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Abstract

In this paper, we explore the use of a fea-
ture extraction model for the detection of basic
decision-making concepts such as “yes” and
“no” in several communication channels using
electroencephalography (EEG) signals. Power
topographic distribution of both concepts are
explored, showing similar pattern activation in
all communication channels chosen. Bi-LSTM
model was used for the classification of the fea-
ture matrices extracted from EEG trials when
transformed using real cepstrum, achieving,
on average, 81% of accuracy across all sub-
jects. This could help people with disabilities
improve their quality life by enabling commu-
nication even when vocal communication is not
possible.

1 Introduction

Electroencephalography (EEG) has prompted re-
searcher’s attention for years since allowing to
record brain activity non-invasively with high tem-
poral resolution (Luck, 2014). Language, as we
commonly understand it, is the sole province of
humans (Patel, 2007). Phonemes and syllables of
human language are acoustically complex entities
to produce (Patel, 2007), which historically led
researchers to focus on the processing of individ-
ual words (lexical items) (Petersen et al., 1988).
By locating and understanding the role that each
brain area plays in language processing could help
people with severe neurological impairments, in-
cluding communication, such as pure dyslexia or
aphasia (Petersen et al., 1988). Historically, their
location was obtained with functional neuroimag-
ing techniques such as functional Magnetic Reso-
nance Imaging (fMRI), while their timing was cap-
tured by using electromagnetic techniques such as
electroencephalography (EEG) (Price, 2012). The
use of this non-invasive technique, could provide
a means of communication with impaired people
when using monosyllable words or simple concepts

(Lazarou et al., 2018). By identifying brain acti-
vation patterns associated with different commu-
nication channels and classifying opposing simple
concepts, such as "yes" and "no", when presented
in all of them, it becomes possible to establish a
direct communication pathway allowing their de-
coding into words by utilizing electrodes placed
in specific brain regions, offering individuals the
ability to express themselves without the need for
physical speech.

Language processing has been widely explored
by researchers, and it has shown to involve several
brain regions, with the most popular neural model
of language being based on the writings of Broca,
Wernicke and Lichtheim at the end of the 19th Cen-
tury and Geschwind in the mid 20th Century (Price,
2012). The Broadman areas named after them are
classically related to language production and pro-
cessing (Hall and Hall, 2021). However, in recent
years, it has been proven the role of more neural
structures in language processing (Nizara, 2018).
In both (Rezazadeh Sereshkeh et al., 2017; Choi
and Kim, 2019), the decoding of “yes” and “no”
concepts from EEG signals was achieved through
a feature extraction stage, followed by classifica-
tion. In the former, a multilayer perceptron (MLP)
was employed, achieving 63.17% accuracy scores
on average, while the latter used a support vec-
tor machine (SVM) with a 86.03% attained when
combining multiple time-frequency subwindows.

Historically, cepstrum has its roots in the general
problem of signals deconvolution (Childers et al.,
1977), but it has proved it usefulness, not only in
speech signal processing, but also in EEG signal
processing (Sen et al., 2023; Han et al., 2024). In-
spired from the success of cepstral features we
propose a feature extraction model using EEG sig-
nal analysis to discern between two monosyllable
words with opposite meanings, “yes” and “no”,
that could enhance communication possibilities for
persons with some kind of motor/neurological dis-



ability supported by the use of a Bidirectional Long-
Short Term Memory (Bi-LSTM) Neural Network
model.

This manuscript is organized as follows: In Sec.
2, the methodology followed to record the EEG
signal analyzed is presented. Sec. 3 describes the
main pre-processing stages considered and Sec. 4
shows the features extracted that build the features
matrix used in the classification stage. Results
and conclusions are presented in Secs. 5 and 6,
respectively.

2 Methods

In this section, the methodology followed to record
EEG signals is described, including the partici-
pant’s details, experiment description, and the spe-
cific equipment used.

2.1 Participants
We recorded data from a heterogeneous group of
15 healthy participants (3 male participants, mean
age = 24.00; 12 female participants, mean age =
28.16), most of them members of Universidad de
Málaga (UMA), whose participation was entirely
voluntary with no monetary or any other kind of
compensation. All of them received detailed oral
information about the experiment before providing
their written informed consent to take part in the
experiment.

This study was conducted in accordance with
the Declaration of Helsinki and was approved by
Comité Ético de Experimentación de la Universi-
dad de Málaga, Reg. CEUMA: 61-2021-H. The
privacy and confidentiality of the participants were
strictly protected throughout the study.

2.2 Experiment Description
At present, it is not clear that comprehension of
a word necessarily entails activation of a detailed
perceptual representation of the object to which
it refers, at least not to the same degree as that
evoked by the object itself (Binder et al., 2009). In-
spired by that, in order to detect each word (lexical
item/concept) processing, subjects were presented
with blocks of “yes” and “no” words in the same
language (Spanish), presented in different ways,
we will refer to them from now on as communica-
tion channels. These are aimed to cover all possible
ways of communication, including these scenarios:

• Read: Words were displayed as text on the
screen, so participants were instructed to read

them.

• See: Words were displayed with a represen-
tative symbol on the screen, so participants
were instructed to look at them.

• Listen: Words were played through the speak-
ers, so participants were instructed to listen to
them.

• Say: Words were displayed as text on the
screen, so participants were now instructed to
read them out loud.

• Think: Words were shown as text on the
screen, so participants were now instructed
to think of the word displayed.

In the two last scenarios, each word was first
presented and then, the action was performed, ex-
pecting to avoid the mixture of different cognitive
stimuli. Note that although the appearance of these
blocks was not randomized, the presentation of the
words within them, lasting 7 seconds on average,
was.

Recall that all participants recruited were healthy
subjects. Because of this, the experiment is de-
signed so that no specific feedback is necessary
from subjects during the experiment’s recording.
Also, some resting time is allocated between sub-
experiments.

Experiments were conducted in a separate room
with soundproof windows, and curtains to avoid ex-
ternal noise. Non-essential electronic devices were
turned off to reduce electromagnetic interference.
Participants were instructed to avoid unnecessary
movements.

2.3 Equipment

BrainVision’s actiChamp-Plus and acti-CAP were
used (Brain Products, 2016) in this work. 64 active
electrodes were arranged according to the 10− 20
system (American, 1994; Klem et al., 1999), which
provide high-quality recordings with low back-
ground noise. Among them, FCz and FPz are
used as reference and ground channels, respec-
tively, while FT9 and FT10 electrodes are displaced
to record vertical (VEOG), and horizontal (HEOG)
ocular activity. Iz electrode is used for low-quality
audio capture (fs = 2500Hz), leading to a final
count of 61 electrodes used to measure EEG sig-
nals. The maximum impedance measured across
all participants was kept under 10kΩ, and balanced



during every recording session (Sanei and Cham-
bers, 2013). Figure 1 shows the electrode position-
ing configuration employed.
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Figure 1: Electrode locations used.

BrainVision Recorder (Brain Products, 2021)
was used to capture EEG data supported by E-
Prime (W. Schneider and Zuccolotto, 2016) run-
ning on an external computer for stimuli presenta-
tion, and sending timestamps to the EEG recorder.
Speakers connected to the E-Prime computer al-
lowed for audio stimuli presentation. Their volume
was kept constant to avoid differences between par-
ticipants.

3 EEG data Pre-processing

This section details the pre-processing steps taken
using MATLAB R2022a (MathWorks, 2022),
along with Fieldtrip Toolbox (Oostenveld et al.,
2010) for EEG data handling.

EEG signal’s small amplitude requires them to
be amplified in order to be properly analyzed (Luck,
2014). This causes several noise sources, both cor-
related and uncorrelated, to be also amplified, po-
tentially masking the neural activity of the brain
(Cohen, 2014). To address this issue, both a high-
pass filter and low-pass filter, with cut-off frequen-
cies of 0.1Hz and 45Hz, respectively, were ap-
plied to eliminate slow drifts and non-cognitive
signals, also proving a baseline correction for each
subject. Also, considering muscle artifacts falling
within the 30 − 100Hz frequency range (Luck,
2014), the chosen cut-off frequencies should effec-
tively mitigate them (Hassan and Hussain, 2023).

After filtering, EEG signals are down-sampled
to f ′

s = 100Hz to reduce the computational cost
without compromising the results.

Independent Component Analysis (ICA) is then
applied for visual artifact rejection (Sanei and
Chambers, 2013). This technique decomposes
electrode signals, x(k) = [x1(k), x2(k), . . . , xe(k)]T,

into statistically independent components (IC),
through and unmixing matrix, W, according to:

i(k) = W · x(k) (1)

where i(k) are statistically independent signal com-
ponents. Electrooculogram (EOG) and audio chan-
nels were removed for IC extraction. Note that k
refers to the samples of the signal within the ex-
cerpt considered.

Based on the approach presented in (Villena
et al., 2019), a threshold process based on the cor-
relation coefficients was applied to detect potential
artifactual components and discard them before
mixing the remaining ICs back. Both the ICs ob-
tained and the EEG signal are pre-epoched in the
segments of interest (trials), and the Pearson Corre-
lation Coefficients (ρ) were obtained by following:

ρ(e, n) = ∑K

k=1
(xe(k)−xe)(in(k)−in)√∑K

k=1
(xe(k)−xe)

2
∑K

k=1(in(k)−in)
2
(2)

where e refers to each EOG channel considered,
and n to the n-th component extracted.

Note that this step is performed for each selected
trial, and components are considered as artifactual
when they surpass the defined threshold, in its ab-
solute value, in at least the 80% of the trials consid-
ered. To avoid erasing cognitive information, this
threshold process was supported by visual super-
vision of the detected components, ensuring that
only artifactual information was removed from the
original signal (non epoched) xe(k), to obtain the
reconstructed signal, x′e(k).

Since in this experiment we are interested in
assessing neural processing of different words or
concepts, EEG signals are now epoched to contain
the two words considered, i.e., “yes” and “no” in
all the communication channels assessed. With this
in mind, the power topographic distribution of all
subjects is compared in all the scenarios assessed.
Figure 2 shows the scalp power distribution aver-
aged for all participants available when presented
with “yes” and “no” words in each communication
channel. Note that for each channel of communica-
tion, the topographic distribution of both words are
displayed using the same normalized color axis.

In this figure, it can be observed how some acti-
vation areas are present in all communication chan-
nels chosen when processing these two concepts.
Primary, the main activity is focused on the frontal
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Figure 2: Average scalp power distribution when processing “yes” and “no” words/concepts when different
communication channels are used.

region rather than parietal-occipital and temporal,
depending on the task performed.

As for the former, mainly a left-laterallyzed ac-
tivity over the frontal cortex is consistent with
what is stated in (Petersen et al., 1988), where
task calling for semantic processing of individu-
als words activation was observed over the frontal
region. Later neuro-psychological experiments
showed that damages in frontal or inferior parietal
areas in this hemisphere caused deficits in tasks
that required speech syllables identification, which
highlighted the possible role of a fronto-parietal
circuit in the perception of speech (Hickok and
Poeppel, 2007). However, note that is not always
restricted to the left hemisphere. This is not odd
since previous researches indicates that there is
probably, at least, one pathway in each hemisphere
related with speech processing (Hickok and Poep-
pel, 2007). This behavior is also consistent with
the spatial distribution observed in (Choi and Kim,
2019), where right frontal region exhibited the most
useful features for the discrimination task.

There is strong evidence that posterior middle
temporal regions are involved in accessing lexi-
cal and semantic information. Although it’s not
present with the same magnitude in all cases as-
sessed, activation in left temporal region directly
relates with Broca’s and Wernicke’s areas, both inti-
mately related with language processing (Petersen
et al., 1988; Hickok and Poeppel, 2007). Semantic
processing has been particular observed over infero-
temporal and posterior inferior parietal regions, as
stated in (Binder et al., 2009). Activation in these
regions are somehow expected since posterior ar-
eas are involved in visual feature extraction and
more anterior areas are involved in lexico-semantic
processing of the whole word (Price, 2012).

Language processing is widespread and occupy
a large proportion of the cortex in the human brain
(Binder et al., 2009), with its neural organization,
being task dependent, as stated in (Hickok and
Poeppel, 2007).

At the view of these power topographic distri-
butions, we hypothesized that the processing of
both concepts is equivalent regardless of the type
of medium chosen for their presentation. Based on
this, they will be treated equally without discerning
between them in further stages.

For concept processing detection, the real cep-
strum is applied to the original EEG signal. Its
used is based on previous results as presented in
sec. 1. The real cepstrum of a signal is obtained
as the Inverse Fourier Transform of the logarithm
of the magnitude of the spectrum (Shourie, 2016).
In our research, the real cepstrum analysis process
has been applied to the EEG signals to use their
coefficients as a parameter vector to characterize
signals and analyze them improving the results ob-
tained when compared with the use of the EEG
signal directly. The real cepstrum can be computed
as:

ce,t(k) =
1

2π

∫
log|Xe,t(w)|ejwkdw (3)

where ce,t(k) are the real-valued coefficients of the
cepstrum for the e-th electrode, and the t-trial, and
Xe,t(w) the Fourier transform of the input signal,
x′e,t(k).

4 Feature Extraction

This step allows for reducing the complexity of the
classification step (Alghamdi et al., 2023; Danyal
et al., 2023). To this end, each feature was extracted
following a single-trial method, i.e., within each



subject, trial, and electrode (Grierson and Kiefer,
2014).

Based on previous EEG research (Hassan and
Hussain, 2023; Al-Qazzaz et al., 2023), once indi-
vidually tested, both statistical and Power Spectral
Density (PSD) features-based are chosen to maxi-
mize the results obtained when combined:

• Standard Deviation: This feature measures
the dispersion of the signal around its mean
value:

σe,t =

√√√√ 1

K − 1

K∑
k=1

|ce,t(k)− c̄e,t(k)|2,

(4)
with c̄e,t(k) the sample mean:

c̄e,t(k) =
1

K

K∑
k=1

ce,t(k) (5)

and K the sample length of the excerpt con-
sidered.

• Root Mean Square: Square root of the aver-
aged squared values of the signal excerpt:

RMSe,t =

√√√√ 1

K

K∑
k=1

|ce,t(k)|2 (6)

• Absolute Power Value: Overall power
was extracted from the PSD obtained, fol-
lowing previous research (Sammler et al.,
2007)(Stancin et al., 2021), through Welch
method, first proposed by (Welch, 1967).

A Hamming window (W (l), l = 0, ..., L− 1),
with a 50% overlap was used for segmenting
input signal into S = 8 segments of length L.
The absolute power spectral value of the e-th
electrode at the t-th trial is obtained by sum-
ming up the spectral estimation over all the
frequency bins, p(fn), of the PSD obtained
for the EEG excerpt considered, as follows:

Pe,t =

L/2∑
n=0

p(fn) (7)

• Averaged Spectral Flux: Rate of change of
the PSD of the input signal averaged over time.
It is calculated by using:

Fe,t =
1

S

S∑
s=1

√√√√L/2∑
n=0

|p(fn+1)− p(fn)|2 (8)

Following this approach, each trial outputs a
feature matrix of dimensions (ExF ), where E =
61 are the active electrodes used, and F = 4 are
the features considered.

The aforementioned features have already shown
compelling results for EEG signal characterization
in musical mode detection (Guillén et al.). Note
that all of them are energy-based, thus the process
outlined can be viewed as a form of data augmenta-
tion. In contrast to typical EEG approaches where
augmentation involves altering the dataset through
noise addition or geometric transformations (Lash-
gari et al., 2020; George et al., 2022), the approach
presented aims to optimize the information encom-
passed in the original dataset without altering it.

5 Results

This work proposes a feature-based model for the
characterization and classification of EEG trials
when processing “yes” and “no” words when pre-
sented in different communication channels such
as text, symbol, sound, speech, or thought, with
the final aim of helping the communication possi-
bilities of people with some type of motor/neural
disability that may diverge into communication dif-
ficulties. For the classification, a type of Long
Short-Term Memory (LSTM) is used, reviewing
both intra-, for each participant, and inter-subject,
for all participants combined, scenarios. In (Reza-
zadeh Sereshkeh et al., 2017), a LSTM model was
used for the decoding of “yes” and “no” as stated
in section 1.

LSTM algorithms have shown their effective-
ness in automatically predicting timeline properties
(Algarni et al., 2022). Bi-LSTM classifier con-
sists of an input sequence layer of E = 61 inputs,
each input a vector built upon the features previ-
ously stated. Then, a bidirectional LSTM layer,
built up of a forward layer and a backward layer,
with 20 hidden units is used to learn the bidirec-
tional long-term dependencies between sequence
data flows. A fully-connected layer with two possi-
ble states (“yes” and “no” classes) is placed prior
to outputting the label chosen for the data classified
using a non-linear softmax layer supported by the
cross entropy loss. A count of 1500 epochs is cho-
sen to reach model convergence. Figure 3 shows
the architecture of the model chosen.

This model is similar to the one used in (Ariza
et al., 2022), though specific changes were done to
adopt its structure to the task at hand, as described.
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Figure 3: Diagram of the configuration of the Bi-LSTM network model used.

To avoid biases, and over-fitting in the classification
step, and considering the dataset sample size, a 3-
fold cross-validation process is carried out, so the
results presented in further sections are the average
of the 3 folds considered.

Using the data obtained after the experiment,
matrices are labeled after the subject’s response
during each trial, depending on the concept pro-
cessed: “yes” if the ongoing concept was “yes”,
or “no”, otherwise. With this, binary classification
was carried out. Table 1 shows Accuracy, Recall,
Precision, and F1-score metrics obtained for each
subject confusion matrix, along with their average
value.

Table 1: Results (%) of binary classifications: “yes" or
“no" word/concept processed.

Subject ID Accuracy Precision Recall F1-score

S1 73.13 66.25 76.81 71.14
S2 71.88 56.25 81.82 66.67
S3 85.00 70.00 100.00 82.35
S4 80.63 100.00 72.07 83.77
S5 75.00 65.00 81.25 72.22
S6 77.50 91.25 71.57 80.22
S7 83.13 85.00 81.93 83.44
S8 85.63 86.25 85.19 85.72
S9 75.63 96.25 68.14 79.79
S10 85.63 95.00 80.00 86.86
S11 88.75 91.25 86.90 89.02
S12 74.38 82.50 70.97 76.30
S13 87.50 90.00 85.71 87.80
S14 93.75 93.75 93.75 93.75
S15 81.25 90.00 76.60 82.76

Averaged 81.25 83.92 80.85 81.45

In this table it can be observed that, although
each subject outputs different results, the model’s
performance is consistent between them, and man-
ages to surpass 81% of accuracy on average, prov-
ing this method to successfully discern when par-
ticipants are processing one word or another re-
gardless of the communication channel employed
according to (Perelmouter and Birbaumer, 2000;
Müller-Putz et al., 2008). These averaged values
can be also observed in Figure 4, where the confu-
sion matrix obtained by summing up all confusion
matrices of subjects is presented. Note that the re-
sults attained are in line with (Choi and Kim, 2019)

where a SVM model was used obtaining 86.03%
of accuracy score, and surpass results from (Reza-
zadeh Sereshkeh et al., 2017) where a LSTM model
was used, reaching up to 63.17%
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Figure 4: Average confusion matrix obtained by sum-
ming up all subject’s confusion matrices.

AUC-ROC curves are drawn to support these
metrics, which have shown to be directly corre-
lated with the accuracy, but also considering the
miss-classification cost and giving an indication of
the amount of “work done” by the classification
scheme evaluated (Bradley, 1997). Figure 5 shows
the AUC-ROC curve obtained per user (colored
and dotted), and the average curve obtained for all
of them (black and continuous) in this scenario.

In this figure it can be observed how the model
manages to convergence for all subjects, with an
average AUC-ROC value of 92.29%, proving the
model chosen to successfully discern between the
words studied.

Inter-subject scenario was also assessed, but due
to the experiment configuration, the model chosen
did not manage to attain compelling results under
the same training options chosen. This was some-
how expected since in (Price, 2012) was stated that
intra-operative stimulation showed diversity in lo-
cation of language functions and morpho-metrical
imaging studies based on diversity of brain shape
and gyral patterns.
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Figure 5: AUC-ROC curves comparison between all
subjects curves (dotted-colored curves) and average
curve (continuous-black curve) for binary classification
using EEG data of all subjects when processing “yes”
and “no” words/concepts.

6 Conclusions

In this paper, an analysis of brain responses to
words/concepts with opposite meanings, i.e., “yes”
and “no”, has been carried out using EEG signals.
The final purpose of this work was to discern be-
tween them aiming to help the communication of
people with some disability. For this purpose, the
subjects participating in the experiment were pre-
sented the stimuli through several communication
channels, i.e., text, symbol, sound, speech, and
thought, trying to cover all the possible processing
methods of the concepts. Note that all of them were
considered since the control group was composed
of healthy subjects. Nevertheless, it should be ex-
pected that when some kind of disability is present,
at least one of them is still possible.

The scalp power distribution of all scenarios
mentioned was reviewed, showing in all cases sim-
ilar activation patterns, consistent with previous
studies in language processing, which may indicate
that both words/concepts are processed similarly
regardless of the presentation medium. Based on
this finding, all trials from different communica-
tion channels are used jointly in the processing and
classification of signals.

Real cepstrum is used to characterize EEG sig-
nals once pre-processed. Then, energy-based fea-
tures are extracted on a single-trial basis for each
electrode individually.

Intra- and inter-subject scenarios are explored.
The Bi-LSTM Neural Network model chosen

successfully discerns between “yes” and “no”
words/concepts regardless of the communication
channel chosen in the former, attaining an aver-
age 81.25% accuracy value in the intra-subject bi-
nary classification scheme supported by an aver-
age AUC-ROC value of 92.29%, showing an im-
provement in the discrimination task when com-
pared with previous researches. Inter-subject sce-
nario was also assessed, but no compelling results
were obtained maybe due to the variability of the
multi-modal communication scheme considered
and physiological differences across subjects.

Based on the results obtained, the processing
scheme described in this work stands as a valu-
able tool to explore the possibility of enhancing
the communication capabilities of people with
some motor/neural disability by detecting simple
words/concepts of opposite meaning. These find-
ings encourage enlarging the dataset and continue
the research.

Limitations

The main limitation of our study lies in the sample
size at our disposal. This is a common limitation in
EEG experiments where participants recruitment,
specially without monetary compensation, is lim-
ited. However, although working with a reduced
dataset might led to possible misinterpretations,
sample size does not necessarily affect the validity
of the research outcome, allowing the results ob-
tained to be considered valid (Vozzi et al., 2021).
Nevertheless, a larger sample could provide a more
comprehensive and representative perspective. To
overcome this drawback, it is expected to expand
our dataset in further research stages.
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