@inproceedings{lalitha-devi-etal-2024-end,
title = "End to End Multilingual Coreference Resolution for {I}ndian Languages",
author = "Lalitha Devi, Sobha and
Ram, Vijay Sundar and
RK Rao, Pattabhi",
editor = "Lalitha Devi, Sobha and
Arora, Karunesh",
booktitle = "Proceedings of the 21st International Conference on Natural Language Processing (ICON)",
month = dec,
year = "2024",
address = "AU-KBC Research Centre, Chennai, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2024.icon-1.29/",
pages = "256--259",
abstract = "This paper describes an approach on an end to end model for Multilingual Coreference Resolution (CR) for low resource languages such as Tamil, Malayalam and Hindi. We have done fine tune the XLM-Roberta large model on multilingual training dataset using specific languages with linguistic features and without linguistic features. XLM-R with linguistic features achieves better results than the baseline system. This shows that giving the linguistic knowledge enriches the system performance. The performance of the system is comparable with the state of the art systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lalitha-devi-etal-2024-end">
<titleInfo>
<title>End to End Multilingual Coreference Resolution for Indian Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="family">Lalitha Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vijay</namePart>
<namePart type="given">Sundar</namePart>
<namePart type="family">Ram</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pattabhi</namePart>
<namePart type="family">RK Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st International Conference on Natural Language Processing (ICON)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="family">Lalitha Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karunesh</namePart>
<namePart type="family">Arora</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">AU-KBC Research Centre, Chennai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes an approach on an end to end model for Multilingual Coreference Resolution (CR) for low resource languages such as Tamil, Malayalam and Hindi. We have done fine tune the XLM-Roberta large model on multilingual training dataset using specific languages with linguistic features and without linguistic features. XLM-R with linguistic features achieves better results than the baseline system. This shows that giving the linguistic knowledge enriches the system performance. The performance of the system is comparable with the state of the art systems.</abstract>
<identifier type="citekey">lalitha-devi-etal-2024-end</identifier>
<location>
<url>https://aclanthology.org/2024.icon-1.29/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>256</start>
<end>259</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T End to End Multilingual Coreference Resolution for Indian Languages
%A Lalitha Devi, Sobha
%A Ram, Vijay Sundar
%A RK Rao, Pattabhi
%Y Lalitha Devi, Sobha
%Y Arora, Karunesh
%S Proceedings of the 21st International Conference on Natural Language Processing (ICON)
%D 2024
%8 December
%I NLP Association of India (NLPAI)
%C AU-KBC Research Centre, Chennai, India
%F lalitha-devi-etal-2024-end
%X This paper describes an approach on an end to end model for Multilingual Coreference Resolution (CR) for low resource languages such as Tamil, Malayalam and Hindi. We have done fine tune the XLM-Roberta large model on multilingual training dataset using specific languages with linguistic features and without linguistic features. XLM-R with linguistic features achieves better results than the baseline system. This shows that giving the linguistic knowledge enriches the system performance. The performance of the system is comparable with the state of the art systems.
%U https://aclanthology.org/2024.icon-1.29/
%P 256-259
Markdown (Informal)
[End to End Multilingual Coreference Resolution for Indian Languages](https://aclanthology.org/2024.icon-1.29/) (Lalitha Devi et al., ICON 2024)
ACL