@inproceedings{mundra-etal-2024-value,
title = "Value to User`s Voice: A Generative {AI} Framework for Actionable Insights from Customer Reviews in Consumer Electronics",
author = "Mundra, Radhika and
Kukreja, Bhavesh and
Dastidar, Aritra Ghosh and
Singh, Kartikey and
Nabi, Javaid",
editor = "Lalitha Devi, Sobha and
Arora, Karunesh",
booktitle = "Proceedings of the 21st International Conference on Natural Language Processing (ICON)",
month = dec,
year = "2024",
address = "AU-KBC Research Centre, Chennai, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2024.icon-1.39/",
pages = "337--348",
abstract = "Customer reviews are a valuable asset for businesses, especially in the competitive consumer electronics sector, where understanding user preferences and product performance is critical. However, extracting meaningful insights from these unstructured and often noisy reviews is a challenging task that typically requires significant manual effort. We present"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mundra-etal-2024-value">
<titleInfo>
<title>Value to User‘s Voice: A Generative AI Framework for Actionable Insights from Customer Reviews in Consumer Electronics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Radhika</namePart>
<namePart type="family">Mundra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bhavesh</namePart>
<namePart type="family">Kukreja</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aritra</namePart>
<namePart type="given">Ghosh</namePart>
<namePart type="family">Dastidar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kartikey</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Javaid</namePart>
<namePart type="family">Nabi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st International Conference on Natural Language Processing (ICON)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="family">Lalitha Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karunesh</namePart>
<namePart type="family">Arora</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">AU-KBC Research Centre, Chennai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Customer reviews are a valuable asset for businesses, especially in the competitive consumer electronics sector, where understanding user preferences and product performance is critical. However, extracting meaningful insights from these unstructured and often noisy reviews is a challenging task that typically requires significant manual effort. We present</abstract>
<identifier type="citekey">mundra-etal-2024-value</identifier>
<location>
<url>https://aclanthology.org/2024.icon-1.39/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>337</start>
<end>348</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Value to User‘s Voice: A Generative AI Framework for Actionable Insights from Customer Reviews in Consumer Electronics
%A Mundra, Radhika
%A Kukreja, Bhavesh
%A Dastidar, Aritra Ghosh
%A Singh, Kartikey
%A Nabi, Javaid
%Y Lalitha Devi, Sobha
%Y Arora, Karunesh
%S Proceedings of the 21st International Conference on Natural Language Processing (ICON)
%D 2024
%8 December
%I NLP Association of India (NLPAI)
%C AU-KBC Research Centre, Chennai, India
%F mundra-etal-2024-value
%X Customer reviews are a valuable asset for businesses, especially in the competitive consumer electronics sector, where understanding user preferences and product performance is critical. However, extracting meaningful insights from these unstructured and often noisy reviews is a challenging task that typically requires significant manual effort. We present
%U https://aclanthology.org/2024.icon-1.39/
%P 337-348
Markdown (Informal)
[Value to User’s Voice: A Generative AI Framework for Actionable Insights from Customer Reviews in Consumer Electronics](https://aclanthology.org/2024.icon-1.39/) (Mundra et al., ICON 2024)
ACL