Gzip-KNN outperform-
ing the other approaches. However, it is worth
noticing that the performance gap between Gzip-



KNN and the other approaches narrows as the train-
ing dataset size grows, up to a number of training
samples equal to 1000. Specifically, for a number
of training samples of 1000, Gzip-KNN shows an
accuracy of 0.88, just slightly higher than that of
XGB (0.87), LR (0.86), and GRU (0.81). The accu-
racy achieved by all models continues to increase
as the training set size becomes larger, except for
Gzip-KNN, which seems to saturate around an ac-
curacy of 0.89, outperformed by XGB, LR, and
GRU, which achieve an accuracy of 0.94, 0.91 and
0.9 using 5000 training samples, respectively.

Figure 1(b) shows the weighted F1-score and
its standard deviation achieved by the different ap-
proaches with respect to the number of training
samples, ranging between 100 and 5000. Results
in terms of F1-score show a similar trend to that
of accuracy. For a number of training samples
less than 1000, Gzip-KNN outperforms other ap-
proaches, achieving an F1-score of around 0.88.
This confirms Gzip-KNN’s intrinsic ability to distill
and compress information effectively, even when
the dataset is not exceedingly large, and that its
architecture inherently adapts to the complexity
of the data, discerning relevant features and con-
nections without the need for a large number of
examples. For a higher number of training samples,
the F1-score of Gzip-KNN saturates around 0.89
while that of other approaches continues to show
a slight increase as the size of the training dataset
increases.

Overall, results show that the performance dif-
ferences between Gzip-KNN and the other models,
namely, XGB, LR, and GRU, tend to diminish as
the training size increases, which could be due to
more data being available for XGB, LR, and GRU,
reducing overfitting and improving generalization,
while Gzip-KNN does not further benefit from more
training samples. In other words, the performance
gains achieved by the Gzip-KNN seem to saturate
beyond a certain point of dataset size. Unlike tradi-
tional methods that tend to improve as more data
is fed into their training pipelines, Gzip-KNN ap-
pears to capitalize on a specific threshold of data
sufficiency. This suggests that, for Gzip-KNN, the
emphasis should be placed not solely on increasing
the dataset size, but rather on refining the compres-
sion and distance calculation mechanisms. Further
research could delve into optimizing the interplay
between these two components to extract more nu-
anced information and potentially push the Gzip-

KNN’s performance boundaries.

Model Complexity: We first examine the com-
plexity of the considered approaches in terms of
training time and inference time. Table 1 shows
the training time (in seconds), averaged over 10
different evaluations, for the various models with
respect to the number of training observations. Re-
sults show that the training times of the various
models exhibit distinct trends as the number of
training observations increases. The Gzip-KNN,
which demonstrates exceptional efficiency, con-
sistently yielding remarkably low training times
across, shows a slightly increasing trend, ranging
between 0.005 seconds for 100 training observa-
tions to 0.093 seconds for 2000 training observa-
tions. LR and XGB demonstrate linear increments
in training time with the expansion of training data,
reaching up to 0.274 seconds for LR and 0.810
seconds for XGB, at 2000 training observations.
GRU, on the contrary, shows a nuanced pattern,
with training times displaying some fluctuations
without a clear trend, ranging between 8.7 and 13.3
seconds, on average. These results highlight the
clear advantage Gzip-KNN has over other models
in terms of training time, which suggests its po-
tential utility for scenarios demanding swift model
deployment.

We now focus on the inference time. Table 2
reports the variation in inference times for differ-
ent models, across various sizes of the training set.
Notably, the Gzip-KNN approach consistently ex-
hibited relatively higher inference times compared
to the other models for all sizes of the training set,
ranging between 5.9 seconds (when 100 observa-
tions are used to perform the inference) to 115.6
seconds (when 2000 observations are used to per-
form the inference). On the contrary, the inference
time for other approaches is significantly lower
(i.e., fluctuating around 1 second), and not depen-
dent on the size of the training set. This shows that
the Gzip-KNN approach introduces an additional
significant computational overhead with respect to
other approaches, particularly when the number of
observations used for inference is relatively large.

Gzip-KNN: Performance vs. Complexity. Fo-
cusing our attention on Gzip-KNN approach, a dis-
tinct trade-off emerges between predictive power
and the time required for inference. As illustrated
in Figure 1, Gzip-KNN achieves a relatively high
predictive performance (0.82 of accuracy and 0.85
of F1-score) even with a small number of obser-



Table 1: Training Time Results

Num. Training Training Time (seconds)

Observations GRU GZIP+KNN LR XGB

100 10.101 0.005 0.017 0.093
300 9.497 0.014 0.040 0.168
500 8.701 0.023 0.054 0.230

1000 14.179 0.048 0.111 0.458
2000 13.346 0.093 0.275 0.811
5000 28.238 0.225 0.496 1.697

Table 2: Inference Time Results

Num. Training Inference Time (seconds)

Observations GRU GZIP+KNN LR XGB

100 1.033 5.944 0.072 0.096
300 0.922 17.332 0.074 0.095
500 0.781 28.848 0.076 0.095

1000 1.030 58.784 0.091 0.100
2000 0.884 115.589 0.083 0.099
5000 0.927 286.129 0.077 0.103

vations employed for inference (100 observations).
This, however, corresponds to a relatively elevated
inference time of 5 seconds (see Table 2). The pre-
dictive performance of Gzip-KNN can be further
improved to reach 0.9 accuracy by employing a
larger set of observations for inference (1000 sam-
ples). However, this incurs a substantial increase
in inference time, culminating in an extended dura-
tion of 58.5 seconds. This suggests that the Gzip-
KNN approach can have a robust predictive per-
formance, particularly when dealing with a con-
strained dataset. Yet, its value is limited to sce-
narios where prediction accuracy takes precedence
over rapid inference. In conclusion, while Gzip-
KNN offers a powerful tool for predictive tasks, its
optimal use hinges on aligning its strengths with
the specific requirements of the given application
context.

5.2 Experiment 2: Performance in
Out-of-Domain Context

Experimental Setup: We now shift our attention
to assessing the performance of the different meth-
ods in an out-of-domain context in different circum-
stances. Specifically, we perform two evaluations.
In the first evaluation, we consider that a limited
amount of data is available for training. The objec-
tive of this experiment is to quantify the capability
of Gzip-KNN in detecting ChatGPT-generated text
in an out-of-domain context and under the limita-
tions of available data. We perform the training con-

sidering a part of the datasets, set at 1000 text sam-
ples, extracted from three specific contexts (e.g.,
from technology, finance and open QA datasets)
with equal contribution and then perform the testing
on a different dataset that corresponds to a different
context (e.g., medicine). Note that while no formal
training takes place for the Gzip-KNN approach,
the inference still relies on the utilization of text
samples, which are the training samples used to
train the other ML models.

In the second evaluation, we introduce a con-
straint on inference time. To comply with the im-
posed inference time constraint, the size of the data
used by Gzip-KNN at inference time must be re-
stricted. Specifically, 600 samples are randomly
taken from the training set, and used to perform
the inference. On the contrary, for the other ap-
proaches, since using all data available for training
does not heavily impact the inference time, we con-
sider that all data available can be used for training.
The objective of this experiment is to asses whether
Gzip-KNN can outperform other models in an out-
of-domain context even when a limit is imposed
on inference time (and, therefore, on the amount of
data that are required by Gzip-KNN to perform a
text classification).

Out-of-Domain ChatGPT-generated Text De-
tection with Limited Data: Figures 2(a) and
2(b) show the accuracy and F1-score metrics, re-
spectively, that are achieved by the four models
when tested on the considered datasets. In general,
XGB and LR tend to outperform other approaches,
consistently achieving some of the highest perfor-
mance levels across most datasets. For instance, in
the Finance dataset, XGB achieves the best accu-
racy and F1-score (0.807 and 0.805, respectively)
and ranks second in the Medicine and OpenQA
datasets (e.g., its accuracy is 0.944 and 0.716, re-
spectively). LR achieves the highest accuracy and
F1-score in the Medicine dataset (0.95 for both met-
rics) and it ranks second in the Finance and CSAI
datasets, with accuracy values of 0.74 and 0.69, re-
spectively. Gzip-KNN generally achieves lower per-
formance compared to alternative methods. How-
ever, it is important to note that Gzip-KNN reaches
the best performance in the OpenQA dataset, sur-
passing alternative methods in both accuracy and
F1-score, with values of 0.753 and 0.665, respec-
tively. Additionally, in the Finance dataset, the
performance of Gzip-KNN is only slightly lower
than that of the alternatives (indeed, GRU, Gzip-



KNN, and LR all achieve an accuracy of around
0.74).

Finance Medicine Open QA CSAI
0

0.2

0.4

0.6

0.8

1

Test Dataset

A
cc

ur
ac

y

GRU GZIP+KNN
LR XGB

(a) Accuracy of Different Models on Various Datasets

Finance Medicine Open QA CSAI
0

0.2

0.4

0.6

0.8

1

Test Dataset

F1
-s

co
re

(b) F1-score of Different Models on Various Datasets

Figure 2: Comparison of accuracy and F1-score of dif-
ferent models for out-of-domain ChatGPT-generated
text detection considering different test datasets.

Out-of-Domain ChatGPT-generated Text De-
tection under Constraint on Inference Time:
Figures 3(a) and 3(b) show the accuracy and F1-
score metrics of the four different approaches for
each of the cases, respectively. Notably, XGB ex-
hibits consistently high accuracy and F1-scores,
specifically for Medicine and Finance (0.981 ac-
curacy in both cases), outperforming other ap-
proaches in all cases except for when testing over
the CSAI dataset. GRU also shows a similar perfor-
mance outperforming other approaches for the case
of testing over the CSAI dataset. LR demonstrates
competitive performance outperforming GRU in
some cases while Gzip-KNN achieves the highest
accuracy on the Medicine dataset (0.826) and the
lowest on the CSAI dataset (0.587). With respect
to other approaches, Gzip-KNN achieved generally
lower, yet comparable, accuracy and F1-scores, ex-

cept when testing on Open QA, where it achieved
the highest accuracy and F1-score. Note that Gzip-
KNN uses only 600 text samples for this experi-
ment, while other approaches utilize all available
datasets. This shows that Gzip-KNN can achieve
performance in out-of-domain ChatGPT-generated
text detection when using a significantly small
amount of data (a portion of the dataset) compa-
rable to that of other approaches (in this case, LR,
GRU, and XGB) when trained on the entire dataset.

Finance Medicine Open QA CSAI
0

0.2

0.4

0.6

0.8

1

Test Dataset

A
cc

ur
ac

y
GRU GZIP+KNN
LR XGB

(a) Accuracy of Different Models on Various Datasets

Finance Medicine Open QA CSAI
0

0.2

0.4

0.6

0.8

1

Test Dataset

F1
-s

co
re

(b) F1-score of Different Models on Various Datasets

Figure 3: Comparison of accuracy and F1-score of dif-
ferent models for out-of-domain ChatGPT-generated
text detection considering different test datasets.

6 Conclusion

In this work, we evaluate the effectiveness of a re-
cently proposed algorithm, Gzip-KNN, in the task
of detection of ChatGPT-generated text. The Gzip-
KNN algorithm combines compression techniques
with the k-nearest neighbors (KNN) algorithm for
classification, resulting in a lightweight solution
compared to traditional techniques used for text
classification. Specifically, we compare this ap-



proach with LR, XGB, and GRU, in terms of clas-
sification performance and model complexity in
various scenarios. Obtained results show that the
Gzip-KNN algorithm outperforms the alternatives
in terms of classification performance in situations
where the training dataset is limited in the number
of samples. However, such an advantage comes
also with an increased inference time, which is sig-
nificantly higher for Gzip-KNN than for the other
approaches. Finally, we also evaluated the classifi-
cation performance of the approaches in an out-of-
domain setting, where the models are tested on a
set never seen during training. These experiments
have shown that Gzip-KNN can yield comparable
classification performance to the other methods
while only utilizing a significantly lower amount
of training data.

References
Nash Anderson, Daniel L Belavy, Stephen M Perle,

Sharief Hendricks, Luiz Hespanhol, Evert Verhagen,
and Aamir R Memon. 2023. Ai did not write this
manuscript, or did it? can we trick the ai text detector
into generated texts? the potential future of chat-
gpt and ai in sports & exercise medicine manuscript
generation.

Anton Bakhtin, Sam Gross, Myle Ott, Yuntian
Deng, Marc’Aurelio Ranzato, and Arthur Szlam.
2019. Real or fake? learning to discriminate ma-
chine from human generated text. arXiv preprint
arXiv:1906.03351.

Arend Groot Bleumink and Aaron Shikhule. 2023.
Keeping ai honest in education: Identifying gpt-
generated text. Edukado AI Research, pages 1–5.

Souradip Chakraborty, Amrit Singh Bedi, Sicheng Zhu,
Bang An, Dinesh Manocha, and Furong Huang. 2023.
On the possibilities of ai-generated text detection.
arXiv preprint arXiv:2304.04736.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Francois Chollet. 2017. The limitations of deep learning.
Deep learning with Python.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. ELI5:
Long form question answering. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3558–3567, Florence,
Italy. Association for Computational Linguistics.

Quentin Fournier, Gaétan Marceau Caron, and Daniel
Aloise. 2023. A practical survey on faster and lighter
transformers. ACM Computing Surveys, 55(14s):1–
40.

Catherine A Gao, Frederick M Howard, Nikolay S
Markov, Emma C Dyer, Siddhi Ramesh, Yuan Luo,
and Alexander T Pearson. 2023. Comparing scien-
tific abstracts generated by chatgpt to real abstracts
with detectors and blinded human reviewers. NPJ
Digital Medicine, 6(1):75.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M Rush. 2019. Gltr: Statistical detection
and visualization of generated text. arXiv preprint
arXiv:1906.04043.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. arXiv
preprint arXiv:2301.07597.

Suchin Gururangan, Tam Dang, Dallas Card, and
Noah A Smith. 2019. Variational pretraining for
semi-supervised text classification. arXiv preprint
arXiv:1906.02242.

Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes,
and Yang Zhang. 2023. Mgtbench: Benchmarking
machine-generated text detection. arXiv preprint
arXiv:2303.14822.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2019. Automatic detection
of generated text is easiest when humans are fooled.
arXiv preprint arXiv:1911.00650.

Zhiying Jiang, Matthew Yang, Mikhail Tsirlin, Raphael
Tang, Yiqin Dai, and Jimmy Lin. 2023. “low-
resource” text classification: A parameter-free clas-
sification method with compressors. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 6810–6828.

Mohammad Khalil and Erkan Er. 2023. Will chatgpt
get you caught? rethinking of plagiarism detection.
arXiv preprint arXiv:2302.04335.

Laida Kushnareva, Daniil Cherniavskii, Vladislav
Mikhailov, Ekaterina Artemova, Serguei Barannikov,
Alexander Bernstein, Irina Piontkovskaya, Dmitri
Piontkovski, and Evgeny Burnaev. 2021. Artificial
text detection via examining the topology of attention
maps. arXiv preprint arXiv:2109.04825.

Zhengliang Liu, Xiaowei Yu, Lu Zhang, Zihao Wu,
Chao Cao, Haixing Dai, Lin Zhao, Wei Liu, Ding-
gang Shen, Quanzheng Li, et al. 2023. Deid-gpt:
Zero-shot medical text de-identification by gpt-4.
arXiv preprint arXiv:2303.11032.

Yongqiang Ma, Jiawei Liu, Fan Yi, Qikai Cheng, Yong
Huang, Wei Lu, and Xiaozhong Liu. 2023. Ai vs.
human – differentiation analysis of scientific content
generation.

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/P19-1346
https://doi.org/10.18653/v1/P19-1346
http://arxiv.org/abs/2301.10416
http://arxiv.org/abs/2301.10416
http://arxiv.org/abs/2301.10416


Macedo Maia, Siegfried Handschuh, André Freitas,
Brian Davis, Ross McDermott, Manel Zarrouk, and
Alexandra Balahur. 2018. Www’18 open challenge:
Financial opinion mining and question answering. In
Companion Proceedings of the The Web Conference
2018, WWW ’18, page 1941–1942, Republic and
Canton of Geneva, CHE. International World Wide
Web Conferences Steering Committee.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature. arXiv preprint
arXiv:2301.11305.

Sandra Mitrović, Davide Andreoletti, and Omran Ay-
oub. 2023. Chatgpt or human? detect and explain.
explaining decisions of machine learning model for
detecting short chatgpt-generated text. arXiv preprint
arXiv:2301.13852.

Chongyu Pan, Jian Huang, Jianxing Gong, and Xing-
sheng Yuan. 2019. Few-shot transfer learning for
text classification with lightweight word embedding
based models. IEEE Access, 7:53296–53304.

Alessandro Pegoraro, Kavita Kumari, Hossein Ferei-
dooni, and Ahmad-Reza Sadeghi. 2023. To chatgpt,
or not to chatgpt: That is the question! arXiv preprint
arXiv:2304.01487.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah
Kreps, et al. 2019. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

Neil C Thompson, Kristjan Greenewald, Keeheon
Lee, and Gabriel F Manso. 2020. The compu-
tational limits of deep learning. arXiv preprint
arXiv:2007.05558.

Edward Tian and Alexander Cui. 2023. Gptzero: To-
wards detection of ai-generated text using zero-shot
and supervised methods.

Leiming Yan, Yuhui Zheng, and Jie Cao. 2018. Few-
shot learning for short text classification. Multimedia
Tools and Applications, 77:29799–29810.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
WikiQA: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2013–2018, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Guangtao Zeng, Wenmian Yang, Zeqian Ju, Yue Yang,
Sicheng Wang, Ruisi Zhang, Meng Zhou, Jiaqi
Zeng, Xiangyu Dong, Ruoyu Zhang, Hongchao Fang,
Penghui Zhu, Shu Chen, and Pengtao Xie. 2020.
MedDialog: Large-scale medical dialogue datasets.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9241–9250, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.1145/3184558.3192301
https://doi.org/10.1145/3184558.3192301
https://gptzero.me
https://gptzero.me
https://gptzero.me
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/2020.emnlp-main.743

