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Abstract

The long-term fundamental frequency of
speech (LTF0) represents a speaker’s F0 over
longer stretches of speech. It can be used as
an acoustic feature for speech, e.g. speaker
identification and as a controllable parameter
in speech synthesis. LTF0 estimation is a chal-
lenging task for automatic F0 estimators as they
vary in sensitivity, accuracy, and robustness to
noisy data. In this paper, we aim to improve
the accuracy and robustness of long-term F0
representation of speaker voices using 3 model
output post-processing techniques: a) thresh-
olding, b) median filtering, and c) smoothing.
We evaluated these for 6 popular F0 estimators:
pYin, SWIPE, REAPER, FCNF0, CREPE and
SPICE. We evaluated their performance with
hand-labelled LTF0 for 5 male and 5 female
speaker selected from LibriSpeech as well ex-
amining trends for a larger group of 40 speak-
ers. We conclude from our analysis that post-
processing significantly improved the CREPE
model estimates. SPICE and SWIPE had mini-
mal improvements. As for the other methods,
we would not recommend the post-processing
techniques.

1 Introduction and Motivation

The fundamental frequency (F0) of speech dic-
tates the pitch and intonation at which the acoustic-
linguistic units are spoken. F0 can be measured
manually or by using automated F0 estimators such
as pYIN or CREPE. However, F0 estimation errors
can still occur especially at the high frequencies
for unvoiced sounds (See Figure 1). These errors
in detection could impact the accuracy and preci-
sion when estimating the long-term F0 of a speaker.
The long-term F0 represents the fundamental fre-
quency over longer duration of speech as compared
to short-term F0 which represents smaller units
such as vowels or phonemes (Loakes, 2006). This
study investigates the performance of popular F0
estimators on LibriSpeech(Panayotov et al., 2015)

and suggests post-processing methods to improve
the long-term F0 (LTF0) speaker representation
which can be used for better prosody analysis and
modelling.

Figure 1: Spectrogram and F0 contour estimates from 6
different models on a sample speech file. Misdetected
F0 (errors) are boxed in yellow

2 Related Literature

Traditional signal-based methods for pitch estima-
tion use autocorrelation function (ACF) and spec-
tral analysis. Recent state-of-the-art systems, on
the other hand, use data-driven approach and ma-
chine learning methods such as Convolutional Neu-
ral Networks (CNN), Deep Learning (DL), and
Self-Supervised Learning (SSL) techniques.

2.1 F0 estimators

Autocorrelation methods for F0 estimation. The
autocorrelation of a signal is calculated by getting
the product of a signal with a lagged or time-shifted
version of itself. The resulting product has a high
value at lags corresponding to the period of the
signal. The fundamental frequency can then be
calculated from the lag with a maximum autocor-
relation value. The YIN algorithm implements the



ACF together with cumulative mean normalised
difference function and absolute thresholding to
estimate F0 (de Cheveigne and Kawahara, 2002).
An improved implementation pYIN uses threshold-
ing distribution instead of a single threshold which
resulted to higher accuracy (Mauch and Dixon,
2014). Another algorithm, RAPT, uses normalised
cross-correlation for F0 estimation, alongside dy-
namic programming to remove discontinuities in
the F0 estimates. (Camacho, 2008; Talkin, 1995).
REAPER1, which is an improved implementation
of RAPT, uses an epoch tracker to simultaneously
estimate the voiced-speech epochs or glottal clo-
sure instants, voicing state, and F0.

Spectrum-based methods for F0 estimation.
SWIPE is an example of pitch estimator using spec-
tral analysis. It determines F0 from the frequency
that maximises the Average Peak to Valley Dis-
tance (APVD) in the frequency domain. SWIPE
was shown to outperform pYIN, RAPT for musi-
cal instruments and canonical speech (Camacho,
2008). Other spectral-based methods estimates
F0 by calculating the power-spectrum. TANDEM-
STRAIGHT defines a fluctuation spectrum for the
periodic components and a separate model for ape-
riodicity (Kawahara et al., 2008). A more recent
method based on pseudo Wigner-Ville distribution
using spectral density achieves faster F0 estimation
(Liu et al., 2023).

Machine Learning F0 Estimators With the
development of speech and audio corpora such
as VCTK Corpus (Veaux et al., 2017), PTDB
(Pernkopf), MDB (Salamon et al.), and MIR
(Lerch) database comes the development of data-
driven machine learning models for F0 estimation
(Chung et al., 2023; Kim et al., 2018). CREPE
(Kim et al., 2018) is a deep convolutional neural
network architecture trained using MDB dataset. It
has been shown to outperform pYIN and SWIPE
in terms of raw pitch accuracy (RPA) across RWC-
synth and MDB-stem-synth datasets. MF-PAM
(Chung et al., 2023) also uses CNN architecture
with periodic and non periodic CNN blocks along-
side bi-directional feature pyramid network (Bi-
FPN) . The system was shown to outperform pYIN,
SWIPE, CREPE, DeepF0, HarmoF0 across the
databases mentioned. RMVPE is another pitch
estimator that uses log mel spectrogram features,
residual CNN with BiGRU and fully-connected

1 Google, ’REAPER: Robust Epoch And Pitch EstimatoR’,
2019, https://github.com/google/REAPER

layers with sigmoid activation function (Wei et al.,
2023). TAPE uses a modified version of CREPE
which is connected to a Transformer layer (Tamer
et al., 2023). FCNF0 is another modified version
of CREPE with fully-convolutional inference, zero-
padding omitted from the convolutional layers, and
with different number of convolutional channels
(Morrison et al., 2023). Lastly, SPICE is a Self Su-
pervised Learning (SSL) approach with Constant-
Q Transform (CQT) features and attention lay-
ers. SPICE was shown to outperform CREPE, and
SWIPE across MIR (1k), MDB-stem-synth, and
Singing Voices datasets (Gfeller et al., 2020).

Recent machine learning methods use more com-
plex computations and require training from large
datasets compared to the traditional signal process-
ing methods using the autocorrelation function and
spectral analysis. However, state-of-the-art mod-
els such as CREPE and SPICE are able to achieve
high accuracy, outperforming autocorrelation and
spectral-based F0 estimators on large music and
singing datasets (Kim et al., 2018; Gfeller et al.,
2020).

2.2 Calculating the long-term F0 for speech
Mean F0 and F0 histograms extracted using au-
tocorrelation (via PRAAT software (Boersma and
Weenink)) were used as complementary features
to Mel Frequency Cepstral Coefficient (MFCC)
and have been shown to improve text-independent
speaker recognition (Kinnunen and Hautamaki,
2005). Another study analysed the effects of us-
ing long-term mean F0, standard deviation, kur-
tosis, skew, modal F0, and the modal density for
forensic speaker classification on Japanese speak-
ers (Kinoshita et al., 2008). A more recent study
(Arantes et al., 2017) compared mean, median and
base values extracted using autocorrelation (via
PRAAT software) for long-term F0 estimation and
found out that the base value which is defined as
1.43 standard deviations below the mean stabilises
faster than the mean and the median. In this study,
we will focus on improving long-term F0 using
three post-processing techniques: a) thresholding,
b) median filtering, and c) smoothing.

2.3 Post-Processing Techniques
1. Thresholding - Single absolute thresholding
of confidence score was used in YIN in selecting
the smallest period corresponding to the F0 among
candidates (Mauch and Dixon, 2014). For pYIN,
probabilistic thresholding with beta distributions

https://github.com/google/REAPER


was used to improve the F0 candidate selection
of YIN. Peak thresholding in the residuals calcu-
lated via autocorrelation was done in REAPER 1

in selecting the glottal closure instants candidates
(GCI).

In a similar way, we hypothesise that threshold-
ing can be used in extracting the LTF0 from the F0
contours of a given speaker. We propose to thresh-
old based on three parameters which are the pri-
mary basis for extracting LTF0: harmonic, periodic
and voiced sounds. We propose to threshold these
parameters: a) voiced probability for pYIN, b) con-
fidence scores for CREPE, and SPICE, c) strength
(pitch) for SWIPE, d) correlation for REAPER, and
e) periodicity for FCNF0.

2. Median filtering - For effective LTF0 repre-
sentation, the appropriate measure of central ten-
dency must be properly selected. In F0 estima-
tion wherein outliers among the pitch estimates
are naturally occurring, we suggest that the me-
dian should be a better measure for F0 representa-
tion. In a related study on analysis of LibriSpeech
data, characteristic median of F0 estimates from
pYIN and CREPE were used to characterise intra-
and inter- speaker range distributions from which
they observed a bimodal distribution across gen-
ders(Debnath et al., 2023). A related study on
duration modeling demonstrated median as a better
estimator than mean for human speech (Ronanki
et al., 2016).

3. Smoothing - Temporal smoothing has already
been implemented in pYIN and has been shown
to improve the precision and F-score in F0 estima-
tion of synthetic singing voice data (Mauch and
Dixon, 2014). CREPE (Kim et al., 2018) also in-
cluded an option for Viterbi smoothing in their
repository. There are still other methods for time-
series smoothing such as convolutional smoothing,
polynomial smoothing, gaussian smoothing, etc.2.
For post-processing, we hypothesise that applying
a smoothing function on any of the F0 estimators
will still improve the robustness of the pitch estima-
tors. We select Kalman filter as a robust temporal
smoothing algorithm as it considers prior estimates
and could perform well on non-stationary time se-
ries data (Lotysh and Larysa Gumeniuk, 2023).

Using the combination of these three post-
processing techniques, we aim to determine
whether these could improve LTF0.

2Marco Cerliani, ’A python library for time-series smooth-
ing and outlier detection in a vectorised way’, 2023, https:
//github.com/cerlymarco/tsmoothie

3 Methodology

The flowchart of the methodology is shown in Fig-
ure 2:

10 speakers 
audio_files

10 speakers 
(f0, time, confidence scores)

ThresholdingSmoothing

F0 Representation

Evaluation

mean median

pYIN
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Figure 2: Diagram showing the process of applying
post-processing techniques from the F0 estimates of the
speech dataset to improve F0 representation

3.1 Data Preparation
Five (5) male and five (5) female speaker data were
randomly selected from the dev-clean set of Lib-
riSpeech. The speaker folders contain at least one
chapter of read audiobooks sampled at 16k Hz with
utterance lengths varying from 3-20 s with around
10 minutes per speaker.

3.2 F0 Estimators
Available repositories of the estimators were con-
solidated and used for benchmarking.

An example showing the F0 estimate of all the
6 models is shown in Figure 1. Minimum F0 was
set to 55 Hz and Maximum F0 to 1760 Hz which
covers the human voice range of 40 Hz - 450 Hz
(Bäckström et al., 2022).

3.3 Post processing techniques
Optimal threshold values were set upon observing
the histogram distributions of the confidence scores
(see Appendix). For temporal smoothing a Kalman
filtering function from tsmoothie 2 was applied for
all the models. After smoothing and thresholding,
the central measures (mean and median) were then
calculated.

3.4 Evaluation
Mean Absolute Deviation (MAD), a measure of
variability (Amir, 2016), was used to determine the

https://github.com/cerlymarco/tsmoothie
https://github.com/cerlymarco/tsmoothie


robustness of the F0 representation with and with-
out the post-processing functions. Mean Absolute
Error (MAE) was also computed for the systems
with respect to manual labels. For Table 1, variabil-
ity was compared when using mean LTF0 estimates
versus when using post-processed median LTF0 es-
timates. In Figure 3, improvement in accuracy was
determined by getting the difference of mean LTF0
estimates with the ground truth as well as the differ-
ence of the post-processed median LTF0 estimates
from the ground truth.

and

4 Results and Discussion

4.1 Speaker F0 representation
Accuracy
Manually labelled median F0 estimates (see Ap-
pendix tables 2 and 3) were obtained through spec-
trogram inspection with PRAAT for 10 utterances
from each of the 10 speakers. Figure 3 shows the
MAE improvement with post-processing versus a
simple mean calculation for the different models
with respect to the ground truth labels. It is ob-
served that the error for REAPER increased after
post-processing while the other systems improved.
CREPE exhibited the largest reduction in error
(127 Hz), with a lower MAE than SPICE.
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Figure 3: MAE before and after post-processing

Precision

Table 1: Average MAD difference values across the 10
speakers

Algorithms crepe fcnf0 pYin reaper spice swipe
Average MAD 25.61 -3.80 28.24 0.03 1.72 4.49

Table 1 shows the average of MAD score dif-
ferences before and after post-processing for all
the algorithms across the 10 speakers. Positive

values which indicate reduced variability can be
observed mostly for CREPE, pYin, and SWIPE.
REAPER and SPICE models have less reduction in
variability with 0.03 Hz and 1.72 Hz improvement
respectively as compared to 25.61 Hz for CREPE
and 28.24 Hz for pYin. Variability in F0 estimates
from FCNF0 increased as indicated by the negative
values.

4.2 Intergender F0 representation

Figure 4 shows the interquartile range (IQR) of
the CREPE F0 estimates across the 10 speakers.
It can be observed that median ranking becomes
more definitive across gender after applying the the
combination of the post-processing techniques as
shown by the clearer separation between male and
female voices. The rankings were also investigated
across all 40 speakers in the dev-clean and results
are consistent with only one male speaker clustered
among female speakers. See Appendix for details.

5 Conclusion and Recommendations

Based on our analysis, we conclude that the post-
processing was yielded a significant benefit for
CREPE. Post processing also helped pYin but the
thresholding is not robust to varied data (details in
the appendix). SPICE and SWIPE exhibited mini-
mal improvement with post-processing. REAPER
worsened in accuracy and had minimal improve-
ment in variability while FCNF0 had minimal accu-
racy improvement and increased variability. When
used on CREPE, the suggested approach can yield
better LTF0 representation which can be used to
improve the quality of speech models.
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Figure 4: Box plot for the F0 estimation using CREPE
with (left) and without (right) post-processing; The cen-
ter line represents the median F0 and the color indicates
male (Blue) and female (Red).
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A Appendix

A.1 Manual pitch annotation comparison
Two annotators manually estimated the pitch of 10
random samples from each of 10 speakers. The
results, presented in Table 2 and Table 3, show a
pitch difference of 5 – 20 Hz due to varying an-
notation methods and sample selection. Annotator
1 chose all samples from a single chapter, while
Annotator 2 selected samples from multiple chap-
ters. This variation in pitch is likely influenced by
changes in recording settings, chapter content, and
background noise. Despite these differences, the
high Pearson correlation values indicate strong sim-
ilarity between the two annotation sets. Moreover,
the speaker rankings based on pitch remained con-
sistent for most speakers, with only one exception.

Table 2: A1: Manual annotation for the 10 speakers
using 10 utterances each

spk_id Mean F0 Median F0 Std_dev
84 185.21 184.80 3.08
174 149.59 149.00 2.64
422 115.60 115.20 1.58

1993 204.87 204.70 2.70
3000 85.57 85.37 3.31
3081 237.26 222.50 23.59
6295 95.52 93.32 4.65
6319 194.90 194.70 10.89
8297 105.63 107.20 2.59
8842 174.22 174.80 2.08

Table 3: A2: Manual annotation for the 10 speakers
using 10 utterances each

spk_id Mean F0 Median F0 Std_dev
84 191.08 184.80 17.21
174 131.19 131.05 15.66
422 134.12 135.86 7.24

1993 217.61 219.30 10.11
3000 110.98 105.20 12.65
3081 230.15 230.55 18.01
6295 113.52 112.20 10.17
6319 189.77 189.90 14.76
8297 114.16 114.35 6.44
8842 192.36 187.30 20.15

The Pearson correlation coefficients for the
Mean and Median F0 annotations are R=0.9672,
and R=0.9693 respectively. The Spearman rank
correlation for the Mean and Median F0 annota-
tions are R=0.93939, and R=0.97576 respectively.
These results indicate high correlation and high
reliability between the two manual annotations.

A.2 Mean Absolute Deviation difference
values

Table 4: MAD difference values for the F0 estimators

speaker_id crepe fcnf0 pYin reaper spice swipe
84 8.15 -3.07 44.49 0.22 -1.98 -5.25
174 40.30 -1.08 47.23 -2.23 0.46 16.15
422 26.31 -0.64 23.60 -0.89 -0.19 5.65
1993 25.29 -3.77 29.05 0.00 2.78 9.91
3000 29.57 4.49 35.49 -0.66 0.09 10.62
3081 4.76 -20.32 -23.72 1.96 -0.43 -27.60
6295 27.06 2.31 37.46 -0.19 1.36 15.55
6319 27.06 -15.48 9.28 -0.68 0.17 -9.45
8297 34.52 1.94 32.74 1.35 6.40 11.42
8842 33.04 -2.38 46.74 1.46 8.57 17.87
Average 25.61 -3.80 28.24 0.03 1.72 4.49

Table 4 shows the computed MAD difference
(with vs without post-processing) across the 10
speakers. Positive values indicate improvement
(reduced variability) while negative values indicate
the opposite.

A.3 Mean Absolute Error difference values

Table 5: Accuracy improvement for the F0 estimators

mean median (CPP)
crepe 138.26 10.52
fcnf0 30.92 25.29
pYin 114.82 53.97

reaper 8.75 10.52
spice 25.11 13.59
swipe 55.47 11.58

Table 5 shows the computed average MAE
across the 10 speakers using the simple mean F0
estimation (column 1) vs post-processing/median
(CPP) (column 2). These are the actual values from
Figure 3.

A.4 Inter-gender rankings for 40 speakers

Expanding on Section 4.2, we estimated the pitch
for all 40 speakers in the dev-clean subset of Lib-
riSpeech using the CREPE algorithm, both with
and without post-processing. As illustrated in Fig-
ures 5 and 6, similar to Figure 4, there was a sig-
nificant improvement in speaker ranking based on
mean pitch. Consistent with our findings, all male
speakers exhibited lower pitch than female speak-
ers. However, speaker 7976 displayed an unusually
high pitch compared to other male speakers, poten-
tially due to gender preference or mislabeling.



Figure 5: Inter-gender rankings for 40 speakers in
LibriSpeech dev-clean without post-processing (using
mean)

Figure 6: Inter-gender rankings for 40 speakers in Lib-
riSpeech dev-clean with post-processing (median (CPP)

A.5 Histogram of Threshold values
Figure 7 shows the histogram plots of the confi-
dence scores. The plots show bimodal distribution
for CREPE, FCNF0, REAPER, and SPICE. Having
thresholds between the peaks would be intuitive for
optimal performance of each algorithm. However,
for pYin and SWIPE, a continuous trend distribu-
tion does not support a justifiable robust threshold
selection.

A.6 MAE vs Threshold values
Parameter sweep was done to check how the MAE
varies across different thresholds. The succeeding
figures show the experimental results from sweep-
ing across a) the 10 speakers, b) only the 5 male
speakers and c) only the 5 female speakers.

Figure 7: Histogram plot of values for confidence scores
(pYIN, CREPE, SPICE) strength (SWIPE), correlation
(REAPER), and periodicity (FCNF0)

Figure 8: Mean Absolute Error vs Threshold values for
all speakers

Based on Figure 8, optimal threshold values are:
0.5 for pYin and SWIPE, 0.75 for CREPE and
SPICE, 0 for FCNF0 and 0.95 for REAPER.

Figure 9: Mean Absolute Error vs Threshold values for
male speakers

Same trend can be seen in Figure 9 with just only
the male speakers.

Using only female speakers in Figure 10, optimal
threshold value for pYin is now at 0 while 0.95 for



Figure 10: Mean Absolute Error vs Threshold values
for female speakers

SPICE.
From the experiments on the threshold values,

we observe that applying threshold for pYin will
not be robust when used with a different set of data.
On the other hand, we can see robust thresholding
performance on CREPE, and REAPER.

A.7 Post-processing effects on Spearman
Rank correlation

Table 6: Spearman Rank coefficient vs central measures

mean base value median median (CPP)
crepe-reaper -0.28 -0.03 0.87 0.99
crepe-spice 0.05 0.33 0.93 0.99
crepe-pyin 0.56 0.77 0.96 -0.36

crepe-swipe 0.65 0.83 0.84 1.00
crepe-fcnf0 0.24 0.71 0.87 0.81

Another experiment was done to see how using
the post-processed median, the mean, the median
and the base value (Arantes et al., 2017) affects
the rankings across the different algorithms. Look-
ing at Table 6, we can see that rankings between
CREPE, REAPER, SPICE, and SWIPE become
highly correlated after post-processing.


