
Exploring User Dissatisfaction: Taxonomy of Implicit Negative Feedback in
Virtual Assistants

Moushumi Mahato1, Avinash Kumar2, Kartikey Singh3, Javaid Nabi4,
Debojyoti Saha5, Krishna Singh6

Language AI Appliances & Analytics
Samsung R&D Institute, Bengaluru, India

{1moushumi.m, 2avinash1.k, 3kartikey.s, 4javaid.nabi, 5d.saha, 6krish.singh} @samsung.com

Abstract
The success of virtual assistants relies on con-
tinuous performance monitoring to ensure their
competitive edge in the market. This entails as-
sessing their ability to understand user intents
and execute tasks effectively. While user feed-
back is pivotal for measuring satisfaction lev-
els, relying solely on explicit feedback proves
impractical. Thus, extracting implicit user feed-
back from conversations of user and virtual
assistant is a more efficient approach. Addi-
tionally, along with learning whether a task is
performed correctly or not, it is extremely im-
portant to understand the reasons behind any
incorrect execution. In this paper, we intro-
duce a framework designed to identify dissat-
isfactory conversations, systematically analyze
these conversations, and generate comprehen-
sive reports detailing the reasons for user dis-
satisfaction. By implementing a feedback clas-
sifier, we identify conversations that indicate
user dissatisfaction, which serves as a sign of
implicit negative feedback. To analyze nega-
tive feedback conversations more deeply, we
develop a lightweight pipeline called an issue
categorizer ensemble with multiple models to
understand the reasons behind such dissatis-
factory conversations. We subsequently aug-
ment the identified discontented instances to
generate additional data and train our models
to prevent such failures in the future. Our im-
plementation of this simple framework, called
AsTrix (Assisted Triage and Fix), led to signifi-
cant enhancements in the performance of our
smartphone-based In-House virtual assistant,
with successful task completion rates increas-
ing from 83.1% to 92.6% between June 2022
and March 2024. Moreover, by automating the
deeper analysis process targeting just five major
issue types contributing to the dissatisfaction,
we significantly address approximately 62% of
the negative feedback conversation data.

1 Introduction

The efficacy of virtual assistants (VAs) depends
upon their ability to accurately interpret user inputs

and execute appropriate tasks. While assessing
their success rate is crucial, it is equally important
to scrutinize their failure rate, as this presents op-
portunities for improvement. Hence, continuous
evaluation of the virtual assistant’s performance
plays an important role in the system’s improve-
ments. There has been abundant amount of work
done to evaluate virtual assistants (Liang et al.,
2021), (Kachuee et al., 2020), (Pan et al., 2022),
(Park et al., 2020), (Shen et al., 2022), (Cai and
Chen, 2020), (Hu et al., 2023), (Deng et al., 2022),
(Song et al., 2023), (Ye et al., 2023) but most of
them is related to taking reference from user feed-
back data (click data, data with likes/dislikes) to
derive implicit feedback information (Pan et al.,
2022), (Park et al., 2020), (Shen et al., 2022), (Lin
et al., 2024). The availability of explicit feedback
data may be challenging and may be restricted to
only a few data patterns. Moreover, most of this
work focused on estimating user satisfaction and
improving classification accuracy, overlooking the
interpretability.

Figure 1: Top issues identified in In-House-VA between
2022-10-07 and 2022-10-19

In this work, we aim to estimate user satisfac-
tion and dissatisfaction in conversations between
users and our smartphone-based In-House virtual
assistant using only the interaction patterns, with-
out any dependency on explicit user feedback data.

Additionally, we also focus on the interpretabil-
ity of negative feedback conversations where we
identify reasons behind user dissatisfaction. A few
examples of satisfactory (SAT) and dissatisfactory
(DSAT) conversations between users and our In-
House virtual assistant (In-House-VA) are illus-
trated in Table 1, showing domain & intent router
failure and speech recognition errors. Finally, we
generate similar examples of erroneous utterances
for further training to handle such scenarios in the
future. The research is divided into three stages.

In the first stage, our objective is to find the user
dissatisfaction sessions within the system. We as-
sess user satisfaction or dissatisfaction through in-
teractions between users and our smartphone-based
In-House-VA, involving dialog-style conversations
with user requests and In-House-VA responses. We
build a Feedback Classifier that can analyze pat-
terns in user and In-House-VA conversations to
determine whether the user experience is satisfac-
tory or not.

After identifying negative feedback sessions, in
the second stage, it is important to determine the
reasons for user dissatisfaction. Therefore, we
build a pipeline to identify various types of issues
that can happen during user-VA interactions, we
call the pipeline Auto-Issue Categorizer.

Smartphone-based In-House-VA data is ana-
lyzed by language experts from 2022-10-07 to
2022-10-19. The analysis focused on the top 25
smartphone domains that were most frequently
used during this period. They analyzed around
8750 utterances in total, with an average of 350
frequently used utterances from each domain. By
examining these utterances, five major issue types
were identified, shown in Figure 1. These is-
sue types include Automatic Speech Recogni-
tion (ASR) Failure, Multi-Intent Failure, Domain
Router Failure, Intent Router Failure, and Net-
work/Server Issues. We develop a lightweight
pipeline ensemble with issue-type classifiers to ad-
dress these failures.

After identifying various issue types, the next
step is how to utilize this analysis and results to im-
prove the system. The idea is simple, we generate
similar erroneous samples and train the VA system
to handle such scenarios in the future. We call it
Training Variant Generator. For data generation,
we leverage Mistral-7B-v0.2 (AI, 2024).

By identifying the specific issues that are caus-
ing In-House-VA to fail, developers can address

these issues directly, resulting in an improved user
experience. This may involve modifying In-House-
VA’s algorithms, language-processing capabilities,
or other features to better align with user needs
and preferences. Additionally, this process can pro-
vide valuable insights into how users interact with
In-House-VA, allowing developers to identify ar-
eas for improvement and optimization. Ultimately,
the goal of the AsTrix framework, shown in Fig-
ure 2, is to enhance In-House-VA’s ability to meet
user needs and provide more accurate, reliable and
efficient performance.

2 Related Work

2.1 Literature Review

Previous studies have explored User Satisfaction
Estimation (USE) through various methodologies.
In 1996, (Brooke et al., 1996) introduced the Sys-
tem Usability Scale (SUS), a ten-item question-
naire using a 5-point Likert scale (Turner, 1993) to
evaluate system ease of use and learnability. USE
has been investigated in different information re-
trieval and natural language processing tasks, such
as conversational recommender systems (Siro et al.,
2023). Research has also been conducted on senti-
ment analysis (Song et al., 2023), content analysis
(Walker et al., 1997), and response quality assess-
ment (Schmitt and Ultes, 2015), (Bodigutla et al.,
2019). Some studies have collected user satisfac-
tion ratings using third-party annotators (van Zeelt
et al., 2020). In contrast, others have employed text
embeddings to estimate user satisfaction in con-
versational systems (Liang et al., 2021), (Kachuee
et al., 2020), (Pan et al., 2022), considering both ex-
plicit and inferred user feedback (Park et al., 2020).

Additionally, transformer-based approaches
have been utilized to measure user satisfaction and
experience (Shen et al., 2022). Certain studies have
focused on identifying dialogue acts or user intents
to assess goal fulfillment (Cai and Chen, 2020),
while others have proposed multi-task frameworks
for user satisfaction estimation, action prediction,
and utterance generation tasks (Hu et al., 2023).
Research has also highlighted the importance of
incorporating the sequential dynamics of dialogue
acts (Deng et al., 2022), jointly predicting senti-
ment and satisfaction (Song et al., 2023), and mod-
eling satisfaction dynamics across conversational
turns (Ye et al., 2023).

Some works have utilized large language mod-
els (LLMs) to generate counterfactual dialogue

Satisfactory (SAT) session Dissatisfactory (DSAT) session
Session

ID
Domain Intent User & In-House-VA

Conversation
Domain Intent User & In-House-VA

Conversation

1 phone make
call

User: Call <name>
In-House-VA: Okay; I’ll call
<name>.

phone

no
action

User: Open the voicemail
In-House-VA: That’s not some-
thing I can help with yet.

make
call

User: Text
In-House-VA: Who do you want to
call?

make
call

User: Send a voice message to Sis-
ter
In-House-VA: I didn’t find Send
a voice message to Sister in your
contacts. Who should I call?

make
call

User: Sister
In-House-VA: Calling Sister.

2 clock

show
alarm

User: Check alarms
In-House-VA: 2 turned on alarms
were found. Alarm for 8 AM, Alarm
for 8:40 AM every Sunday.

clock

set
alarm

User: Set alarm for 5:10 AM
In-House-VA: Your alarm will ring
in 4 hours 55 minutes.

disable
alarm

User: Cancel the alarm for 8:40 AM
In-House-VA: I turned off your
alarm for 8:40 AM every Sunday.

no
action

User: Saral Alam for 5:30 AM
In-House-VA: I didn’t understand
that.

Table 1: Few examples of satisfactory (SAT) and dissatisfactory (DSAT) conversations between a user and In-House
virtual assistant. The label SAT and DSAT is marked for the entire session and not on individual turns.

samples in task-oriented dialogue systems (Abol-
ghasemi et al., 2024). (Hu et al., 2023) extended the
use of LLMs as a user simulator, zero-shot prompt-
ing (Kojima et al., 2022), and few-shot prompting
(Sun et al., 2023). SPUR (Lin et al., 2024) employs
LLMs with supervised prompting to extract user
satisfaction rubrics.

2.2 Limitations of Existing Methods
A significant amount of research focuses on using
explicit user feedback data (e.g., click data and
likes/dislikes), which is resource-intensive and not
always readily available. Additionally, much of
the existing research on User Satisfaction Estima-
tion (USE) prioritizes classification accuracy over
interpretability.

Methods based on representation learning (Song
et al., 2023), (Deng et al., 2022), (Ye et al., 2023)
often lack transparency due to their reliance on
neural models like embeddings, providing limited
insight into conversational cues that indicate satis-
faction or dissatisfaction. Similarly, reward models
(OpenAssistant, 2023) for training large language
models (LLMs) produce continuous reward scores
without explaining why certain conversations re-
ceive higher scores than others.

To address interpretability in USE, (Walker et al.,
1997) evaluated user satisfaction based on human-

annotated features related to task success. However,
approaches relying on domain-specific features of-
ten struggle to generalize across diverse conversa-
tional patterns (Deriu et al., 2021). Research work
focused solely on sentiment analysis does not fully
capture USE (Song et al., 2023), and content anal-
ysis methods typically require human annotators
to assess interaction quality in dialogue sessions
(Schmitt and Ultes, 2015), (Bodigutla et al., 2019).
LLMs with zero-shot prompting (Kojima et al.,
2022) may introduce bias, as human-provided in-
structions may not align with actual conversation
patterns in the data. Similarly, few-shot prompt-
ing (Sun et al., 2023) may not adequately repre-
sent the full distribution of conversational patterns,
leading to inaccuracies in USE. (Lin et al., 2024)
employs LLMs with supervised prompting for user
satisfaction assessment, known as SPUR. But this
approach is resource-intensive and requires pre-
annotated training data for various domains. This
creates challenges for multi-domain virtual assis-
tants, making data acquisition notably difficult.

3 Proposed Methodology

This section introduces our approach in develop-
ing the integrated framework. Our comprehensive
framework AsTrix (Assisted Triage and Fix) com-

Figure 2: The AsTrix Framework

prises three distinct stages shown in Figure 2. (i)
Feedback Classifier (ii) Auto-Issue Categorizer (iii)
Training Variant Generator.

3.1 Stage 1: Feedback Classifier

In this stage, we construct a binary feedback clas-
sifier that labels conversations as positive or neg-
ative feedback based on user satisfaction or dis-
satisfaction. Considering the challenges posed by
the noisy and complex raw data of large-scale In-
House-VA dialogue system and also taking into
account the constraints of limited computational
resources, we opt to try the basic approach of unsu-
pervised data augmentation for consistency train-
ing (UDACT)(Xie et al., 2020), which turned out
to be a more effective solution, especially consider-
ing the limited labeled data and a large amount of
unlabeled data.

3.1.1 Dataset
Utilizing Unsupervised Data Augmentation
(UDACT) (Xie et al., 2020), we fuse a small subset
of supervised training data with a larger volume
of unsupervised augmented data across various
In-House-VA domains (for example, phone, clock,
system, gallery, music and many more). Instead of
synthetic data, we leverage anonymized raw user
logs to capture real conversation patterns, enabling
models to better assess conversation satisfaction.
In the interest of space, we cover the specifics
of the datasets and data preparation details in
Appendix A.1.1. The input and output details
is shown under "Data Preparation" in Appendix
A.1.1. The data distribution is shown in Table 6 in
Appendix A.1.1. Conversations of varying lengths,
ranging from single-turn to multiple turns (where a

turn comprises a user utterance and In-House-VA’s
response), are included in the train, test, and dev
dataset and are in the form of (domain, intent, user
utterance, and In-House-VA response). Train, test,
and validation data distribution are illustrated in
Table 7 in Appendix A.1.1.

In addition to this, based on our analysis of vari-
ous available datasets, we merge SNIPS1 and Mul-
tiWOZ 2.22 to build a dataset with large number of
domains and intents and to gain insights into model
generalizability. We first split the data for super-
vised and unsupervised training into a 1:9 ratio as
shown in Table 6 in Appendix A.1.1. Next, we
transform the supervised data into positive and neg-
ative conversations based on the user’s expressions
of satisfaction and dissatisfaction, user sentiments,
repeated misunderstanding, or rephrasing. The data
distribution is shown in Table 8 in Appendix A.1.1.
All details of data preparation and augmentation is
illustrated in Appendix A.1.1.

3.1.2 System Architecture
The Feedback classification involves training a
model using UDACT (Xie et al., 2020), that out-
puts positive or negative feedback, as illustrated in
Figure 3. Our learning algorithm includes transfer
learning on a pre-trained BERT-base model (Devlin
et al., 2018). During each iteration of the training
process, we calculate the supervised loss on a sub-
set of labeled data and the consistency loss on a
subset of unlabeled data. The supervised loss is
cross-entropy loss, shown in eq. 1. For consis-

14https://github.com/MiuLab/SlotGated-SLU/
tree/master/data/snips

2https://github.com/budzianowski/multiwoz/
tree/master/data/MultiWOZ_2.2

4https://github.com/MiuLab/SlotGated-SLU/tree/master/data/snips
4https://github.com/MiuLab/SlotGated-SLU/tree/master/data/snips
https://github.com/budzianowski/multiwoz/tree/master/data/MultiWOZ_2.2
https://github.com/budzianowski/multiwoz/tree/master/data/MultiWOZ_2.2

Figure 3: High Level view of Feedback Classifier

tency loss, KL Divergence between the predictions
for the original input and its augmented version is
used, shown in eq. 2. These two types of loss are
subsequently combined to form the total loss for
that iteration. The detailed process of the Feedback
classification system is shown in "Algorithm 1".

Lsupervised = − 1

Nl

Nl∑
i=1

yi log(f(xi, θ)) (1)

where Nl is the number of labeled examples. yi is
the true label for the labeled example xi. f(xi, θ) is
the predicted probability for xi, where θ represents
the model parameters.

Lconsistency =
1

Nu

Nu∑
i=1

KL(f(xi, θ)∥f(x̂i, θ)) (2)

where Nu is the number of unlabeled examples. x̂i
is an augmented version of the unlabeled example
xi. KL(p∥q) is the KL divergence between the
model’s predictions on the original and augmented
data.

3.2 Stage 2: Auto-Issue Categorizer
3.2.1 Dataset
Out of the major five issue types (Automatic
Speech Recognition (ASR) Failure, Multi-Intent
Failure, Domain Router Failure, Intent Router Fail-
ure, and Network/Server Issues), we train a joint
model to handle Domain Router Failure and In-
tent Router Failure. The remaining issue types
are handled independently through zero-shot meth-
ods. The pre-processing steps of data preparation

Algorithm 1 Feedback Classification System

1: Data Preparation:
S ← extract_sessions(D)
Sclean ← {x ∈ S | is_gibberish(x) = 0}
Slabeled ← prepare_labeled(Sclean)
Sunlabeled ← prepare_unlabeled(Sclean)

2: Training:
M0 ← BERTbase

for each iteration t of the training process do
Lt

sup ← supervised_loss(M t, Slabeled)
Lt

cons ← consistency_loss(M t, Sunlabeled)
Lt

total ← Lt
sup + λLt

cons
M t+1 ← update(M t, Lt

total)
end for

3: Testing:
Stest ← extract_sessions(Dtest)
Stest_clean ← {x ∈ Stest | is_gibberish(x) =

0}
Ypred ← predict(M,Stest_clean)
Youtput ← classify(Ypred)

remain the same as mentioned in section 3.1.1. Ta-
ble 9 in Appendix A.1.2 shows the details of data
distribution for training, testing, and validation.

3.2.2 System Architecture
To facilitate this, we design a pipeline consisting
of four components:

• Automatic Speech Recognition (ASR)
Failure Detection: There are times when
In-House-VA encounters difficulties in trans-
forming and comprehending spoken language
with precision. These instances of miscommu-
nication may stem from a variety of causes,
including variations in the user’s tone, accent,
or pronunciation. These factors can contribute
to In-House-VA’s inability to properly inter-
pret and execute the user’s commands. Exam-
ple shown in Table 2. To detect ASR errors
in negative feedback conversations, the first
utterance is compared to subsequent ones. If
the utterances are of the same length with only
one differing word, ASR similarity is calcu-
lated. All details are provided in Appendix
A.2.1. The accuracy of ASR Failure Detection
is 79.2% on 400 test samples.

• Multi-Intent Failure Detection: Virtual
assistants sometimes fail to support multiple
actions in a single user utterance, as shown in
Table 2. This limitation can cause confusion

for users who expect it to execute multiple ac-
tions in response to a single command. To de-
tect such errors, a zero-shot label-aware BERT
attention network (Wu et al., 2021) is used to
recognize multiple intents in a single utter-
ance. After identifying intents, a BERT-based
(Devlin et al., 2018) binary classifier checks
if the virtual assistant’s response aligns with
the detected intents. All details are provided
in Appendix A.2.1. The accuracy of Multi-
Intent Failure Detection is 78% on 7050 test
samples.

• Domain and Intent Router Failure
Detection: There are cases in which In-
House-VA fails to accurately determine the
appropriate domain or intent based on a user’s
utterance. In these situations, In-House-VA
may invoke actions associated with an incor-
rect domain or intent, resulting in unexpected
or undesired behavior, as shown in Table 2. To
detect such errors, a binary classifier is built
using the semi-supervised method, UDACT
(Xie et al., 2020), that applies data augmenta-
tion to unlabeled data and enforces prediction
consistency through regularization. All de-
tails are provided in Appendix A.2.1. The
accuracy of Domain and Intent Router Failure
Detection is 87% on 2800 test samples.

• Network/Server Error Detection: At
times, In-House-VA may experience difficul-
ties in performing its functions due to network,
server, or connection issues. These issues
can be caused by a variety of factors, such
as high traffic volumes on the server, network
congestion, or connectivity problems between
In-House-VA and the server. When In-House-
VA is unable to connect with the server or is
experiencing network issues, it may not be
able to process user commands and provide
appropriate responses, as shown in Table 2.
These errors are detected by identifying the
failure patterns in In-House-VA’s response us-
ing Python’s Regex library (Kuchling, 2000).
All details are provided in Appendix A.2.1.
The accuracy of Network/Server Error Detec-
tion is 99% on 5000 test samples.

Sequential setting: Each conversation is seg-
mented into individual turns, where each turn is
analyzed through the issue-categorizer pipeline. In
this pipeline, data is handled sequentially, going

Figure 4: High Level view of Auto-issue Categorizer

through each module individually. This follows a
prioritized approach, where the Automatic Speech
Recognition (ASR) Failure detection module takes
precedence over other modules. The reason for this
is that accurate transcription is fundamental to the
success of the conversation. If In-House-VA cannot
accurately interpret the user’s spoken commands,
it is unlikely to be able to fulfill their requests, re-
gardless of other factors that could contribute to
the conversation’s failure.

After this module, the next in queue is Multi-
Intent Failure detection, although multi-intent fail-
ure eventually leads to intent router failure, we
opt to prioritize it because we specifically aim to
identify the occurrence of failures due to multiple
intents in a single user utterance. The next modules
are Domain/Intent Router Failure Detection and
Network/Server Error Detection module. If a sam-
ple is identified as erroneous in any module, the
corresponding data is stored and the remaining data
proceeds to subsequent modules. Therefore, upon
reaching the end of the pipeline, the erroneous sam-
ples will be categorized under only one issue type.
If there are samples that do not fall into any of the
failure detection categories, then those samples are
passed to the language experts for further analysis.
Figure 4 shows the auto-issue categorizer pipeline.

3.3 Stage 3: Training Variant Generator
Once the erroneous instances are identified, it is
crucial to fix them. In this stage, we generate varia-
tions of error utterances, which is then utilized by
developers to fine-tune In-House-VA, enhancing
its ability to handle similar user intents in the fu-
ture. Mistral-7B-v0.2 (AI, 2024) is employed to
produce these data variations. We also experiment
with other less complex generative models, but
they did not produce sufficient diversity in the gen-
erated data variations. As a result, we chose to use
the open-source LLM, Mistral-7B-v0.2 (AI, 2024).
While this LLM is not considered small and does

Issue Type Example Conversation Explaination

Automatic Speech Recognition (ASR) Failure

User: Put my phone on linker
In-House-VA: For now; I’m not able to do that. I’ll keep learning to make your experience better.
User: Put my phone on ringer
In-House-VA: I ran into a problem.

ASR error: ringer =⇒ linker

Multiple Intents Failure

User: In-House-VA close all apps and open WhatsApp
In-House-VA: I can’t help with that right now.
DomainID: whatsApp
IntentID: whatsApp.SendMessage

Only one intent identified

Domain Router Failure

User: Set my work alarm for 8 AM tomorrow
In-House-VA: Do you want to save the event?
DomainID: calendar
IntentID: calendar.AddEvent

Incorrect domain (Calendar) identified instead of correct one (Clock)

Intent Router Failure

User: Hey In-House-VA send the pictures to Mumma
In-House-VA: **shows gallery**
DomainID: gallery
IntentID: gallery.ShowContents

Incorrect intent (Show Contents) identified instead of correct one (Share Contents)

Network/Server Error

User: Restart phone
In-House-VA: Should I restart it?
User: ** Reboot Confirmation action **
In-House-VA: I’m having connection issues. Please try again later.

Failure due to Network/Server issue

Table 2: Few examples of various issue types identified in dissatisfactory (DSAT) sessions in smartphone-based
In-House-VA

Model

In-House-VA SNIPS-MultiWOZ2.2

10 domains 15 domains 30 domains 14 domains

F1[Positive] F1[Negative] Accuracy F1[Positive] F1[Negative] Accuracy F1[Positive] F1[Negative] Accuracy F1[Positive] F1[Negative] Accuracy

Bert 90.8 90.4 90.3 89.5 83.3 87.1 86.4 80 83.9 97.2 96.8 97

FLiText 86.5 80 83.9 85.7 72.9 79.7 82.6 69.6 76.8 81.3 80.7 81

MixText 88.9 84.6 87.1 88.1 77.5 82.8 83.7 76.2 80 94.8 93.4 94.1

GPT4 - Zero Shot 80 74.1 77.4 78.6 82 80.3 74.1 78.3 76.2 97.3 96.1 96.6

GPT4 - Few Shot 68.9 72.7 71 74.2 76.5 75.4 69.2 69.7 69.5 95.1 94.5 94.8

UDA(BERT)+
Backtranslation [Ours]

93.7 93.3 93.5 91.9 90.7 91.3 90.7 90.2 90.5 98.1 96.3 97.2

Table 3: Feedback Classifier Results Compared with Baseline

come with a significant computational cost, we
prioritize generating high-quality data variations.
This led us to make a trade-off between computa-
tional efficiency and the quality of the output. By
opting for this model, we are able to leverage its
strong pre-trained capabilities, which allowed us
to avoid additional fine-tuning on our specific data,
while still ensuring that we meet our performance
requirements.

Figure 5: Increase in task completion rate of In-House-
VA from Jun’22 to Mar’24

4 Experiments and Results

We perform separate experiments for the feedback
classifier and the auto-issue categorizer, followed
by a combined experiment using the integrated
framework. Errors identified from these experi-
ments are sent to the variation generator, where the

variations are forwarded to developers for fixing
the VA algorithm.

4.1 Stage 1: Feedback Classifier
4.1.1 Comparison with Baseline
For the feedback classifier, we conduct experiments
with other semi-supervised methods including FLi-
Text (Liu et al., 2021) designed for text classifi-
cation tasks focusing on lightweight models like
TextCNN/LSTM and MixText (Chen et al., 2020)
that introduce a new data augmentation technique
called TMix, which generates augmented training
samples by interpolating textual data in the hid-
den space. We also test with GPT4 (Achiam et al.,
2023) in zero-shot and few-shot settings. All ex-
periments are conducted using a single prompting
approach without any advanced techniques such as
prompt tuning or chain-of-thought prompting. The
reason behind opting single prompting is to eval-
uate the basic capabilities of large language mod-
els (LLMs) in understanding tasks when prompted
with a single, straightforward input, as opposed to
employing more complex strategies. Table 3 shows
the comparison results on the validation set.

Discussion: Surprisingly, the results indicate
that single prompting in a few-shot scenario per-
forms worse than in a zero-shot scenario. Upon
further analysis, we identify that this discrepancy
is due to overfitting and the presence of bias in the

Models
In-House-VA (15 domains) SNIPS-MWOZ2.2 (14 domains)

F1 [Positive] F1 [Negative] Accuracy F1 [Positive] F1 [Negative] Accuracy

Reward Model 60.6 31.6 50 54.5 21.1 42.3

SPUR 75 60 69.2 66.7 54.4 61.5

GPT4 - Zero Shot 80 72.7 76.9 69.2 69.2 69.2

GPT4 - Few Shot 75.9 69.6 73.1 68.9 60.9 65.4

Auto-issue Categorizer [Ours] 85.7 84.2 85 79.8 79.8 79.8

Table 4: Auto-issue Categorizer Results Compared with Baseline

Data
Pre-processing

Utterance
Feedback

ASR
Failure

Multi-intent
Failure Detection

Domain-Intent
Router Failure

Network/
Server Issues

Data with
No Issue Identified

Data with Issue
Identified

Model Size NA 438MB 262 MB 878MB 438MB NA NA

H1’23

Inference
/Execution time

56.54sec 6.28min 1.03min 53.38sec 54.36sec 52.17sec

Total Data
to be identified

242744 242744 63948 63466 63055 56665 26648 (41.67%)

Identified 63948 482 411 6390 30017 37300 (58.33%)

H2’23

Inference
/Execution time

1.34min 7.31min 1.21min 57.11sec 58.10sec 55.43sec

Total Data
to be identified

259808 259808 70831 70353 69898 61577 28565 (40.32%)

Identified 70831 478 455 8321 33012 42266 (59.67%)

Q1’24

Inference
/Execution time

1.03min 7.01min 1.52min 58.51sec 1.18min 59.20sec

Total Data
to be identified

254347 254347 77673 77176 76623 68496 29413 (37.87%)

Identified 77673 497 553 8127 39083 48260 (62.13%)

Table 5: Improvements with Auto-issue Categorizer in smartphone-based In-House-VA

model’s behavior when exposed to a small set of
examples. The few-shot examples seem to guide
the model too narrowly, reducing its ability to gen-
eralize effectively across the task, whereas in zero-
shot settings, the model relies more on its broader,
pre-trained knowledge, leading to better overall
performance.

4.1.2 Improvements in In-House-VA system
Starting from June 2022, we conduct monthly mon-
itoring of user and In-House-VA interactions. By
testing two weeks of conversation data each month
using the feedback classifier, we identify negative
feedback conversations. We then report and devel-
opers fix these instances, resulting in a substantial
increase in successful task completion rates, shown
in Figure 5.

4.2 Stage 2: Auto-issue Categorizer

4.2.1 Comparison with Baseline
For auto-issue categorizer, we conduct experiments
with RLHF-based reward model (OpenAssistant,
2023), LLM-based supervised prompting method
SPUR (Lin et al., 2024), and single prompting with
GPT4 (Achiam et al., 2023) in zero and few-shot

settings. Table 4 shows the comparison results on
the validation set.

Discussion: GPT-4 underperforms compared
to our non-LLM ensemble method primarily be-
cause it struggles to detect certain patterns of au-
tomatic speech recognition (ASR) errors. Addi-
tionally, it often conflates the domains and in-
tents of smartphone-based virtual assistants with
more generic ones, leading to issues in recognizing
specific errors or misclassifications. Furthermore,
GPT-4 has difficulty distinguishing between multi-
ple similar intents that, while distinct in the context
of smartphone-based virtual assistants, are treated
as synonymous by the LLM. For example, "mute
volume" and "decrease volume" are considered sep-
arate intents for smartphones, but GPT-4 interprets
them as having the same meaning in a generic con-
text. This lack of differentiation contributes to its
reduced performance in this domain.

4.2.2 Improvements in In-House-VA system

We evaluate the auto-issue categorizer across 1st
and 2nd halves of 2023 and the 1st quarter of 2024,
by analyzing 2 weeks of data per month, then av-
eraging the results. Through continuous system

improvements, we increased the coverage of neg-
ative feedback conversations from 58% to 62%,
reducing overall manual effort and enhancing sys-
tem robustness. Table 5 shows the results from the
auto-issue categorizer.

5 Conclusion

Our proposed framework, AsTrix, presents a
streamlined approach to identify and analyze
unsatisfactory interactions between users and
smartphone-based virtual assistants. There could
be multiple reasons behind the user dissatisfaction,
and by addressing just five main issue types, we
tackle around 62% of the total negative feedback
conversations. This leads to a notable improvement
in the success rate of user-In-House-VA interac-
tions. While we have demonstrated the application
of our framework on the smartphone-based virtual
assistant, it is important to note that this method
is not confined to smartphones alone. The frame-
work is versatile and can be applied to any type of
conversational agent, whether it’s integrated into
smart speakers, wearables, home automation sys-
tems, or customer service chatbots. Since the core
focus of AsTrix is on improving the quality of in-
teractions and addressing user dissatisfaction, it is
adaptable to different platforms and devices that
rely on conversational interfaces.

In the future, we aim to identify additional neg-
ative issue types, such as out-of-scope intents and
slot errors, that could contribute to conversation
failures. Furthermore, while retaining our non-
LLM methods, we plan to harness the capabilities
of Large Language Models (LLMs) to automati-
cally identify issues based on the conversation’s
context. This will enable the framework to dy-
namically detect and categorize new or unforeseen
failure types. Additionally, by utilizing advanced
prompt refinement techniques like soft prompting
and multi-task prompt tuning, we aim to address
the limitations observed in our experiments, where
single-prompting methods in zero-shot or few-shot
settings with LLMs did not yield optimal results.

Limitations

In this work, we primarily focus on identifying and
addressing the five major issue types contributing
to failures. However, these issue types can vary
across systems, and relying solely on them may
not suffice to handle a significant number of failed
conversations. A more effective approach would be

to automatically detect and categorize new or un-
foreseen failure types based on the conversation’s
context.

We also use single prompting with LLM as a
baseline to compare the results of simple, straight-
forward prompts with our proposed non-LLM
method. However, single prompting techniques
have notable limitations, including a limited ability
to fully understand context, resulting in responses
that lack depth or relevance. They also struggle
with multi-intent queries and complex structures,
as they lack mechanisms to break down or interpret
different components effectively.

In future work, while maintaining the integrity
and effectiveness of our non-LLM methods as
a core component of the framework, we aim to
address these limitations by leveraging advanced
prompting techniques using LLMs. This will en-
able richer context understanding, improved adapt-
ability, improved generalizability and better han-
dling of complex queries, ultimately leading to
more accurate and reliable results.

Ethics

To protect user privacy, we utilize anonymized data
collected from our smartphone-based In-House
Virtual Assistant. Conversations are formed by
grouping query-response pairs, each identified by
turnIDs, under a unique conversationID. This en-
sures that researchers analyzing this data cannot
link the information back to any individual user or
extract any information related to them.

References
Amin Abolghasemi, Zhaochun Ren, Arian Askari, Mo-

hammad Aliannejadi, Maarten de Rijke, and Suzan
Verberne. 2024. Cause: Counterfactual assessment
of user satisfaction estimation in task-oriented dia-
logue systems. arXiv preprint arXiv:2403.19056.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Mistral AI. 2024. Mistral-7B-Instruct-
v0.2. https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2/. [Online; accessed
26-Feb-2024].

Praveen Kumar Bodigutla, Lazaros Polymenakos, and
Spyros Matsoukas. 2019. Multi-domain conversation
quality evaluation via user satisfaction estimation.
arXiv preprint arXiv:1911.08567.

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2/
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2/

John Brooke et al. 1996. Sus-a quick and dirty usability
scale. Usability evaluation in industry, 189(194):4–
7.

Wanling Cai and Li Chen. 2020. Predicting user intents
and satisfaction with dialogue-based conversational
recommendations. In Proceedings of the 28th ACM
Conference on User Modeling, Adaptation and Per-
sonalization, pages 33–42.

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mixtext:
Linguistically-informed interpolation of hidden space
for semi-supervised text classification. arXiv preprint
arXiv:2004.12239.

Yang Deng, Wenxuan Zhang, Wai Lam, Hong Cheng,
and Helen Meng. 2022. User satisfaction estima-
tion with sequential dialogue act modeling in goal-
oriented conversational systems. In Proceedings of
the ACM Web Conference 2022, pages 2998–3008.

Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo
Echegoyen, Sophie Rosset, Eneko Agirre, and Mark
Cieliebak. 2021. Survey on evaluation methods for
dialogue systems. Artificial Intelligence Review,
54:755–810.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ben Hixon, Eric Schneider, and Susan L Epstein. 2011.
Phonemic similarity metrics to compare pronuncia-
tion methods. In INTERSPEECH, volume 1, pages
825–828.

Zhiyuan Hu, Yue Feng, Anh Tuan Luu, Bryan Hooi,
and Aldo Lipani. 2023. Unlocking the potential of
user feedback: Leveraging large language model as
user simulators to enhance dialogue system. In Pro-
ceedings of the 32nd ACM International Conference
on Information and Knowledge Management, pages
3953–3957.

Mohammad Kachuee, Hao Yuan, Young-Bum Kim, and
Sungjin Lee. 2020. Self-supervised contrastive learn-
ing for efficient user satisfaction prediction in conver-
sational agents. arXiv preprint arXiv:2010.11230.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

A.M. Kuchling. 2000. Python Regex Library. https:
//docs.python.org/3/howto/regex.html/. [Online;
accessed 1-Jan-2000].

Runze Liang, Ryuichi Takanobu, Feng-Lin Li, Ji Zhang,
Haiqing Chen, and Minlie Huang. 2021. Turn-level
user satisfaction estimation in e-commerce customer
service. In Proceedings of the 4th Workshop on e-
Commerce and NLP, pages 26–32.

Ying-Chun Lin, Jennifer Neville, Jack W Stokes,
Longqi Yang, Tara Safavi, Mengting Wan, Scott
Counts, Siddharth Suri, Reid Andersen, Xiaofeng
Xu, et al. 2024. Interpretable user satisfaction estima-
tion for conversational systems with large language
models. arXiv preprint arXiv:2403.12388.

Chen Liu, Mengchao Zhang, Zhibin Fu, Pan Hou, and
Yu Li. 2021. Flitext: a faster and lighter semi-
supervised text classification with convolution net-
works. arXiv preprint arXiv:2110.11869.

Moushumi Mahato, Avinash Kumar, V Kiran Kumar
Reddy, and Javaid Nabi. 2023. A unified framework
for detecting domain and intent misclassifications in
large-scale dialogue systems. In 2023 IEEE Women
in Technology Conference (WINTECHCON), pages
1–6. IEEE.

OpenAssistant. 2023. Reward Model
Trained from Human Feedback.
https://huggingface.co/OpenAssistant/
reward-model-deberta-v3-large-v2/. [Online;
accessed 26-Jan-2023].

Yan Pan, Mingyang Ma, Bernhard Pflugfelder, and
Georg Groh. 2022. User satisfaction modeling with
domain adaptation in task-oriented dialogue systems.
In Proceedings of the 23rd Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 630–636.

Dookun Park, Hao Yuan, Dongmin Kim, Yinglei Zhang,
Matsoukas Spyros, Young-Bum Kim, Ruhi Sarikaya,
Edward Guo, Yuan Ling, Kevin Quinn, et al. 2020.
Large-scale hybrid approach for predicting user sat-
isfaction with conversational agents. arXiv preprint
arXiv:2006.07113.

Hieu Pham, Xinyi Wang, Yiming Yang, and Graham
Neubig. 2021. Meta back-translation. arXiv preprint
arXiv:2102.07847.

Marius-Constantin Popescu, Valentina E Balas, Lil-
iana Perescu-Popescu, and Nikos Mastorakis. 2009.
Multilayer perceptron and neural networks. WSEAS
Transactions on Circuits and Systems, 8(7):579–588.

Alexander Schmitt and Stefan Ultes. 2015. Interaction
quality: assessing the quality of ongoing spoken dia-
log interaction by experts—and how it relates to user
satisfaction. Speech Communication, 74:12–36.

Wei Shen, Xiaonan He, Chuheng Zhang, Xuyun Zhang,
and Jian Xie. 2022. A transformer-based user sat-
isfaction prediction for proactive interaction mech-
anism in dueros. In Proceedings of the 31st ACM
International Conference on Information & Knowl-
edge Management, pages 1777–1786.

Clemencia Siro, Mohammad Aliannejadi, and Maarten
De Rijke. 2023. Understanding and predicting user
satisfaction with conversational recommender sys-
tems. ACM Transactions on Information Systems,
42(2):1–37.

https://docs.python.org/3/howto/regex.html/
https://docs.python.org/3/howto/regex.html/
https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2/
https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2/

Kaisong Song, Yangyang Kang, Jiawei Liu, Xurui Li,
Changlong Sun, and Xiaozhong Liu. 2023. A speaker
turn-aware multi-task adversarial network for joint
user satisfaction estimation and sentiment analysis.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 13582–13590.

Xiaofei Sun, Xiaoya Li, Jiwei Li, Fei Wu, Shang-
wei Guo, Tianwei Zhang, and Guoyin Wang. 2023.
Text classification via large language models. arXiv
preprint arXiv:2305.08377.

Jean Turner. 1993. Using likert scales in l2 research.
another researcher comments. TESOL quarterly,
27(4):736–739.

Naushad UzZaman and Mumit Khan. 2005. A double
metaphone encoding for bangla and its application
in spelling checker. In 2005 international confer-
ence on natural language processing and knowledge
engineering, pages 705–710. IEEE.

Mickey van Zeelt, Floris den Hengst, and Seyyed Hadi
Hashemi. 2020. Collecting high-quality dialogue
user satisfaction ratings with third-party annotators.
In Proceedings of the 2020 Conference on Human
Information Interaction and Retrieval, pages 363–
367.

Marilyn A Walker, Diane J Litman, Candace A Kamm,
and Alicia Abella. 1997. Paradise: A framework for
evaluating spoken dialogue agents. arXiv preprint
cmp-lg/9704004.

Ting-Wei Wu, Ruolin Su, and Biing Juang. 2021.
A label-aware bert attention network for zero-shot
multi-intent detection in spoken language understand-
ing. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing,
pages 4884–4896.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and
Quoc Le. 2020. Unsupervised data augmentation for
consistency training. Advances in neural information
processing systems, 33:6256–6268.

Fanghua Ye, Zhiyuan Hu, and Emine Yilmaz. 2023.
Modeling user satisfaction dynamics in dialogue via
hawkes process. arXiv preprint arXiv:2305.12594.

A Appendix

A.1 Dataset details

A.1.1 Stage 1: Feedback Classifier
As shown in Table 6, for feedback classifier, we
experiment with mostly used top 10, 15, and 30
smartphone domains of In-House-VA.

Dataset Domain Intent Super-
vised

Unsuper-
vised

In-House-VA
10 143 7091 2658048

15 184 10101 3112492

30 331 19397 4518223

SNIPS-
MultiWOZ2.2

14 37 9892 247925

Table 6: Supervised and Unsupervised Data Distribution
of In-House-VA and SNIPS-MultiWOZ2.2

Train, test, and validation data distribution of In-
House-VA and SNIPS-MultiWOZ2.2 for feedback
classification is illustrated in Table 7 and Table 8
respectively. The positive data comprises conver-
sations wherein tasks are successfully executed,
indicating user satisfaction, labeled as ‘positive’,
while the negative data comprises those where tasks
encounter failure, indicating user dissatisfaction, la-
beled as ‘negative’.

Domain
In-House-VA

Total Positive Negative

10
Train 7091 3549 3542

Test 2081 1040 1041

Dev 2006 1002 1004

15
Train 10101 5060 5041

Test 4521 2264 2257

Dev 3375 1873 1502

30
Train 19397 9822 9575

Test 7633 3982 3651

Dev 6113 3078 3035

Table 7: In-House-VA Supervised Data Distribution

Domain
SNIPS-MultiWOZ2.2

Total Positive Negative

14
Train 9892 4946 4946

Test 2775 1384 1391

Dev 2553 1280 1273

Table 8: SNIPS-MultiWOZ2.2 Supervised Data Distri-
bution
Data Preparation details include:

• Data Cleaning: As the smartphone-based In-
House-VA dataset is sourced directly from raw
logs, it would inevitably include nonsensical

samples. We use a pre-built gibberish classi-
fier to filter out the gibberish or meaningless
samples. This gibberish classifier is a binary
classifier and is trained on the In-House-VA
labeled dataset. This classifier outputs two
labels, ‘gibberish’ and ‘non-gibberish’. Cur-
rently, the gibberish classifier provides an ac-
curacy of 86.7%. We do not discuss how to
implement this classifier in this paper as we
solely focus on evaluating the tasks performed
by virtual assistants.

• Data Preparation: For data samples, we
transform every turn of a conversation in
the form 〈DomainID〉@ 〈IntentID〉@ 〈Utter-
ance〉@ 〈In-House-VA response〉, separated
by [SEP]. To address conflicting intents, we
combine intents that are highly similar.

(a) For supervised data preparation, we pre-
pare data with two labels, label Positive sig-
nifies ‘Positive Feedback’ and label Negative
signifies ‘Negative Feedback’ of the conversa-
tion. For label Positive, we take conversations
in which tasks are successfully executed by
In-House-VA, for label Negative, we take con-
versations in which tasks are not successfully
executed.

As illustrated in Table 1, an example of a Pos-
itive session is: phone @ phone make call @
Call 〈name〉@ Okay; I’ll call 〈name〉.

Similarly, an example of a Negative session
is: phone @ phone no action @ Open the
voicemail @ That’s not something I can help
with yet. [SEP] phone @ phone make call @
Text @ Who do you want to call? [SEP] phone
@ phone make call @ Send a voice message
to Sister @ I didn’t find Send a voice message
to Sister in your contacts. Who should I call?
[SEP] phone @ phone make call @ Sister @
Calling Sister.

(b) For unsupervised augmented data prepa-
ration, we prepare two sub-samples for each
sample, we transform every utterance into an
original and augmented utterance in the form
〈DomainID〉@ 〈IntentID〉@ 〈Original Utter-
ance〉@ 〈In-House-VA response〉and 〈Do-
mainID〉@ 〈IntentID〉@ 〈Augmented Utter-
ance〉@ 〈In-House-VA response〉.
An example of the original text is: clock @
clock set alarm @ hey make alarm after 1
hour @ Okay, alarm will ring after 1 hour.

An example of augmented text is: clock @
clock set alarm @ alert me after an hour @
Okay, alarm will ring after 1 hour.

• Data Augmentation with
Back-translation: We augment all
data using the back-translation (Pham et al.,
2021) method, a process of translating a target
language text back into its source language
by using a machine translation system. We
translate English sentences into French and
then revert them back to English to generate
text augmentations.

A.1.2 Stage 2: Auto-issue Categorizer
Train, test and dev data distribution of the auto-
issue categorizer is shown in Table 9. Only Do-
main and Intent Router Failure module is trained,
remaining modules are zero-shot methods.

Dataset Domain Intent Train Test Dev
Domain and Intent Router Failure

In-House-VA 15 184 9367 8038 5231
SNIPS-MultiWOZ-2.2 14 37 5643 2013 2005

Table 9: Auto-issue Categorizer Data Distribution

A.2 System Architecture details
A.2.1 Stage 2: Auto-issue categorizer
The Auto-issue Categorizer pipeline consists of
four components:

• Automatic Speech Recognition (ASR)
Failure Detection: To detect ASR errors
in negative feedback conversations, the first
utterance is compared with the subsequent ut-
terances in that conversation. If the pair of
utterances is of the same length and all words
are same except one, the common words are
removed and the uncommon words are com-
pared for ASR similarity. ASR similarity is
calculated using two methods: (1) Phoneme-
based word similarity (Hixon et al., 2011):
The phoneme representation of two words is
extracted, and their similarity is determined
using Jaccard distance. A threshold of 0.5
classifies utterances as potential ASR errors.
(2) Double metaphone-based distance (UzZa-
man and Khan, 2005): The metaphone repre-
sentation of two words is extracted, and the
Jaccard distance is used to calculate the meta-
phone distance. Utterances are classified as
potential ASR errors if the distance is less
than or equal to 1.

• Multi-Intent Failure Detection: To ad-
dress this challenge, a solution is formed by
using a zero-shot label-aware BERT attention
network (Wu et al., 2021). The model is capa-
ble of recognizing multiple intents in a single
utterance without prior knowledge of the in-
tent labels. Post recognizing multiple intents,
their successful execution as tasks is detected
by checking the relevance between the intents
and response by VA through a BERT-based
binary classifier.

The approach involves two key steps: (1)
Attention Mechanism: A transformer-based
BERT model (Devlin et al., 2018) encodes
input utterances and intent labels, which are
then processed through a label-aware atten-
tion mechanism (Wu et al., 2021) that as-
signs weights to words based on their rele-
vance to the intent. This allows the model
to focus on intent-relevant words. (2) Multi-
Intent Classification: The attention output
is concatenated with the encoded utterance
and passed through a multi-layer perceptron
(MLP) (Popescu et al., 2009), which maps
the input to a probability distribution, predict-
ing the intent with the highest probability. (3)
Relevance Calculation: Using a BERT-based
(Devlin et al., 2018) binary classifier, the rel-
evance between identified intents and virtual
assistant response is measured to ensure the
task is successfully completed by the virtual
assistant.

• Domain and Intent Router Failure
Detection: Inspired by (Mahato et al., 2023),
the solution involves building a binary classi-
fier using UDACT (Xie et al., 2020), a semi-
supervised learning method. UDACT (Xie
et al., 2020) enhances training by applying
data augmentation to unlabeled data and en-
forcing consistency between model predic-
tions on original and augmented data through
regularization. It combines supervised learn-
ing on a small set of labeled data with unsu-
pervised learning to improve generalization
and accuracy.

• Network/Server Error Detection: We
find such issues using Python’s Regex library
(Kuchling, 2000) that helps to identify pat-
terns of network, server, or connection failure
in In-House-VA’s response.

