@inproceedings{vetagiri-etal-2024-multilate,
title = "{MULTILATE}: A Synthetic Dataset on {AI}-Generated {MULTI}moda{L} h{ATE} Speech",
author = "Vetagiri, Advaitha and
Halder, Eisha and
Majumder, Ayanangshu Das and
Pakray, Partha and
Das, Amitava",
editor = "Lalitha Devi, Sobha and
Arora, Karunesh",
booktitle = "Proceedings of the 21st International Conference on Natural Language Processing (ICON)",
month = dec,
year = "2024",
address = "AU-KBC Research Centre, Chennai, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2024.icon-1.34/",
pages = "285--295",
abstract = "One of the pressing challenges society faces today is the rapid proliferation of online hate speech, exacerbated by the rise of AI-generated multimodal hate content. This new form of synthetically produced hate speech presents unprecedented challenges in detection and moderation. In response to the growing presence of such harmful content across social media platforms, this research introduces a groundbreaking solution:"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vetagiri-etal-2024-multilate">
<titleInfo>
<title>MULTILATE: A Synthetic Dataset on AI-Generated MULTImodaL hATE Speech</title>
</titleInfo>
<name type="personal">
<namePart type="given">Advaitha</namePart>
<namePart type="family">Vetagiri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eisha</namePart>
<namePart type="family">Halder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayanangshu</namePart>
<namePart type="given">Das</namePart>
<namePart type="family">Majumder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Partha</namePart>
<namePart type="family">Pakray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amitava</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st International Conference on Natural Language Processing (ICON)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="family">Lalitha Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karunesh</namePart>
<namePart type="family">Arora</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">AU-KBC Research Centre, Chennai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>One of the pressing challenges society faces today is the rapid proliferation of online hate speech, exacerbated by the rise of AI-generated multimodal hate content. This new form of synthetically produced hate speech presents unprecedented challenges in detection and moderation. In response to the growing presence of such harmful content across social media platforms, this research introduces a groundbreaking solution:</abstract>
<identifier type="citekey">vetagiri-etal-2024-multilate</identifier>
<location>
<url>https://aclanthology.org/2024.icon-1.34/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>285</start>
<end>295</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MULTILATE: A Synthetic Dataset on AI-Generated MULTImodaL hATE Speech
%A Vetagiri, Advaitha
%A Halder, Eisha
%A Majumder, Ayanangshu Das
%A Pakray, Partha
%A Das, Amitava
%Y Lalitha Devi, Sobha
%Y Arora, Karunesh
%S Proceedings of the 21st International Conference on Natural Language Processing (ICON)
%D 2024
%8 December
%I NLP Association of India (NLPAI)
%C AU-KBC Research Centre, Chennai, India
%F vetagiri-etal-2024-multilate
%X One of the pressing challenges society faces today is the rapid proliferation of online hate speech, exacerbated by the rise of AI-generated multimodal hate content. This new form of synthetically produced hate speech presents unprecedented challenges in detection and moderation. In response to the growing presence of such harmful content across social media platforms, this research introduces a groundbreaking solution:
%U https://aclanthology.org/2024.icon-1.34/
%P 285-295
Markdown (Informal)
[MULTILATE: A Synthetic Dataset on AI-Generated MULTImodaL hATE Speech](https://aclanthology.org/2024.icon-1.34/) (Vetagiri et al., ICON 2024)
ACL
- Advaitha Vetagiri, Eisha Halder, Ayanangshu Das Majumder, Partha Pakray, and Amitava Das. 2024. MULTILATE: A Synthetic Dataset on AI-Generated MULTImodaL hATE Speech. In Proceedings of the 21st International Conference on Natural Language Processing (ICON), pages 285–295, AU-KBC Research Centre, Chennai, India. NLP Association of India (NLPAI).