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Abstract
Open Vocabulary Keyword Spotting is essen-
tial in numerous applications, from virtual as-
sistants to security systems, as it allows sys-
tems to identify specific words or phrases in
continuous speech. In this paper, we propose
a novel end-to-end method for detecting user-
defined open vocabulary keywords by lever-
aging linguistic patterns for the correlation
between audio and text modalities. Our ap-
proach utilizes quantized pre-trained founda-
tion models for robust audio embeddings and
a unique lightweight Multi-Scale Linear Atten-
tion (MSLA) network that aligns speech and
text representations for effective cross-modal
agreement. We evaluate our method on two
distinct datasets, comparing its performance
against other baselines. The results highlight
the effectiveness of our approach, achieving sig-
nificant improvements over the Cross-Modality
Correspondence Detector (CMCD) method,
with a 16.08% increase in AUC and a 17.2% re-
duction in EER metrics on the Google Speech
Commands dataset. These findings demon-
strate the potential of our method to advance
keyword spotting across various real-world ap-
plications.

1 Introduction

Keyword spotting (KWS) (López-Espejo et al.,
2021) is essential for voice-driven interactions on
edge devices, particularly with the growing demand
for personalized voice assistants. Traditional KWS
(Sainath and Parada, 2015) relies on pre-defined
keywords, whereas User Defined Keyword Spot-
ting (UDKWS) (Gurugubelli et al., 2024) enables
recognition of user-specific keywords not seen dur-
ing training, providing more flexibility.

Many UDKWS approaches utilize Query By Ex-
ample (QbyE) methods (Lugosch et al., 2018; Kim
et al., 2019a; Huang et al., 2021), which are lim-
ited by variations in speakers and environments.
In contrast, text-based keyword enrollment (Sac-
chi et al., 2019; Shin et al., 2022) methods have

gained popularity, as they avoid these issues by fo-
cusing on linguistic features which are less prone
to variability rather than acoustic characteristics.

End-to-end text enrollment KWS methods (Shin
et al., 2022) aim to map audio and text repre-
sentations to a shared space, but challenges re-
main in distinguishing similar pronunciations. Self-
Supervised Learning speech models (SSLs) (Mo-
hamed et al., 2022) like Wav2Vec 2.0 (Baevski
et al., 2020), HuBERT (Hsu et al., 2021), WavLM
(Chen et al., 2022), and Whisper (OpenAI, 2022)
offer robust representations but can be computation-
ally expensive for resource-limited devices. Model
quantization (Yeh et al., 2022) helps reduce the
size and memory requirements of these models,
enabling efficient deployment without sacrificing
performance.

The attention mechanisms of the transformer ar-
chitecture (Vaswani et al., 2017) enables models to
attend to relevant portions of input sequences. Re-
cent research has explored cross-modal matching
techniques, such as attention-based models (Shin
et al., 2022), for aligning representations from dif-
ferent modalities such as speech and text effectively.
EfficientViT (Cai et al., 2023), introduces a multi-
scale linear attention (MSLA) mechanism for vi-
sion transformers to reduce the computational com-
plexity of traditional softmax based self-attention.
By attending to multiple scales and approximating
attention scores, MSLA enables aggregation of fine-
grained and coarse-grained features through linear
scaling while maintaining low memory usage, mak-
ing it ideal for deployment on edge devices. In a
nutshell, our contributions include:

• Proposing a strategy that enhances foundation
model embeddings for speech and text via
trainable components atop these models.

• Comparing various foundation models to de-
termine the most effective for this task.

• Applying model quantization to reduce mem-
ory and latency for resource-constrained envi-



Figure 1: Architecture of the proposed model (MSLA)

ronments.
• Adapting the MSLA mechanism to capture

speech-text similarities.
• Demonstrating the robustness of our approach

across both closed and open vocabulary sce-
narios.

2 Proposed Method

This section presents our proposed method, a multi-
scale linear cross-attention that computes the simi-
larity between the speech and text by utilizing the
capabilities of quantized foundation models. The
fundamental blocks of this method are the encoders,
a processor and an analyzer. Figure 1, illustrates
the general architecture.

2.1 Cross-Modal Speech/Text Encoders
We employed quantized versions of the foundation
models such as Wav2Vec2.0, HuBERT, WavLM,
and Whisper models as speech encoders and BERT
(Devlin et al., 2019) as a text encoder. The
motivation of using foundation models for open-
vocabulary keyword detection is because of their
pre-trained abilities, which allow them to gener-
alize and handle unknown and unseen keywords
better. In order to further aggregate the features
from these models, we also route the embedding
via a transformer block to embed these speech and
text features into a shared latent space. The speech
and text embedding are denoted as Es ∈ RNsxm

and Et ∈ RNtxm, respectively, where m repre-
sents the embedding dimension and Ns specifies
the number of frames and Nt, the tokens in the text,

respectively. In all our experiments, we had used
the base versions of the foundation models with an
output dimension of 768 except for Whisper Base
which had 512 as its output dimension.

2.2 Processor

One effective technique for managing cross-
modalities has been shown to be cross attention
(Vaswani et al., 2017). Hence, the multi-headed
cross attention is the foundation of the pattern pro-
cessor. The network is given the speech embedding
Es as Key K and value V, and the text embedding
Et as query Q. The vanilla cross attention is defined
as follows :

σ(xi) =
exi∑m
j=1 e

xj
, σ(xi) ∈ (0, 1)m (1)

Sim(Q,K) = σ(
QKT

√
dk

), dk =
m

nheads
(2)

Attn = Sim(Q,K) ∗ V (3)

The Multi-Scale Linear Attention uses depth-
wise separable convolutions with GELU activa-
tions for Key K and Value V, avoiding hardware-
intensive softmax. While ReLU lacks a non-linear
similarity function, it can be addressed by rout-
ing Key K and Value V projections through tiny
depth-wise separable kernel convolutions. A two-
branch design, with 3x3 for K and 5x5 for V token
aggregation, captures local dependencies, while
the ReLU activated multi-headed attention network
handles global dependencies. The proposed MSLA



network is defined as follows :

ReLU(x) = max(x, 0) =

{
x, if x > 0,

0, otherwise.
(4)

Sim(Q,K) = ReLU(Q) ∗ReLU(K)T (5)

LinearAttn = Norm(Sim(Q,K)) ∗ V (6)

This block creates a similarity map ∈ RNtxNs

between audio and text and builds an attention ma-
trix ∈ RNtxm over this, to be processed by the
analyzer.

2.3 Analyzer
In order to examine whether the speech and text are
in accord, this block analyzes the attention matrix.
It features a Bi-Directional Gated Recurrent Unit
(Bi-GRU) and atop, a sigmoid layer for binary class
prediction. The final time-steps of the forward and
backward GRUs are concatenated and fed to the
sigmoid (σ(x) ∈ (0, 1)) layer to make predictions.

3 Experimental setup

3.1 Datasets
We conducted experiments using the publicly avail-
able Google Speech Commands and Qualcomm
Keyword Speech benchmark datasets. The Google
Speech Commands v2 (G) dataset (Warden, 2018)
includes around 100k single-word utterances from
30 speakers, with a training split of approximately
85k samples and a validation split of 10k sam-
ples. In addition to the 5k audio snippets from
the Google test set, we utilized the Qualcomm
Keyword Speech (Q) dataset (Kim et al., 2019b),
which contains about 4k samples of four com-
mands—‘Hey Android’, ‘Hey Snapdragon’, ‘Hi
Galaxy’, and ‘Hi Lumina’—recorded under vari-
ous conditions with 50 speakers and background
noise, to assess the model’s generalizability beyond
standard keywords.

3.2 Training
Open-vocabulary KWS necessitates dealing with
a vast number of potential keywords unseen dur-
ing training. Therefore, for each positive sample
containing an audio clip with its corresponding key-
word, we required to create a set of negative sam-
ples. These negative samples represent audio clips
that do not contain the target keyword. The qual-
ity and quantity of negative samples significantly
impact model performance, as shown in Table 1 of
(Shin et al., 2022).

Negative examples were required to enhance the
capabilities of our model, as the dataset only in-
cluded positive samples—that is, audio clips in
which the target phrase was present. Five negative
samples were randomly generated for each positive
sample in the dataset by selecting audio clips that
did not contain the target term. We examined the
performance of the 16-bit quantized versions of
off-the-shelf Speech SSLs as speech encoders. For
our text encoder, we chose BERT base.

3.3 Implementation Details

The models were trained on a single NVIDIA RTX
2070 Super Max-Q GPU for 100 epochs, using a
batch size of 64. We employed the Adam optimizer
with a learning rate of 0.001 and Binary Cross
Entropy (BCE) loss. Early stopping was used to
prevent overfitting, and the best model was selected
based on its performance on the validation set.

4 Results and Discussion

We trained our proposed approach on the Google
Speech Commands dataset and evaluated it on the
test sets of Google Speech Commands (G) and the
Qualcomm Keyword Speech (Q), which included
Out-Of-Vocabulary keywords. The evaluation met-
rics used were Equal Error Rate (EER) and Area
Under the Curve (AUC) (Table 1). Additionally,
we also conducted an ablation study to assess the
impact of various architectural and design choices.

Method EER (%) AUC (%)

G Q G Q

CTC (Lugosch et al., 2018) 31.65 18.23 66.36 89.69
Attention (Huang et al., 2021) 14.75 49.13 92.09 80.13
Triplet (Sacchi et al., 2019) 35.60 38.72 71.48 66.44
CMCD (Shin et al., 2022) 27.25 12.15 81.06 94.51
MSLA 10.05 11.37 97.14 95.61

Table 1: Experimental results of our proposed approach
MSLA against various baselines

Our approach significantly outperformed base-
line methods, even when the training and test
datasets differed. This highlights not only the
strong generalization capabilities of the underly-
ing foundation models but also the effectiveness of
the MSLA mechanism, making it well-suited for
open-vocabulary keyword spotting tasks.

Need for Multi-Scale Linear Attention : In our
proposed approach, the hardware-friendly Multi-
Scale Linear Attention replaces the conventional



Scaled Dot-Product Attention. This mechanism
employs ReLU-based attention and utilizes depth-
wise separable convolution layers for the Key and
Value matrices. By leveraging these convolutions,
it generates denser attention maps compared to the
vanilla attention network, despite using a linear
ReLU function, as illustrated in Figure 2. This
design not only accelerates processing but also
maintains competitive performance, making it a
faster and a more resource-efficient alternative to
the conventional attention mechanisms.

Figure 2: Comparison of Attention Maps from Multi-
Scale Linear Attention and Vanilla Attention mecha-
nisms for the positive sample "down"

Role of Model Quantization : Quantizing speech
models facilitates efficient deployment in resource-
constrained environments with minimal perfor-
mance loss. Early models were large (300–380
MB) and operated at 32-bit precision; however,
quantization can reduce their size by up to 75%,
enhancing inference latency, portability, and scala-
bility. To strike a balance between accuracy and la-
tency, we used 16-bit versions. Variations in model
sizes and latencies are summarized in Table 2.

Model 32-bit 16-bit 8-bit

Size Lat. Size Lat. Size Lat.

HuBERT Base 360 100 180 62 90 36
Wav2Vec2.0 Base 360 110 180 65 90 40
WavLM Base 360 130 180 80 90 50
Whisper Base 280 170 140 110 70 65

Table 2: Model Sizes (in MB) and Latencies (in ms)
across different Quantization levels in encoding an audio
clip of 2s duration

Addition of Fully-Trainable Components : Foun-
dation model embeddings are task-agnostic. To
enhance these embeddings for our specific task and
tailor them to our needs, we added a GRU layer on
top of the foundation models. This enabled knowl-
edge distillation, as the GRU layer was trained
concurrently with the primary objective. We fo-
cused on the embedding from the final time-step of
the GRU layer. After dimensionality reduction, we
visualized these vectors and observed dense and
distinct clustering based on linguistic and acoustic

similarities, which was superior to mean-pooled
residual Speech SSL embeddings, seen in Figure 3.

Figure 3: t-SNE Projections; a) Mean Pooled Residual
Embeddings (b) Last time-steps of GRU representations

We subsequently replaced GRU with a single
transformer block after observing improved perfor-
mance in terms of the metrics and latency.

Comparison of Foundation Models : We com-
pare several speech foundation models, including
HuBERT, Wav2Vec2.0, WavLM, and Whisper, on
the Google Speech Commands test split (G). We
summarise the results in the Table 3. Whisper
achieves the best results, particularly in Recall
(99.04%), F1 (93.79), and AUC (97.14%), due to
its training on multi-lingual, multi-domain data,
allowing it to generalize effectively. HuBERT
performs the worst, with lower AUC (89.42%)
and F1 (87.36). This can be attributed to its fo-
cus on masked prediction rather than downstream
tasks like speech-text alignment. WavLM and
Wav2Vec2.0 perform competitively, with WavLM
slightly ahead due to its multi-task training, leading
to better recall and F1. Wav2Vec2.0 excels in pre-
cision but falls behind in recall. The performance
differences highlight the impact of each model’s
architecture and training objectives on speech-text
alignment tasks.

Encoder Precision Recall F1 AUC

HuBERT 80.23 95.89 87.36 89.42
Wav2Vec2.0 92.12 86.61 89.28 89.78
WavLM 88.21 96.69 92.26 93.19
Whisper 89.08 99.04 93.79 97.14

Table 3: Comparison of MSLA under various speech
encoders



5 Conclusion

In this study, we proposed the use of quantized
self-supervised learning (SSL) foundation mod-
els and multi-scale linear attention (MSLA) for
an end-to-end user defined keyword spotting (UD-
KWS). Model quantization significantly reduces
the memory footprint of the foundation models,
making them suitable for deployment in resource-
constrained environments. Our lightweight Multi-
Scale Linear Attention method effectively com-
bines information from speech and text modal-
ities by capturing both local and global depen-
dencies. We compared our proposed approach to
state-of-the-art methods using various benchmark
datasets and training procedures. Experimental
results demonstrated that our proposed strategy sig-
nificantly outperformed baseline methods, achiev-
ing promising results in open-vocabulary keyword
detection measures.
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