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Abstract
Retrieval-Augmented Generation (RAG) has
become a promising solution for utilizing Large
Language Models (LLMs) in domain-intensive
question-answering tasks. The performance
of RAG is greatly influenced by the retriever
component, which typically relies on semantic
similarity between the text embeddings of the
query and the passages to identify the relevant
context. However, text embedding models may
only capture the semantic meaning of individ-
ual passages, potentially neglecting global rela-
tionships between them. To address this limita-
tion, we propose a hybrid retrieval method that
integrates embeddings encoded from textual
and knowledge graph information. Although
in this paper, the knowledge graphs describe
the passage relationships in a health-tech indus-
try use case, the hybrid embedding solution is
designed to be generic. Furthermore, the pro-
posed retrieval approach aims to offer straight-
forward implementation without requiring com-
plex joint learning processes. Our results on
custom test sets demonstrate significantly en-
hanced accuracy and ranking of the retriever,
thus, supporting the LLM-based reader compo-
nent in generating more accurate responses.

1 Introduction

The use of pre-trained Large Language Models
(LLMs) has gained considerable attention for spe-
cific question-answering (QA) tasks, due to their
ability to understand and generate natural language
(De Angelis et al., 2023). This capability results
from their extensive pre-training on diverse text
datasets and a large number of parameters, which
endows them with the ability to memorize and
utilize learned knowledge (Roberts et al., 2020;
Petroni et al., 2019). However, implementing pre-
trained services within corporate settings faces cer-
tain challenges. One notable limitation is the in-
ability to generate accurate and faithful responses
for questions related to specific domains and busi-
ness use cases, often referred to as "hallucination".

This constraint stems from knowledge boundaries,
which include a lack of specialized domain knowl-
edge and the absence of up-to-date information in
the pre-trained data (Huang et al., 2023).

Fine-tuning generative LLMs with a target do-
main dataset has been proposed as a solution to this
problem. This approach adapts the models for spe-
cific tasks and often outperforms pre-trained foun-
dation models (Han et al., 2023; Wu et al., 2023;
Chen et al., 2023). Nonetheless, training a billion-
parameter model often requires significant compu-
tational resources and high-quality training datasets
to obtain optimal results (Chen et al., 2023). More-
over, this method only offers a temporary solution,
as over time the knowledge will be outdated again,
leading to a loop of knowledge boundary problem.

Another approach to improve the domain factu-
ality and reduce hallucination of the responses is
using the Retrieval-Augmented Generation (RAG)
method (Lewis et al., 2021; Izacard and Grave,
2021). The main idea of the RAG method is to use
the retriever-reader framework to combine informa-
tion retrieval (Karpukhin et al., 2020) with LLMs.
Specifically, the RAG uses a retriever to select a
set of relevant knowledge to the questions, which
helps narrow down the answerable evidence for the
LLM-based reader. The reader then synthesizes
the answer to the query based on the given infor-
mation like in an "open-book" exam. Therefore,
this approach offers the advantage of providing ex-
ternal knowledge to LLMs without requiring the
fine-tuning of the models. The responses are also
more reliable due to the augmentation of retrieved
contexts, which serve as the supporting evidence.
Besides, RAG is suitable for both open-domain and
closed-domain question-answering tasks, and can
also support private use cases depending on the
configuration of external data sources.

A recent study showed that the performance of
RAG can be hindered by false retrieval, where the
system fails to provide accurate information to the



generators (Barnett et al., 2024). Several meth-
ods aiming to enhance the retriever’s performance
involve improving query-text embeddings to re-
rank pre-retrieved passages (Nogueira and Cho,
2020; Mao et al., 2021; Askari et al., 2023). How-
ever, these methods rely solely on textual methods,
which may not always be optimal. For example,
text embedding models regularly treat input pas-
sages independently and do not capture global rela-
tions among them (Yu et al., 2022). This inability
to capture the dependencies between related pas-
sages can potentially restrain the performance of
the system (Min et al., 2020). A possible approach
to address this problem is to use knowledge graphs
(KG) in conjunction with textual information to en-
hance the retriever in question-answering systems
(QAS), providing more robust text representations.
This approach has been investigated by studies such
as joint representation learning with two modalities
to improve re-ranking and answering performance
(Yu et al., 2022; Zhou et al., 2020; Ju et al., 2022).
Although these methods have shown better results
compared to using text input alone, their algorithms
and training processes are often costly and com-
plex.

To address the retrieval challenges, this paper
aims to enhance the retriever with a comprehen-
sive embedding component that combines both
textual data and knowledge graphs (KGs). Un-
like previous studies, we propose a simple hybrid
pipeline for generating these representations, rather
than training a complex joint learning model. The
method and experiment were conducted within the
use case of a health-tech venture builder, where
questions were posed to find answers in propri-
etary health-related documents. However, the hy-
brid embedding method has the potential to be
domain-agnostic, as long as its components are
customized for specific contexts. The experimental
results show that our hybrid method helps improve
not only the information retrieval performance but
also the generative response quality from different
LLM-based readers.

2 Related Work

In QAS using the "retrieve-then-read" mechanism,
the text embedding plays an important role in the
retriever component. State-of-the-art retrievers
use dense text embedding methods, often utilizing
neural networks like BERT (Devlin et al., 2019)
to encode the semantic meaning of the text into

dense vectors (Karpukhin et al., 2020; Reimers and
Gurevych, 2019; Xiao et al., 2023). Typically, the
Dense Passage Retriever (DPR) (Karpukhin et al.,
2020) framework learns embeddings for questions
and passages using two separate BERT networks
with metric learning. Sentence-BERT (Reimers
and Gurevych, 2019) also employs metric learn-
ing but allows a single BERT to learn embeddings
for two sentences through a shared-weight con-
figuration. DPR and Sentence-BERT have also
become fundamental approaches to pre-train other
general-purpose BERT-based embedding models
such as BAAI General Embedding (BGE) (Xiao
et al., 2023), General Text Embedding (GTE) (Li
et al., 2023b), E5 (Wang et al., 2022), etc. These
models can be further fine-tuned for specific down-
stream tasks(Choi et al., 2021). However, these
frameworks were not originally designed to cap-
ture the semantic connections between different
passages. This drawback can be tackled by tak-
ing advantage of structural information captured
by knowledge graph solutions. For instance, the
Knowledge-aid open-domain QA (KAQA) frame-
work (Zhou et al., 2020) used two KGs representing
the relationship between the question and docu-
ment, and between retrieved documents to support
re-ranking the retriever. Also, to improve the re-
triever by re-ranking, KG-FiD (Yu et al., 2022)
used inter-passage relation KG with the graph at-
tention network (Veličković et al., 2018) to update
the representation vectors of the passage. Min
et al.(Min et al., 2020) introduced an extended
passage-level KG and integrated it into the retriever
and reader to improve context coverage and re-
sponse accuracy. In the health domain, (Wise et al.,
2020) introduced a KG describing the relationships
between scientific articles on COVID-19 and used
TransE-based embeddings for article retrieval and
recommendation. While these studies obtained im-
pressive results, their implementation and training
processes involved the integration of multiple in-
tensive computational models. Inspired by these
works, however, the primary goal of this paper is
to achieve a more straightforward implementation
approach that leverages the knowledge graph to
improve conventional retriever and RAG perfor-
mance.

3 Proposed Method

The conceptual pipeline of the proposed retriever
used in the RAG system is illustrated in Figure 1.



Figure 1: The overall conceptual design of our hybrid retriever implemented in the RAG system.

The goal is to improve the quality of the Top-K
passages retrieved in response to a given question.
This is achieved by measuring the similarity be-
tween hybrid embeddings, which combine text and
knowledge graph representations of both the Ques-
tion and the Passages. To adapt the text embed-
ding model to the use case, a fine-tuning process
is performed with a synthetic dataset generated by
an LLM. Next, an automatic KG construction is
proposed, aiming to present the global relation-
ship between Passages. Lastly, we will introduce a
strategy aimed at effectively integrating these two
modalities into the hybrid retriever.

3.1 Data collection and description

The data for this study consists of interviews with
medical experts from a private use case provided
by a venture builder, focusing on the technical and
business aspects of their medical innovations. The
interviews are documented and categorized into 3
main topics, including medical technology, biotech-
nology, and digital/AI. These documents serve as
the knowledge source for the RAG system for the
use case.

Firstly, the interview documents stored in the
company’s database spanning the last 4 years are
collected. Document lengths vary, averaging 697
words. After removing the documents with insuf-
ficient content, the dataset contains 1, 487 docu-
ments. Next, each document undergoes automated
pre-processing steps, including the removal of spe-
cial tokens, images, and tables, as well as English
translation.

Finally, the documents are chunked into smaller
passages to enhance searchability in the retrieval
stage while optimizing computational resources.

We choose the chunk size of 512 tokens to fit the
small-size BERT-based models in the text embed-
ding step. Furthermore, two adjacent passages of a
document are set to overlap by 20 tokens, ensuring
a smooth transition of context between them. After
the chunking step, the processed dataset comprises
a total of 5607 passages.

3.2 Fine-tuning text embedding model
In the context of this paper, the user input questions
and the passages’ context are distinct, integrating
various aspects of the health-tech industry. Hence,
using pre-trained text embedding models in model
zoos may not sufficiently capture these nuances for
retrieval purposes. To address that issue, a BERT-
base embedding model is fine-tuned through the
training process of the Sentence-BERT (SBERT)
framework (Reimers and Gurevych, 2019) (see Ap-
pendix A) on our custom dataset.

3.2.1 Constructing training set
The fine-tuning dataset consists of positive query
and source passage pairs. Manually annotating
these pairs from interview documents is time-
consuming, so to simulate real-life scenarios, we
use generative LLMs to comprehend the source
passages and automatically generate corresponding
queries. In each positive pair, the synthetic query
is crafted to reflect the questions related to specific
information in the source passage, which serves as
the ground truth for the query in the retrieval task.

Given that the documents in this study contain
private and sensitive information, local and open-
source LLMs were selected for query generation
instead of using services like OpenAI API. Con-
cretely, small-size but high-performing generative
LLMs such as the Zephyr-7B-beta model (Tunstall



et al., 2023) and Mistral-7B-OpenOrca 1 are cho-
sen to generate synthetic queries. For each source
passage, a single query is synthetically generated
by inserting this passage into a prompt to instruct
the LLMs. For generalization, we use the Zephyr-
7B-beta model for generating the training queries
and Mistral-7B-OpenOrca for constructing the test
ones. In addition, the instruction prompts for the
training and test sets are modified to be slightly
different. In this work, these instructions follow a
role-playing prompting strategy (Li et al., 2023a).
For example, the LLM can be instructed to take
on the role of a teacher with the task of gener-
ating exam questions based on the passages (see
Appendix B). To ensure accurate LLM responses,
the prompts were carefully designed, and a set of
generated questions was reviewed to confirm they
resembled real-world queries.

3.2.2 Training process

The BERT-based model in SBERT is fine-tuned
using the Multiple Negative Ranking loss (MNRL)
function (Henderson et al., 2017). Mathematically,
the loss function is optimized by minimizing the
mean negative log-probability of the positive pairs,
shown as follows:

L(q,p) = − 1

K

K∑
i=1

log (P (qi, pi))

= − 1

K

K∑
i=1

log

(
eS(qi,pi)∑K
j=1 e

S(qi,pj)

) (1)

in which, for a batch size of K, there are K in-
put queries q = (q1, ..., qK) and K corresponding
passages p = (p1, ..., pK). The positive pair is de-
noted as (qi, pi) for every i ≤ K while the negative
pair is indicated as (qi, pj) with i ̸= j and i, j ≤ K.
To optimize the loss, Adam with decoupled weight
decay (AdamW) (Loshchilov and Hutter, 2019) is
used along with the warm-up decrease of learning
rate enhances for better stability and generalization
during training.

In the inference stage, the BERT-based model is
taken out of SBERT and used independently. To
assess the effectiveness of fine-tuned text embed-
dings, we then evaluate the retriever’s performance
on the test set, comparing it to the retrievers using
only pre-trained embeddings.

1https://huggingface.co/Open-Orca/
Mistral-7B-OpenOrca

3.3 Knowledge Graph Construction and
Embedding

In the proposed system, the role of the KG is to
model the connections and relationships between
different passages in the dataset. The KG is then
embedded in a vector space by a knowledge graph
embedding (KGE) model, such that the structural
features between passages are preserved through
their vector representations.

3.3.1 Knowledge Graph Construction
The KG consists of a set of triples in the form of
(head, relation, tail) and is constructed following a
schema depicted in Figure 2.

Figure 2: The schema to formalize the knowledge graph
construction.

In this schema, the head and tail entities from
the triples are categorized into one of five classes,
with the Passage, Path, and Object classes serving
as general base classes. To enhance the schema for
the health-related domain, we incorporate the Med-
ical Subject Headings (MeSH) concepts, MeSH
term classes, and their relationships from the MeSH
RDF-linked data (Lipscomb, 2000). MeSH, orig-
inally a biomedical vocabulary used for indexing
and searching PubMed articles, is integrated to
enrich the KG with relevant terms. Detailed infor-
mation about the meaning of entity classes and how
these entities are created is described as follows:

Passage entities: The entities belonging to the
Passage class represent the text chunks in our
dataset. Each Passage entity is defined by its ID in
the database.

Path entities: This type of entity represents the
path address of the source documents (i.e. the
documents before being split into passages) in the
database.

Object entities: This type of entity represents
the general and bio-medical annotations from the
passage. To extract the object entities from the text
passages, we leverage the "en_core_sci_lg" model
from the SciSpacy library (Neumann et al., 2019)
as a Named-entity Recognition (NER) tool. Addi-

https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca


tionally, each object is linked to a MeSH Descriptor
(i.e. a term that describes the main subject of an
article) by a Name Entity Linking function. It leads
to a total of 65, 282 objects extracted from our pas-
sages, in which 6901 objects have linked MeSH
Descriptors.

MeSH Concept entities: The MeSH Concept
class describes a unit of meaning. In other words,
every term in MeSH which is strictly synonymous
with each other is grouped into a "Concept". In
MeSH, each Descriptor consists of one or more
Concepts. Therefore, the MeSH Concept entities
in our KG are then retrieved by using a SPARQL2

query based on the MeSH Descriptor.
MeSH Term entities: The MeSH Term class

describe human-readable names used by a MeSH
Concept or MeSH Descriptor. A MeSH Descrip-
tor have one MeSH Term while A MeSH Concept
can have one or multiple MeSH Terms and they
are strictly synonymous. All MeSH Terms are re-
trieved by SPARQL query based on MeSH Con-
cepts and MeSH Descriptors.

Additionally, entities of different classes are con-
nected by 4 relations. The descriptions of relations
used to link head and tail entities are described as
follows:

associated_object: This relation describes the
connection between Passage and Object entities. It
demonstrates what object entities are mentioned in
the text.

has_path: This relation connects between Pas-
sage and Path entities, indicating the paths where
the passages are located.

preferredTerm: This connection between Object
and MeSH Term entities indicates which term the
Object entity is preferred to refer to.

Concept_preferredTerm: The connection be-
tween MeSH Concept and MeSH Term entities,
describing the synonym relation.

An example of a subgraph and detailed statistics
of the KG is demonstrated in Appendix C.

3.3.2 Knowledge Graph Embedding
The knowledge graph after being constructed is
then represented in the vector space by a knowledge
graph embedding (KGE) model such that the graph
properties are preserved. Although the methodol-
ogy is applicable to any KGE model, we opt for
translational KGE models because of their simplic-
ity and high efficiency.

2https://www.w3.org/TR/sparql11-query/

Generally, translational KGE models operate by
using relation embeddings as translations in vector
space between head and tail entities. The objective
is to learn the embedding of entities and relations
in triples to minimize the scoring function fr(h, t)
of each triple (h, r, t) where r is the relation, h and
t are head and tail entity embeddings, respectively.
Table 1 shows the scoring functions of different
KGE models used in this paper.

Table 1: Scoring function equations for TransE, RotatE,
and QuatE models. ◦ denotes element-wise product, ⊗
denotes Hamilton product, ∥·∥22 denotes the L2 norm.

Model Scoring Function
TransE (Bordes et al., 2013) ||h + r − t||2

RotatE (Sun et al., 2019) ||h ◦ r − t||2
QuatE (ZHANG et al., 2019) ||h ⊗ r − t||2

The scoring function is optimised through a Mar-
gin Ranking loss function, shown as follows:

L(fp, fn) = max(0, fp − fn + λ) (2)

in which λ denotes the margin value, fp and fn
are the scoring function values of a positive triple
(i.e. the actual triple in KG) and a negative triple
(i.e. the non-existent triple in KG), respectively.
This loss function aims to encourage the model to
improve its embedding representations and effec-
tively distinguish between positive and negative
triples. To sample negative triples, the head or tail
of a positive triple is randomly swapped with an
entity from another one in the training batch. This
process is carefully engineered to ensure that the
resulting corrupted triples do not already exist as
positive examples in the original KG. Finally, the
objective of learning embedding for entities and re-
lationships can be achieved by using the Stochastic
Gradient Descent algorithm.

3.4 Hybrid Retrieval Strategy

Figure 3 illustrates the process of our hybrid re-
trieval strategy. The strategy is divided into five
main steps as follows:

Step 1: Given a question, a set of top N (N >
K) relevant passages are retrieved using the cosine
similarity of their text embeddings. This step aims
to narrow the search space by filtering out irrelevant
passages based on their semantic nuances.

Step 2: From the top N retrieved passages, their
text embeddings and KG embeddings are horizon-
tally concatenated. In the concatenation vectors,

https://www.w3.org/TR/sparql11-query/


Figure 3: The hybrid retrieval strategy aims to utilise the fusion of text and KG embeddings.

we prioritize the impact of the text embedding com-
ponent to emphasize the importance of semantic
nuances, while utilising the KG embedding com-
ponent as an auxiliary extension. Thus, text em-
beddings are multiplied element-wise by a scaling
weight α (where α > 1) to amplify their signifi-
cance. The concatenation operation is then specifi-
cally formulated as follows:

Concat(TE,KGE) = [TE ∗ α,KGE] (3)

where TE and KGE indicate a text embedding
and a knowledge graph embedding respectively.
With the amplification of text embedding, the hy-
brid representations of passages have more internal
semantic features while still containing the global
relationship information captured by KG-based
vectors.

Step 3: Since the question is not explicitly mod-
elled in our KG, approximating its representation
in the KG vector space is needed. Accordingly, all
objects in the question are first extracted by using
the same NER model in Section 3.3. Next, the ques-
tion embedding is then approximated by a mapping
function, shown as follows:

q =
∑N

i=1

∑M
j=1 pij∑N

i=1

∑M
j=1 passage_has_obj(pi,oj)

(4)

where M is the number of objects extracted in
the question, N is the number of top N retrieved
passages, q is the approximated embedding of a
question, pij is the embedding of passage pi in top
N that contains object oi, and

passage_has_obj(Pi, Oj) =

{
1 if pi ∋ oj

0 otherwise
(5)

Step 4: The text embedding and the approximated
KGE of the question are concatenated to form the
hybrid vector. Also, the same weight α value is ap-
plied to the text embedding of the question before
concatenation.

Step 5: Finally, the top K passages are retrieved
from the N passages by taking the K highest cosine
similarity scores between the hybrid vectors of the
question and the N passages.

4 Experiments

4.1 Experimental Setup
4.1.1 Text embedding model setup
For the text embedding component in the retriever,
three small-size BERT-based models were selected
as the baselines: BGE model (Xiao et al., 2023),
E5 model (Wang et al., 2022) and GTE model (Li
et al., 2023b). Each model comprises 12 trans-
former blocks, 12 attention heads per self-attention
layer, an input size of 512 tokens, and an embed-
ding size of 384.

The training set to fine-tune the models was gen-
erated from 500 random passages, following the
method in Section 3.2. The models were trained
in 50 epochs, with a batch size of 10 and using
the AdamW optimizer. The initial learning rate
was configured at 0.001 and with a decay through
a warm-up step of 0.1. We trained the models on
Google Colab Pro with 15GB VRAM NVIDIA T4.

4.1.2 Knowledge graph embedding
configuration

Three KGE models were experimented with, in-
cluding TransE, RotatE, and QuatE. Each model’s
embedding size of 200 was configured for optimal



performance based on grid search. The models
were trained on 20 epochs. Each training batch
consisted of 128 positive triples, where for each
positive triple, one negative triple was generated.

4.1.3 Hybrid Retriever configuration
The top-N value was initialized at 20. Experimenta-
tion included top-K values of 3 and 5. Various com-
binations of BGE text embeddings and KGE mod-
els were tested for the hybrid embeddings. Through
grid search, a weight of α = 2.5 was found to op-
timize performance, ensuring the hybrid retriever
achieved its peak effectiveness.

4.2 Evaluation Scheme

4.2.1 Passage Retrieval Evaluation
To evaluate the retriever, three synthetic test sets
were created, denoted as the first, second, and third
test sets, following the guidelines outlined in Sec-
tion 3.2. The queries from the first and second test
sets were generated from the same random 200
passages. In the first test set, one question was
synthesised per passage, while in the second test
set, the ratio was 2:1. The third test set was cre-
ated from a different set of 200 passages, with a 1
question per passage ratio.

The retriever performance was measured by two
metrics: Hit Rate (HR) for retrieval accuracy and
Mean Reciprocal Rank (MRR) for ranking abil-
ity. The higher the metric values, the better the
performance.

4.2.2 RAG performance evaluation
To evaluate an end-to-end RAG, another test set
was used that included 50 golden question-answer
pairs manually extracted from the documents.
Given the question, the correctness of RAG’s re-
sponse was measured by comparing it to the golden
answer, using Semantic Answer Similarity (SAS)
score (Risch et al., 2021). SAS score is calculated
by a cross-encoder model given the predicted an-
swer and golden answer pairs. In this paper, the
cross-encoder version of the BGE model was used.
The SAS score also measured the level of relevancy
between the RAG responses and the retrieved pas-
sages.

4.3 Experimental Results

4.3.1 Passage Retrieval Results
The comparison of retrievers using different embed-
ding models is demonstrated in Table 2. Across all

test sets, retrievers using the fine-tuned text embed-
ding models exhibited superior performance com-
pared to their pre-trained counterparts in both Hi-
tRate@K and MRR@K metrics. Notably, the fine-
tuning of GTE and E5 models resulted in more pro-
nounced enhancements. Although the fine-tuned
BGE model showed only a slight improvement
over its pre-trained version, both iterations of BGE
outperformed the E5 and GTE models. These im-
provements were consistent across all top-K sce-
narios. These findings also suggest that relying
solely on general-purpose text embedding models,
which leverage pre-trained knowledge, may not
yield optimal results for domain-specific datasets.
The proposed fine-tuning solution can significantly
enhance performance and stabilize results in such
cases.

On the other hand, our method of integrating
fine-tuned BGE with any knowledge graph embed-
ding model demonstrated notable enhancements
compared to BGE-only retrievers across all test
sets and Top-K settings. Particularly, the hybrid
approach showed increases of up to 8.1% in Hi-
tRate and up to 8.7% in MRR. Notably, leveraging
TransE embeddings, the hybrid retriever produced
the highest results compared to other hybrid varia-
tions. This emphasizes the effectiveness of lever-
aging global semantic relationships to enrich the
textual representation of both passages and queries,
hence, enhancing the overall retrieval performance.

4.3.2 End-to-end RAG performance
The effectiveness of the hybrid retriever was fur-
ther evaluated through its impact on the answer-
ing performance of RAG systems. For this exper-
iment, the hybrid retriever employed fine-tuned
BGE and TransE models and returned the top 3
passages. The performance of LLM-based read-
ers was then compared across three conversational
LLMs: LLaMA-2-13B-chat (Touvron et al., 2023),
Zephyr-7B-beta and Mistral-7B-OpenOrca.

Table 3 displays the response quality scores for
various RAG settings. In terms of Relevancy, the
scores remained relatively consistent, suggesting
that all LLM baselines could properly answer ques-
tions following the retrieved contexts. However,
our analysis of Correctness scores revealed a no-
table enhancement in RAG performance when uti-
lizing hybrid retrievers, with improvements of up to
13.1%. This highlights the significant impact of hy-
brid retrievers on the accuracy of RAG-generated
responses.



Table 2: The performance comparison between retriev-
ers using hybrid embeddings and those using only text
embeddings.

Retriver
1st Test set 2nd Test set 3rd Test set
HR MRR HR MRR HR MRR

Top K = 3

GTEpre-trained 0.3865 0.2938 0.3291 0.2324 0.4690 0.3427
E5pre-trained 0.6546 0.5567 0.5753 0.4882 0.6804 0.5506

GTEfine-tuned 0.7989 0.6993 0.6934 0.5644 0.7886 0.6683
E5fine-tuned 0.7525 0.6125 0.6231 0.5201 0.7474 0.6091

BGEpre-trained 0.8247 0.6941 0.7311 0.6139 0.8195 0.6821
BGEfine-tunned 0.8350 0.7164 0.7437 0.6335 0.8350 0.6941

BGEft + TransE 0.8917 0.7506 0.8040 0.6892 0.8814 0.7336
BGEft + RotatE 0.8763 0.7526 0.7839 0.6570 0.8865 0.7431
BGEft + QuatE 0.8711 0.7465 0.7814 0.6440 0.8763 0.7250

Top K =5

GTEpre-trained 0.4742 0.3136 0.3994 0.2487 0.5515 0.3610
E5pre-trained 0.7577 0.5798 0.6482 0.5051 0.7989 0.5774

GTEfine-tuned 0.8608 0.7129 0.7587 0.5795 0.8556 0.6838
E5fine-tuned 0.7938 0.6223 0.6909 0.5356 0.7886 0.6189

BGEpre-trained 0.8505 0.6993 0.7989 0.6292 0.8659 0.6926
BGEfine-tunned 0.8917 0.7298 0.8090 0.6485 0.8917 0.7080

BGEft + TransE 0.9329 0.7652 0.8542 0.7007 0.9381 0.7435
BGEft + RotatE 0.9175 0.7616 0.8517 0.6726 0.9175 0.7498
BGEft + QuatE 0.9072 0.7542 0.8316 0.6560 0.9175 0.7341

Table 3: Responses comparison between different
RAG’s combinations.

LLM reader Retriever Relevancy Correctness
LLama-2-13B-chat BGE ft 0.9846 0.7655

Mistral-7B-OpenOrca BGE ft 0.9909 0.7193
Zephyr-7B-beta BGE ft 0.9708 0.7486

LLama-2-13B-chat hybrid 0.9921 0.7729
Mistral-7B-OpenOrca hybrid 0.9891 0.8136

Zephyr-7B-beta hybrid 0.9878 0.8283

The experimental results also correlated with
the correctness of answer examples shown in Ta-
ble 7 (see Appendix F). The answers from the
Zephyr-7B-beta model based on hybrid retriever
contexts were more detailed and aligned better with
the golden answer than those from BGE-only re-
triever contexts, which contained less information
and thus, had a lower correctness score.

5 Discussion

In this section, we will discuss how the hybrid
embeddings help to improve the retriever by ana-
lyzing the impacts of the weight α. Additionally,
a comparison of the proposed method with other
re-ranking mechanisms will be demonstrated. In
these analyses, we experimented with a sub-case
using our 1st retriever test set introduced in Section
4.1.

As shown in Figure 6 (see Appendix D), it is

clear that the value of α greatly affects the perfor-
mance of the hybrid retriever. When α was set
to 0, it was equivalent to the case of a retriever
only using TransE embeddings. However, the per-
formance of the retriever in that case was poorly
underperformed, especially when the top-N value
increased. This observation suggests that when
the retriever relies solely on KGE and retrieves in-
formation from a larger pool, it is more prone to
noise and irrelevant information. When α was set
to 1, text and KG embeddings were equally con-
catenated. While this improved hybrid retriever
performance, it decreased at higher top-N values.
This finding indicates that balanced weights might
cause KG embeddings to diminish the semantic
meaning of text embeddings in their hybrid vectors,
resulting in unstable outcomes.

Conversely, as the parameter α increases, it
boosts the influence of text embeddings. This, in
turn, strengthened the semantic features in the com-
bined vectors, resulting in better performance for
the retriever. Notably, with larger α values, the
performances remained relatively unchanged by
variations in top-N values. This observation indi-
cates that the α factor can aid hybrid vectors in
differentiating dissimilar ones. However, it is cru-
cial to keep α values within an appropriate range.
If α is too large, the text embedding features can
overshadow the global features from KGE, causing
the hybrid vectors to resemble text embeddings too
closely.

Additionally, our two-stage hybrid retrieval strat-
egy can be considered to be similar to the "retrieve
then re-rank" mechanism. However, instead of us-
ing a re-ranking model, the hybrid vectors take the
KGE component to re-rank the pre-defined passage
orders. The results show that our hybrid retriever
had comparative performance compared to other
"retrieve then rerank" paradigms despite not be-
ing intentionally designed for re-ranking purposes
(see Appendix E). Furthermore, the proposed hy-
brid retriever only uses cosine similarity to retrieve
passages, which is computationally lighter for in-
ference than using neural-based re-ranker models.

6 Conclusion

In this work, a hybrid method is introduced which
leverages both text and knowledge graph em-
beddings to advance the retriever in Retrieval-
Augmented Generation systems. The text embed-
ding model is fine-tuned with a synthetic dataset



to adapt to downstream tasks. Meanwhile, the
KGE component is trained from a KG presenting
the global relationships between passages in the
dataset. Additionally, the proposed hybrid retrieval
strategy efficiently integrates these two representa-
tion types without using complex architecture or
training processes typical in other KG-based re-
trieval methods.

The experimental results demonstrate that the
method can significantly improve the retriever’s
performance in both accuracy and ranking in com-
parison to the baseline methods. This improvement
subsequently results in the higher correctness of
the RAG’s responses.

In this paper, the methods were tested in an ap-
plication in the health-tech domain where knowl-
edge can be represented based on Medical Subject
Headings (MeSH) classes. However, the proposed
method is generic and can be applied to any domain
where the KG can be meaningfully constructed to
describe the relations between different passages.
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A Sentence-BERT architecture

Figure 4: A structure of Sentence-BERT using a
Siamese network. Query (Sentence A) and Passage
(Sentence B) are encoded separately by two shared-
weight BERT-base blocks.

As shown in Figure 4, SBERT uses a Siamese
network (Schroff et al., 2015) with two shared-
weight BERT-based models. Given the query and
passage pairs, SBERT will learn to give higher
cosine similarity scores for matched pairs and vice
versa. In principle, the embedding model used in
SBERT can be any variation of BERT.

In this paper, all layers of the BERT-based model
are fine-tuned to ensure complete adaptation to the
training set. The Pooling layers in SBERT are
configured depending on pre-trained BERT to ag-
gregate contextualized word embeddings of query
and passage resulting vectors q and p, respectively.
Finally, the cosine similarity is then computed be-
tween them.

B Prompts for synthetic question
generation

The instructional prompt templates used for the
Zephyr 7B and Mistral 7B models for generating
train and test sets in our case are depicted in Table 4.
In both prompts, a role-playing prompting strategy
(Li et al., 2023a) was chosen to guide the models’
behaviours and responses.

C Graph statistics

An example of a subgraph is shown in Figure 5.
Table 5 shows the number of entities in each class
and the relations in our KG. It is built by 455, 737
triples including 98, 524 entities, in which there are
5, 607 Passage entities. In 65, 282 objects, each
Object can be associated by an average of 5.6 Pas-
sages and by at least 1 Passage. Besides, there are

Table 4: Two prompt templates to generate synthetic
training and testing sets. The prompt for the train set is
inputted to the Zephyr-7B-beta model while the prompt
for the test set is used to guide Mistral-7B-OpenOrca.

Prompt for train set
Context information is below.
———————
{context_input}
———————
Given the context information and no prior
knowledge, you are a Teacher/Professor. Your
task is to set up {num_questions_per_chunk}
questions for an upcoming quiz/examination.
The question must be based on the main con-
text. Additionally, the question must have a
clear answer indicated in the context informa-
tion. Finally, return the question with a question
mark at the end.
Prompt for test set
Context information is below.
———————
{context_input}
———————
Given the context information and no prior
knowledge, you are a Teacher/Professor. Your
task is to set up {num_questions_per_chunk}
questions for an upcoming quiz/examination.
The questions should be diverse in nature across
the document. Restrict the questions to the con-
text information provided.

23, 634 Objects linked with MeSH Terms. On aver-
age, each Object is connected to 2.7 MeSH Terms
while each MeSH Term is referred to by 3.26 Ob-
jects. Furthermore, each MeSH Concept is referred
to by an average of 2.1 MeSH Term. For the Path
entity, on average, each Path is connected by 3.77
Passages, in which the highest number of Passage
originating from a Path is 20.

Table 5: Summary of knowledge graph details

Entity Class Count Relation Type N.o triples
using relation

Passage 5607 associated_object 370936
Path 1487 has_path 5607

Object 65282 preferredTerm 64053
MeSH Concept 6901 Concept_prefferedTerm 15141

MeSH Term 19247
Total 98524 Total 455737



Figure 5: An example of a sub-graph illustrates the
relationship between different passages. Intuitively, Pas-
sages with more common connections are located closer
in the graph.

D Influence of scaling weight α

Figure 6 presents the results of the hybrid re-
triever’s performance employing fine-tuned BGE
and TransE embeddings, concerning HitRate@3
across varying α values.

E Comparision to "Retrieve then
Re-rank" mechanism

Table 6 shows the comparison between the pro-
posed methodology and retrievers integrating re-
ranking models.

Table 6: The performance comparison on the first test set
between our hybrid retriever and different combinations
of retriever and re-ranker models.

Retriever + Reranker HR@3 MRR@3
BGEft 0.8350 0.7164

BGEft + Stsb-roberta-base 0.3762 0.2689
BGEft + ms-marco-miniLM-L-2-v2 0.8195 0.6701

BGEft + BGE-rerank-base 0.9123 0.7439
BGEft + ms-marco-miniLM-L-6-v2 0.9175 0.8092

BGEft + TransE (ours) 0.8917 0.7506

F Examples of system’s response

Table 7 illustrates an example of answers from
the Zephyr-7B-beta model for a question based on
the contexts provided by BGE-only and hybrid re-
trievers. The answer generated from the hybrid re-
triever’s contexts exhibited greater detail and closer
alignment with the golden answer. In contrast, the

(a) Performance Analysis with HitRate@3

(b) Performance Analysis with MRR@3

Figure 6: Overall Performance Analysis on HitRate@3
and MRR@3 with different alpha values

answer obtained from the BGE retriever’s passages
contained only half of the information leading to a
lower correctness score.



Table 7: Comparison of answers from Zephyr-7B-beta reader with different retrievers

Question: What is the main reason for revision surgery?
Golden Answer: Infection, infection and infection. We already have antibacterial coatings.
However, these do not cover for the 100%. Furthermore, the proximal and distal parts are coated, but
the valve is not.
BGE + Zephyr-7B-beta: According to the expert call, the main reason for revision surgery in brain
shunts is infection, infection, and infection.
Correctness score: 0.4096
Hybrid + Zephyr-7B-beta: The main reason for revision surgery in the context provided is

infection, infection, and infection. The expert mentions that if there is no native increased pressure,
then the shunts get clogged due to pathology from the past such as high protein levels,
haemorrhages, or circulating tumour cells. The valve is prone to erythrocyte cells, and the main
reason for revision surgery is infection. The expert also mentions that they already have antibacterial
coatings, but these do not cover 100% and the proximal and distal parts are coated, but the valve is
not. Therefore, infection remains a significant issue in shunt revision surgeries.
Correctness score: 0.9975


