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Abstract

The advent of sophisticated large language
models, such as ChatGPT and other AI-driven
platforms, has led to the generation of text that
closely mimics human writing, making it in-
creasingly challenging to discern whether it
is human-generated or AI-generated content.
This poses significant challenges to content
verification, academic integrity, and detecting
misleading information. To address these is-
sues, we developed a classification system to
differentiate between human-written and AI-
generated texts using a diverse HC3-English
dataset. This dataset leveraged linguistic anal-
ysis and structural features, including part-of-
speech tags, vocabulary size, word density, ac-
tive and passive voice usage, and readability
metrics such as Flesch Reading Ease, perplex-
ity, and burstiness. We employed transformer-
based and deep-learning models for the clas-
sification task, such as CNN_BiLSTM, RNN,
BERT, GPT-2, and RoBERTa. Among these,
the RoBERTa model demonstrated superior per-
formance, achieving an outstanding accuracy
of 99.73. These outcomes demonstrate how
cutting-edge deep learning methods can main-
tain information integrity in the digital realm.

1 Introduction

The fast progress of Large Language Models
(LLMs), like OpenAI’s GPT-3 and GPT-4 (So-
bieszek and Price, 2022) represent and other simi-
lar models developed by various organizations and
start-up companies, has revolutionized the domain
of Natural Language Processing (NLP) (Chowd-
hary and Chowdhary, 2020). These models, pre-
trained on extensive text corpora, produce fluent
and contextually appropriate writing. This aids in
advancing several NLP activities, such as query
translation, text categorization, and language trans-
lation. The ability to generalize without prior task-
specific training is particularly noteworthy. The
LLMs’ adaptability in producing a range of writ-

ing styles, from academic to creative, without re-
quiring domain-specific training is further shown
by recent research by (Xu et al., 2021). Due to
their versatility can be used in various contexts, in-
cluding automated content creation, chatbots, and
virtual assistants. However, this capability also
brings significant challenges. With AI-generated
text becoming increasingly prevalent, verifying the
authenticity of content becomes increasingly com-
plex, raising concerns over academic integrity and
the spread of misinformation.

But moral dilemmas are associated with LLMs’
sophisticated capabilities Bommasani et al., 2021.
Their ability to write intelligible and contextually
relevant content makes it easier for them to be
abused, including spreading false information and
fake news. These dangers damage society’s views
and undermine public confidence. Plagiarism, intel-
lectual property theft, and the creation of false prod-
uct evaluations are all issues that should worry busi-
nesses and customers alike (Radford et al., 2019).
Additionally, LLMs can maliciously change web
information, affecting political debate and public
opinion. However, this capability also brings sig-
nificant challenges. As AI-generated text becomes
more prevalent, verifying the authenticity of con-
tent becomes increasingly complex, raising con-
cerns over academic integrity and the spread of
misinformation (Brown, 2020).

LLMs must be developed and implemented re-
sponsibly in light of these ethical issues. These
approaches come with a complicated and diverse
ethical environment. These problems must be ad-
dressed to realize the full benefits that appropriately
deployed LLMs may bring to society. To do this,
current research has shifted to developing detec-
tors that can differentiate between text produced
by computers and text written by people. These
detectors act as a defense against possible LLM
abuse.

Our research aims to develop a robust classifier



for differentiating human and AI-generated texts.
We use the diverse HC3-English dataset, which
contains several extracted features from both kinds
of texts. We aim to analyze these features and
train models to correctly identify the text’s origin.
Extracted features include all the POS tags, vocab-
ulary size, word density, active and passive voice
usage, Flesch Reading Ease score, Gunning Fog
index, perplexity, and burstiness. We have taken
more sophisticated models such as CNN_BiLSTM,
RNN, BERT, and RoBERTa to evaluate their per-
formance in this classification task. RoBERTa was
the most accurate for this task, making this model
the most effective for our task.

The key contributions of this paper are outlined
as follows:

1. Feature Extraction Various linguistic analyses
and statistical features were extracted from
the dataset to enhance the identification of
AI-generated text. These features include the
Gunning Fog Index, perplexity, burstiness,
readability scores (such as Flesch-Kincaid),
word density, average line length, and Pos
tags.

2. Model Training The extracted features were
used to train DL models, including the
RoBERTa model, demonstrating superior per-
formance in discerning text generated by AI
and human text.

The structure of this paper is as follows: Section
2 reviews existing research in the field of text classi-
fication, focusing on methods for distinguishing be-
tween human-written and AI-generated text. This
section also presents various classification tech-
niques and discusses previous SOTA model results,
offering a comparative analysis of both types of
texts. Section 3 outlines our approach to address-
ing the problem statement. It details the methods,
including model selection, experimental setup, and
implementation specifics. Section 5 discusses the
performance of our models, highlighting the supe-
rior performance of the RoBERTa model. Section
7 summarizes the findings and concludes the paper.
Section 6 suggests potential areas for further inves-
tigation and improvement based on the findings of
this study.

2 Related Work

This chapter will review existing research on AI-
generated text and explore the classification of texts

generated by AI and humans.

2.1 AI-Generated Text Models

Recent advanced sophisticated LLMs, such as GPT-
3, GPT-4, and other SOTA models like Pathways
Language Model (PaLM), Gemini 1 by Google
and Meta’s Llama 2 (Touvron et al., 2023), have
demonstrated significant capabilities in generating
human-like text across various fields. These models
are built upon NLP principles to generate coher-
ent and contextually relevant responses based on
user inputs such as language translation (Jiao et al.,
2023), medicine, and education. These models
have been effectively applied. Built on the Gen-
erative Pretrained Transformers (GPT) Language
Model (LM), it is refined through human feedback
and reinforcement learning, allowing them to un-
derstand user intent better and generate meaningful
responses. Similarly, other LLMs like PaLM and
Llama have pushed the boundaries of conversa-
tional AI, showcasing enhanced language under-
standing and generation capabilities. These models
are trained on vast amounts of data to improve ac-
curacy and safety in text generation. GPT-3, for
example, was trained using 175 billion parameters
and 499 billion tokens from crawled text data, po-
sitioning it as one of the most significant models at
the time. In comparison, recent models like PaLM
have utilized even larger datasets and parameters,
with PaLM-2 incorporating 540 billion parame-
ters. While specific details regarding the training
size of GPT-4 and other LLMs like Llama remain
undisclosed, they follow similar large-scale train-
ing paradigms. Compared to other LMs, such as
Bidirectional Encoder Representations from Trans-
formers (BERT) (Yang et al., 2023), Robustly Op-
timized BERT Pretraining Approach (RoBERTa)
(Liu et al., 2019). Text-to-text Transfer Trans-
former (T5) (Roberts et al., 2019), these recent
models, including GPT-4, have shown significant
improvements in understanding context and gen-
erating complex, human-like text, making them
powerful tools for AI-generated text detection and
content generation tasks.

2.2 Distinguishing Between Human- and
AI-Generated Texts

The ability to distinguish between messages created
by AI and humans becomes increasingly crucial

1https://gemini.google.com/app
2https://ai.meta.com/llama



as ChatGPT is utilized in more situations and its
capabilities advance. Computers can already beat
humans in detecting created texts as the quality of
AI-made texts rises (Soni and Wade, 2023). Many
tools are available to determine if a text has been
developed by Artificial Intelligence (AI), such as
GPTZero 3, AI Text Detection Tool 4, and GPT-2
Output Analyzer 5. The foundation of these tech-
niques is text pattern analysis. For example, one
of the most widely used AI-detection programs,
GPTZero, employs burstiness and perplexity to
identify texts created by AI. These technologies
still limit detection precision.

Approaches like XGBoost (Mindner et al.,
2023), decision trees (Zaitsu and Jin, 2023), and
transformer-based models (Mitrović et al., 2023;
Guo et al., 2023) have been tested in recent re-
search to identify texts created by AI. Developed a
transformer-based classifier that could distinguish
AI-generated text from human-generated language
with an accuracy of 79%. Using decision trees that
combined stylometric criteria specific to Japanese,
including bigrams, punctuation placement, and fre-
quency of function words, (Zaitsu and Jin, 2023)
obtained 100% accuracy in recognizing Japanese
texts. The qualities of AI-generated and human-
generated responses to questions in English and
Chinese were compared by (Guo et al., 2023). Af-
ter optimizing a RoBERTa model for their texts,
they obtained a 98.8 F1 score for the English re-
sponses. To solve the issue of detecting generated
essays written in English (Shijaku and Canhasi,
2023) developed an XGBoost model that, when
combined with a collection of manually created fea-
tures and features produced by TF-IDF, obtained
98% accuracy. In their analysis of text summaries
produced by humans and AI, (Soni and Wade,
2023) used DistilBERT 6 to reach 90% accuracy.

This research is the first to investigate an
extensive set of features alongside state-of-the-
art (SOTA) Transformer-based models, such as
RoBERTa classifiers, to classify human and AI-
generated text. Our results are compared against
popular Machine Learning (ML) and Deep Learn-
ing (DL) models, including XGBoost, Random For-
est (RF), and Multi-Layer Perceptron (MLP).

3https://gptzero.me/
4https://writer.com/ai-content-detector/
5https://openai-openai-detector.hf.space/
6https://huggingface.co/docs/transformers/model_doc/distilbert

3 Propsed Methodology

Problem statement
The sophistication with which AI-generated text
proliferates has made it difficult to discern whether
it is human or AI-generated text. This problem
has real-world applications in domains where reli-
able text source classification is essential, such as
spotting fraudulent emails and false news.

Given two text samples, the objective is to de-
velop a binary classification model that can accu-
rately identify which text is generated by AI and
which is human-authored. This classification prob-
lem can be mathematically formalized as follows:
Let xi represent a text sample, where i denotes the
index of the sample in the dataset. The objective
is to categorize the text with a specific label yi to
each xi, where:

yi =

{
0 if xi is Human-generated
1 if xi is AI-generated

The problem then becomes one of estimating a
function f : X → Y , where X is the space of all
possible text samples and Y = {0, 1} is the set of
possible labels.

Table 1: Comparison of Baseline Models and Proposed
Models

Models Training Testing
Accuracy F1 Score Accuracy F1 Score

Baseline Models
CNN BiLSTM 75.0 75.0 76.34 76.35

RNN 68.0 68.24 67.64 67.66
BERT 67.0 67.24 64.92 64.34
GPT-2 83.0 83.0 82.88 82.90

RoBERTa 84.0 84.27 83.41 83.42
Proposed Models

CNN BiLSTM 99.0 99.0 99.36 99.36
RNN 98.0 98.0 96.0 98.0

BERT 98.0 98.0 98.64 98.66
GPT-2 99.56 99.58 99.28 99.30

RoBERTa 99.76 99.76 99.73 99.73

3.1 Dataset Description
The HC3-English dataset comprises approxi-
mately 40,000 inquiries alongside corresponding
responses from ChatGPT and humans. This dataset
aims to facilitate a comparative analysis between
ChatGPT’s outputs and those generated by human
respondents. The inquiries span multiple domains,
such as open-domain discussions, finance, health,
law, and psychology. Table 3 presents the meta-
information regarding the HC3-English dataset uti-
lized for training, with a breakdown as depicted
in Table 2. This comprehensive scope enables



the dataset to encapsulate the intricate and varied
essence of authentic writing. Consequently, it is
an exceptional resource for developing AI detec-
tion systems that function effectively across diverse
contexts and accommodate various writing styles.

Table 2: HC3-English Dataset Statistics

Train Dataset Size(90%) Test Dataset Size(10%)
Human:0 21890 2432

AI:1 21890 2432

3.2 Feature Extraction Techniques
3.2.1 Flesch Reading Ease
The Flesch Reading Ease score is a metric used to
assess the readability of a text (Shijaku and Can-
hasi, 2023; Kincaid, 1975). It is determined by
evaluating two main factors:

Average Sentence Length (ASL): The average
sentence length in terms of word count.

Average Syllables per Word (ASW): The mean
number of syllables found in each word. The
Flesch Reading Ease score (Boudjella et al., 2017)
is calculated using the following formula:

206.835− (1.015× ASL)− (84.6× ASW) (1)

Where: ASL = Total Words
Total Sentences ,

ASW = Total Syllables
Total Words

A higher score signifies more excellent readabil-
ity, with scores ranging from 0 to 100, where higher
scores are easier to read.

Sample Text: “Salt is good for not dying in
car crashes, and car crashes are worse for cars
than salt. Some places use other things, but salt
is really cheap compared to most alternatives, al-
though sand is pretty good." Calculate the text.
The Total Words: 34, Total Sentences: 3 Total
Syllables (estimated): 48, ASL = 34

3 ≈ 11.33
and ASW = 48

34 ≈ 1.41 Flesch Reading Ease =
206.835−(1.015×11.33)−(84.6×1.41) ≈ 63.46
Based on this score, the sample text has a moderate
readability level, suitable for readers with some ed-
ucation. The average Flesch Reading Ease for the
text type is shown in Figure 1, and the distribution
of Flesch Reading Ease for human-generated vs
AI-generated text is illustrated in Figure 2.

3.2.2 Gunning Fog Index
The Gunning Fog Index estimates the years of for-
mal education required for a reader to understand a
text on the first attempt (Kumarage et al., 2023). It
considers the number of complex words in the text

(words with three or more syllables). The formula
is:

0.4×
(

ASL +
% of Complex Words

100

)
(2)

Where: ASL = Total Words
Total Sentences ,

Percentage of Complex Words =(
Number of Complex Words

Total Words

)
× 100

The above Sample text has been taken. The Total
Words: 28, Total Sentences: 2, Complex Words: 0,
ASL = 28

2 = 14 and Percentage of Complex Words
= 0

28 × 100 = 0% then The Gunning Fog Index is
= 0.4 × (14 + 0) = 5.6 A higher index indicates
a more difficult text. The average of the Gunning
fog index as shown in Figure 3 and the distribution
of Gunning fog index for Human vs. AI-Generated
Text is illustrated in Figure 4.

3.2.3 Perplexity
Perplexity is a measure used in LMs to gauge
the accuracy with which a probability distribu-
tion or model predicts a given sample (Mindner
et al., 2023). It measures uncertainty, with lower
values indicating better predictive performance.
Mathematically, for a given probability distribution
P over a sequence x1, x2, . . . , xn, the perplexity
PP (P ) is:

PP (P ) = 2H(P ) = exp

(
1

N

N∑
i=1

(− log2 (P (xi)))

)
(3)

Where: H(P ) is the entropy of the distribution.
P (xi) is the probability of the word xi in the se-
quence. Perplexity is often computed on the test
data using pre-trained LMs, like GPT-2. Lower
perplexity implies that the model has greater confi-
dence in its predictions.

The above Sample text has been taken. As-
sume we have an LM that assigns the follow-
ing probabilities to the words in the sequence:
P (“Salt") = 0.05,P (“is") = 0.10, P (“good") =
0.08, P (“for") = 0.07, . . . (remaining probabili-
ties for other words in the sequence)

The perplexity PP (P ) can be calculated by ap-
plying the probabilities to the formula. Note that
the actual calculation would require the probabili-
ties of all words in the sequence, but for simplicity,
we use only a few probabilities in this example.
The average of the perplexity of text type as shown
in Figure 5, and distribution of perplexity for hu-
man vs. AI-generated text as illustrated in Figure
6.



Table 3: Meta-information of the HC3-English dataset.

HC3-English # Questions # Human Answers # ChatGPT Answers Source
All 24322 58546 26903
reddit_eli5 17112 51336 16660 ELI5 dataset
open_qa 1187 1187 3561 WikiQA dataset
wiki_csai 842 842 842 Crawled Wikipedia (A.1)
medicine 1248 1248 1337 Medical Dialog dataset
finance 3933 3933 4503 FiQA dataset

3.2.4 Burstiness
Burstiness is a measure of the tendency of words
to appear in clusters within a text (Mitrović et al.,
2023). It quantifies how often certain words or
terms are repeated in short intervals. One simple
mathematical formulation of burstiness can be:

Burstiness =
V∑

i=1

(
f2
i

T

)
(4)

Where V is the vocabulary size (number of unique
words), fi is the frequency of word i in the text, and
T is the total number of words in the text. Bursti-
ness measures the variability in word usage: texts
with higher burstiness have words repeated more
often close. This can indicate a repetitive or less
diverse text structure. The average of burstiness
scores by text type as shown in Figure 7, and dis-
tribution of burstiness for human vs AI-generated
text is illustrated in Figure 8. The above Sam-
ple text has been taken. Assume we calculate the
frequency of a few words: Frequency of “salt":
fsalt = 3, Frequency of “car": fcar = 3, Frequency
of “is": fis = 1, V (Vocabulary size) = 17 (assum-
ing unique words in the text) and T (Total number
of words in the text) = 28. The burstiness can then
be computed as:

Burstiness =
(
32

28

)
+

(
32

28

)
+

(
12

28

)
+ . . .

In this case, words like “salt" and “car" might
contribute more to the burstiness score due to their
higher frequency. These metrics provide a way to
quantify different aspects of the text, which can be
helpful for both human analysis and as features in
deep learning models.

The linguistic analysis within the lexical analysis
focuses on surface-level features used to identify
AI-generated text.

3.2.5 Average Line Length
The average line length represents the mean num-
ber of characters or words per line within a text

dataset. The above sample text has been taken
from the HC3-English dataset.

Average characters per line = (74 + 86) / 2 = 80
and Average words per line = (15 + 18) / 2 = 16.5

3.2.6 Vocabulary
Vocabulary denotes the collection of distinct words
or tokens in a text dataset (Guo et al., 2023). The
above sample text was taken from the dataset. Cal-
culate the text’s vocabulary, which consists of 31
unique words.

3.2.7 Active Voice
Active voice refers to a sentence structure in which
the subject carries out the action described by the
verb. In the sample text taken from the dataset,
there are 4 sentences, 3 of which are in active voice.

Average =
No of active voice sentences
Total number of sentences

=
3

4
= 0.75 (5)

3.2.8 Passive Voice
Passive voice is a sentence structure in which the
subject receives the action carried out by the verb.
The sample text taken from the dataset contains
4 sentences, 1 of which is in passive voice. The
formula for calculating the average passive voice
is given below:

Average =
No of passive voice sentences

Total number of sentences
=

1

4
= 0.25 (6)

3.2.9 Word Density
Word density quantifies the number of unique
words present per text unit (Guo et al., 2023). It is
calculated by multiplying the vocabulary size by
100 and then dividing by the product of the number
of lines and the average line length. The sample
text provided was extracted from the dataset to cal-
culate the total Vocabulary size: 31 unique words
and 2 lines in the text. Total characters: 87 + 117 =
204 characters, and Average line length: 204 / 2 =
102 characters.

WD =
100× Vocabulary Size

No of Lines × Average Line Length
= 15.2 (7)



Figure 1: Average Flesch reading Ease
Figure 2: Distribution of flesh reading ease for Human vs.
AI-Generated Text

Figure 3: Average of Gunning fog index
Figure 4: Distribution of Gunning fog index for Human
vs. AI-Generated Text

Figure 5: Average of perplexity of Text type
Figure 6: Distribution of perplexity for Human vs. AI-
Generated Text

Figure 7: Average of Burstiness Scores by Text
Type

Figure 8: Distribution of Burstiness for Human vs. AI-
Generated Text



3.2.10 POS Tags
Part-of-speech (POS) tags are labels assigned
to each word in a text to denote its grammati-
cal role, including categories such as ‘NOUN’,
‘VERB’, ‘PUNCT’, ‘DET’, ‘PRON’, ‘PROPN’,
‘ADJ’, ‘AUX’, ‘ADV’, ‘PART’, ‘SCONJ’, ‘NUM’,
‘X’, ‘INTJ’, ‘ADP’, ‘SYM’, ‘SPACE’, and co-
occurrence of conjunctions (CCONJ), which aids
in understanding the syntactic structure and mean-
ing of sentences. This study extracted POS tags
from this dataset, incorporating 18 POS tag fea-
tures into the model training.

Figure 9: Proposed RoBERTa-Based Model Architec-
ture

3.3 Model Selection

Recurrent Neural Networks (RNNs) (Elman, 1990)
were initially leveraged for handling sequential
data, making them suitable for tasks such as lan-
guage modeling and time series prediction. Subse-
quently, a hybrid model, CNN_BiLSTM (Chiu and
Nichols, 2016), was incorporated, wherein Con-
volutional Neural Networks (CNNs) and Bidirec-
tional Long Short-Term Memory (BiLSTM) net-
works were combined. This approach allowed local
features to be captured by CNNs while BiLSTMs
were employed to model long-term dependencies
in sequential data.

Moving to more advanced models, BERT (De-
vlin, 2018) Transformer-based model that reads
text bi-directionally, understanding the context
from both directions.

GPT-2 (Radford et al., 2019) Large-scale
transformer-based language model designed to gen-
erate coherent and contextually relevant text. Then,
Finally, RoBERTa (Liu et al., 2019) Optimized ver-
sion of BERT, trained on more data with larger
batches and longer sequences, and tokenized the
data in a 12-layer model, such as RoBERTa-base.
Hyperparameters, as shown in Table 4 tuning, Tech-
niques such as grid search or random search were
used to optimize the model performance.

The comparative analysis of these models pro-
vides valuable insights into the capabilities of dif-
ferent DL approaches for AI text detection.

Table 4: Hyperparameters Applied in Each Experiment

Parameter Value
Activation Function Sigmoid
Optimizer AdamW
Loss Function binary crossentropy
Learning Rate 5 × e−5

Batch Size 16
Number of Epochs 3
Learning Rate Scheduler Linear
Dropout 0.2
ModelCheckpoint Yes
EarlyStopping Yes
Patience 3

4 Experimental Setup

The HC3-English dataset was partitioned into a
training set of 90% and a test set of 10% compris-
ing unseen data. The training was conducted over
3 epochs, fine-tuning the RoBERTa model using
the hyperparameters outlined in Figure 4. The ex-
periments were implemented in Python 3.10 and
executed on a 3090 GPU with 64 GB of memory.
To enhance the model’s performance, linguistic
features, and readability metrics were extracted
and incorporated into the RoBERTa model. The
architecture of the proposed model is illustrated
in Figure 9. This model demonstrated superior
performance, achieving an accuracy of 99.73. Met-
rics such as precision, recall, F1 score, and loss
during the training process were recorded and are
depicted in Figure 10. The model’s accuracy im-
proved significantly, starting from an initial 94.78
and reaching 99.73, demonstrating its effectiveness
in detecting AI-generated text. Concurrently, the
loss decreased from 0.25 to 0.02, indicating conver-
gence toward accurate classification results. The
training and test sets’ average accuracy and loss
values were computed. The training set recorded
an average loss of 0.05, while the test set exhibited
a slightly higher loss of 0.06. Regarding prediction
accuracy, both the training and test sets achieved
an average accuracy of 99.73, with a negligible
decrease of 0.27 in the test set, showcasing the
model’s strong generalization capabilities.

5 Results and Discussions

Various DL and transformer-based models were
utilized to evaluate training and testing accuracy,
as demonstrated in the comparing baseline and pro-
posed models as shown in Table 1. The RoBERTa



Figure 10: Confusion Matrix for the RoBERTa
Model

Figure 11: Confusion Matrix for the
CNN_BiLSTM Model

Figure 12: Results of Various Models: Training and
Testing Accuracy and F1 Score Comparison

model achieved superior robustness and perfor-
mance among all tested models, as illustrated in
Figure 12. The confusion matrices, presented in
Figures 10, 11 further highlight metrics such as
precision, recall, and F1-score, culminating in an
outstanding test accuracy of 99.73. This high accu-
racy indicates the model’s exceptional effectiveness
in distinguishing between human-written and AI-
generated texts.

Several factors contributing to this success were
identified. First, RoBERTa’s advanced architecture
was recognized as a significant contributor to its
effectiveness. The model was pre-training on a
vast corpus of diverse texts, enabling it to identify
various linguistic patterns and styles. This compre-
hensive pre-training provided a solid foundation,
allowing the model to excel across different text
types.

6 Future work

In future research, we aim to gather additional data
to expand the dataset to include a broader range
of text types and sources. We also aim to explore
other more effective feature engineering, investi-

gating additional aspects that could optimize the
model’s architecture performance, such as syntac-
tic and discourse features. Furthermore, we will
develop more sophisticated models, experiment-
ing with advanced DL techniques like graph neural
networks and transformer-based models. Finally,
we plan to deploy the model by developing a user-
friendly interface to make the AI-generated text
detection technology accessible to researchers, ed-
ucators, and the general public. This step is crucial
for improving the effectiveness and reliability of
the technology across various application scenar-
ios, enabling broader adoption and feedback-driven
refinement.

7 Conclusion

In today’s network security landscape, public opin-
ion monitoring, and news media, identifying AI-
generated text is growing progressively vital due
to DL technologies’ rapid advancements and ex-
tensive adoption. This study introduces an innova-
tive AI text detection model built on the RoBERTa
algorithm, providing a novel solution in this do-
main. Our approach integrates feature extraction,
model development, and evaluation, demonstrating
its efficacy with a test accuracy of 99.73. These
results highlight the model’s capability to differ-
entiate between human-written and AI-generated
text accurately, showcasing its potential to con-
tribute significantly to NLP and LLM’s respon-
sible and ethical use. Through rigorous training
and advanced DL techniques, the model exhibits
high accuracy and low loss on the training set and
stable and commendable performance on the test
set. These findings are crucial for enhancing AI-
generated text detection technology and serve as a



valuable resource for further research and practical
applications in related fields.
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