@inproceedings{jampana-etal-2024-exploring,
title = "Exploring Kolmogorov Arnold Networks for Interpretable Mental Health Detection and Classification from Social Media Text",
author = "Jampana, Ajay Surya and
Velagapudi, Mohitha and
Mohan, Neethu and
S, Sachin Kumar",
editor = "Lalitha Devi, Sobha and
Arora, Karunesh",
booktitle = "Proceedings of the 21st International Conference on Natural Language Processing (ICON)",
month = dec,
year = "2024",
address = "AU-KBC Research Centre, Chennai, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2024.icon-1.23/",
pages = "206--214",
abstract = "Mental health analysis from social media text demands both high accuracy and interpretability for responsible healthcare applications. This paper explores Kolmogorov Arnold Networks (KANs) for mental health detection and classification, demonstrating their superior performance compared to Multi-Layer Perceptrons (MLPs) in accuracy while requiring fewer parameters. To further enhance interpretability, we leverage the Local Interpretable Model Agnostic Explanations (LIME) method to identify key features, resulting in a simplified KAN model. This allows us to derive governing equations for each class, providing a deeper understanding of the relationships between texts and mental health conditions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jampana-etal-2024-exploring">
<titleInfo>
<title>Exploring Kolmogorov Arnold Networks for Interpretable Mental Health Detection and Classification from Social Media Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ajay</namePart>
<namePart type="given">Surya</namePart>
<namePart type="family">Jampana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohitha</namePart>
<namePart type="family">Velagapudi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Neethu</namePart>
<namePart type="family">Mohan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sachin</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">S</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st International Conference on Natural Language Processing (ICON)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="family">Lalitha Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karunesh</namePart>
<namePart type="family">Arora</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">AU-KBC Research Centre, Chennai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Mental health analysis from social media text demands both high accuracy and interpretability for responsible healthcare applications. This paper explores Kolmogorov Arnold Networks (KANs) for mental health detection and classification, demonstrating their superior performance compared to Multi-Layer Perceptrons (MLPs) in accuracy while requiring fewer parameters. To further enhance interpretability, we leverage the Local Interpretable Model Agnostic Explanations (LIME) method to identify key features, resulting in a simplified KAN model. This allows us to derive governing equations for each class, providing a deeper understanding of the relationships between texts and mental health conditions.</abstract>
<identifier type="citekey">jampana-etal-2024-exploring</identifier>
<location>
<url>https://aclanthology.org/2024.icon-1.23/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>206</start>
<end>214</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Kolmogorov Arnold Networks for Interpretable Mental Health Detection and Classification from Social Media Text
%A Jampana, Ajay Surya
%A Velagapudi, Mohitha
%A Mohan, Neethu
%A S, Sachin Kumar
%Y Lalitha Devi, Sobha
%Y Arora, Karunesh
%S Proceedings of the 21st International Conference on Natural Language Processing (ICON)
%D 2024
%8 December
%I NLP Association of India (NLPAI)
%C AU-KBC Research Centre, Chennai, India
%F jampana-etal-2024-exploring
%X Mental health analysis from social media text demands both high accuracy and interpretability for responsible healthcare applications. This paper explores Kolmogorov Arnold Networks (KANs) for mental health detection and classification, demonstrating their superior performance compared to Multi-Layer Perceptrons (MLPs) in accuracy while requiring fewer parameters. To further enhance interpretability, we leverage the Local Interpretable Model Agnostic Explanations (LIME) method to identify key features, resulting in a simplified KAN model. This allows us to derive governing equations for each class, providing a deeper understanding of the relationships between texts and mental health conditions.
%U https://aclanthology.org/2024.icon-1.23/
%P 206-214
Markdown (Informal)
[Exploring Kolmogorov Arnold Networks for Interpretable Mental Health Detection and Classification from Social Media Text](https://aclanthology.org/2024.icon-1.23/) (Jampana et al., ICON 2024)
ACL