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Abstract

Modern general-purpose speech recognition
systems are more robust in languages with high
resources. In contrast, achieving state-of-the-
art accuracy for low-resource languages is still
challenging. The fine-tuning of the pre-trained
model is one of the highly popular practices
which utilizes the existing information while
efficiently learning from a small amount of
data to enhance the precision and robustness of
speech recognition tasks.

This work attempts to diagnose the perfor-
mance of a pre-trained model when transcrib-
ing the audio from the low-resource language.
In this work, we apply an adapter-based itera-
tive parameter-efficient fine-tuning strategy on
a limited dataset aiming to improve the quality
of the transcription of a previously fine-tuned
model. For the experiment, we used Whis-
per’s multilingual pre-trained speech model
and Nepali as a test language. Using this ap-
proach we achieved Word Error Rate of 27.9%,
which is more than 19% improvement over pre-
trained Whisper Large− V 2.

Keywords - Nepali ASR, Low-Resourced ASR,
PEFT, LoRA

1 Introduction

Automatic Speech Recognition (ASR) is a subset
of speech technology that uses machine learning
techniques and neural networks to analyze and tran-
scribe audio recordings or convert real-time speech
into text. With the emergence of deep learning
methods in recent years, Speech-based technol-
ogy has made significant advancements. Machine
learning-based ASR systems can be trained using
supervised, semi-supervised, or unsupervised tech-
niques. Supervised ASR systems acquire knowl-
edge via precise alignment of spoken and tran-
scribed text, requiring a substantial amount of
highly curated data from manual alignment. A lot
of time and work has to go into manually aligning

spoken words with their written versions to make
sure they match up correctly.

The initial proposal for unsupervised ASR im-
plementation was presented by Liu et al. (2018).
Following this, unsupervised methods also have
gained widespread popularity. A recent study by
Baevski et al. (2022) revealed that the performance
of the unsupervised model is equally comparable
to that of supervised models. The availability of
the larger pre-trained speech models are increasing
in number with access of the computing resources
and advancement in deep learning techniques.

Large pre-trained speech models are typi-
cally trained on thousands of hours of diverse
speech datasets. Recently released Wav2V ec2−
BERT2.0 (Chung et al., 2021) was pre-trained
on 4.5M hours of unlabeled audio data covering
more than 143 languages. In line with this, the
whisper − large model (Radford et al., 2023) is
trained on 680, 000 hours of labeled audio data and
has 1550M parameters. These models excel at
capturing complex acoustic and linguistic patterns,
enabling them to generalize effectively across mul-
tiple languages, accents, and noises. Having said
that their size also poses challenges, such as the
need for significant computational resources and
the risk of over-fitting particularly in low-resource
environments.

The large speech model can be fine-tuned for
any speech-related downstream tasks. The full
parameter fine-tuning paradigm requires multiple
Graphical Processing Unit (GPU) working in par-
allel which is very inefficient and non-sustainable.
Parameter-Efficient Fine-Tuning (PEFT) based ap-
proaches has gained popularity due to its efficiency
and effectiveness in adapting pre-trained models to
specific tasks, especially in resource-constrained
environments. Unlike full parameter fine-tuning,
the PEFT-based methods introduce the concept of a
small adapter that can be trained leaving the major-
ity of the pre-trained parameters untouched. This
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approach significantly reduces the number of train-
able parameters, making it computationally effi-
cient and reducing the risk of over-fitting, particu-
larly in low-resource settings.

Hu et al. (2022) proposed the fine-tuning tech-
nique by freezing the pre-trained model weights
and injecting the trainable rank decomposition ma-
trix to each transformer layer called Low-Rank
Adaptation (LoRA). This approach is effective in
the context of the Large Language Model (LLM).
For example in GPT − 3175B model, LoRA re-
duced the trainable parameters by 10, 000 times
and GPU requirements by 3 times (Hu et al., 2022).

In this paper, we propose the fine-tuning archi-
tecture for the low-resourced language, Nepali. We
first introduce the language to the model by full-
weight fine-tuning. The limitations of the result-
ing module are identified and later adapter-based
fine-tuning is applied to enhance the overall qual-
ity of the ASR. Additionally, we investigated the
use of LoRA (Hu et al., 2022) for fine-tuning the
Whisper − Large model (Radford et al., 2023).

The rest of the paper is organized as follows: in
section 2 the related works are explained followed
by the methodology in section 3. Section 4 and 5
presents the conducted experiments and discussion
of results. Finally, the paper concludes with section
6 where summary of findings, future plans, and
potential extensions to the work are explained.

2 Related Works

Pre-trained large speech models have revolution-
ized the speech-related downstream task such as
ASR. There are various types of the pre-trained
model that we can use for the fine-tuning task.
Multilingual supervised, semi-supervised, and un-
supervised - all type of the model can be effec-
tively fine-tuned. Wav2Vec2-Conformer (Wang
et al., 2020), Whisper (Radford et al., 2023), MMS-
1B (Pratap et al., 2024), HuBERT (Hsu et al.,
2021), Wav2Vec2-BERT 2.0 (Chung et al., 2021),
Wav2Vec2-Phoneme (Xu et al., 2022), Wav2Vec2.0
(Baevski et al., 2020a; Baevski et al., 2020b),
Wav2V ec (Schneider et al., 2019) are some of the
example of pre-trained speech models trained on
massive amounts of multilingual speech datasets.
Whisper, for example, is a powerful encoder-
decoder model that can transcribe speech into text
in multiple languages. Wav2V ec and its succes-
sors (Chung et al., 2021; Xu et al., 2022; Wang
et al., 2020) use contrastive learning to learn robust

speech representations.

These pre-trained models have significantly im-
proved the accuracy and robustness of ASR sys-
tems, making them more accessible and useful in
a variety of applications. Various published re-
search (Arunkumar et al., 2022; Khare et al., 2021;
Luo et al., 2021; Singh et al., 2023; Zheng et al.,
2023; Ghimire et al., 2023a) shows that the ac-
curacy of the ASR in low-resource languages in-
cluding Nepali can be improved by fine-tuning the
pre-trained models(Ghimire et al., 2023a). As per
these researches, the fine-tuning approach requires
less computing and also reduces the model train-
ing time significantly compared to full parameter
training. However due to higher number of the pa-
rameters involved in the network the full parameter
fine-tuning is still challenging.

The lightweight adapter tuning for speech-
related task has been addressed by Le et al. (2021).
As per the author this type of the adapter tuning
can be used to - (1) fine-tune the large and generic
model for downstream task, and (2) glue the two
adapters to find solutions to new downstream tasks.
This type of the adapter can be merged into the pre-
trained model either in serial or parallel fashion to
produce the output.

Use of the parameter-efficient fine-tuning ap-
proach LoRA and its variants are becoming very
common on speech model fine-tuning. Liu et al.
(2024a) used LoRA for fine-tuning the Whisper
model on child speech dataset. They found
that LoRA-based techniques are very effective
in fine-tuning the Whisper model on a low-
resourced child dataset. Song et al. (2024) pro-
posed the parameter-efficient and extensible model
for Whisper fine-tuned with LoRA called LoRA-
Whisper. The LoRA-Whisper yields a relative gain
of 18.5% over baseline system for multilingual
ASR model. The LoRA based model adaptation
mechanism naturally allows multiple LoRA mod-
ules can be formed and merged. Loading multiple
LoRA and merging them with main model for infer-
ence purpose still requires higher memory capacity.
To address this situation, Sheng et al. (2024) has
proposed a method in which we can serve thou-
sands of concurrent LoRA adapters called S-LoRA.
Liu et al. (2024b) demonstrate that fine-tuning us-
ing LoRA is much more effective on the pre-trained
models for low-resource ASR.

The Nepali ASR is still in its early stages of re-
search and development. However, there are some



promising results as reported in previous works (
Ghimire et al., 2023a; Shrestha et al., 2021; Regmi
and Bal, 2021; Ghimire et al., 2023b; Ghimire and
Bal, 2017). Among them, the work reported by
Ghimire et al. (2023a) is the only work related
to fine-tuning for building Nepali ASR system.
The author proposed semi-supervised fine tuning
of the pre-trained model using an active learning
approach. This research uses the SLR54 (Kjar-
tansson et al., 2018) dataset for the full parameter
fine-tuning resulting 6.77% CER on the Massively
Multilingual Speech (MMS)-1B (mms1b) (Pratap
et al., 2024) model.

The use of LoRA and similar parameter-efficient
fine-tuning approaches for speech-related down-
stream tasks is increasing, even in the case of low-
resourced languages. These approaches are de-
signed to solve downstream tasks. Unfortunately,
it should be noted that the use of multiple LoRA
adapters to enhance the output is the least explored.
We can train and adopt multiple adapters, which
reduces the limitations of each other. This is the pri-
mary motivation for this work and we have experi-
mented with this approach in low-resource Nepali
ASR.

3 Methodology

3.1 Nepali Speech Corpus

The large Nepali ASR training dataset (Kjartansson
et al., 2018) is available in Open Speech Language
Resources1. This is the only speech corpus publicly
available that is suitable for ASR task. This dataset
has 157K utterances. There are other Nepali
speech corpus (Sodimana et al., 20182; Khadka
et al., 20233) also available, but these are single
speaker datasets and are only suitable for Text-to-
Speech (TTS) task.

The whole dataset (say D) is further divided into
the following sub datasets:

• Dtrain : Dataset used for the full parameter
tuning

• Dval : Dataset used for the validation of the
models

• Dstock : They are stock dataset which will be
used for the LoRA based fine-tuning

1[SLR54] - https://www.openslr.org/54/
2[SLR43] - https://www.openslr.org/43/
3[SLR143] - https://www.openslr.org/143/

The overall methodology can be further di-
vided into the three stages: 1) full parameter fine-
tuning, 2) identifying the limitation of the fine-
tuned model, building an adapter to address those
limitations, and 3) merging the selected adapters
and building the final fine-tuned model. These
steps are outlined in Figure 1 and are explained in
more detail in Subsections 3.2, 3.3, 3.4 and 3.5.

3.2 Fine-tuning of Pre-trained Model

A crucial initial step is to (re)introduce language
into the large speech model by full-parameter fine-
tuning.

Suppose W represents the weight matrix of the
pre-trained model, the goal of the fine-tuning is
to identify the weight changes ∆W . The weight
changes ∆W is computed as a negative gradient
of the loos times learning rate i.e. ∆W = α ×
(−∇LW ). Now the updated original weight (W ′)
is W ′ = W +∆W .

The dataset Dtrain is used, which is a subset of
the entire data set D. The computational resources
and time required for training are dependent upon
the number of parameters of the pre-trained model
and the size of the speech dataset.

3.3 Identification of the transcription errors

After full parameter or LoRA fine-tuning we have
to analyze the output of the model to identify the
patterns of the recognition errors. Recognition er-
rors can be quantified using Character Error Rate.
The whole process of determining the error or limi-
tation is explained in Algorithm 1. The validation
dataset (Dval) are used for error identification pur-
poses. The CER (CERdi∀Dval) is calculated. The
CERdi is then compared with the threshold CER
value CERTH . Those data whose CER is greater
than CERTH , are marked as not acceptable tran-
scripts, deciding these are areas for improvement.
To address these problems, we have to train the
model on more datasets containing the problematic
tokens. This dataset can be generated from Dstock.
Newly generated subset of dataset are called ∆DS.

Getting the appropriate value of the threshold
CER (CERTH ) is very important. For this experi-
ment, we chose the CER of the previously merged
adapter while evaluating using the Dval dataset.
The identification of shortcomings and the dataset
generation technique is explained in Algorithm 1.
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Figure 1: Proposed Architecture for Multi-Stage LoRA Fine-Tuning of Base model FTbase (Stage 1: (re)introduce
the language, Stage 2: multiple adapter building by fine tuning the base model guided by Algorithm 1, and Stage 3:
merging the adapters)

Algorithm 1: Identification of shortcom-
ings of (n)th Adapter and dataset genera-
tion for (n+ 1)th

Input:
Adaptern : LoRA adapter of

nthiteration
Output:

∆DS(n+1) : Dataset to be used for
(n+ 1)th Adapter
Data:

FTbase : fine-tuned base model
DStrain : training dataset for

full-parameter fine tuning
DSval : validation dataset
DSstock : stock dataset
CERTH : threshold value of CER
A : list of adapters

1 Labelweak = [ ]
2 FTmodal = FTbase ∪Adaptern ∪ {Ai}iϵN

3 forall di ∈ DSval do
4 CERi =

FTmodal.Evaluate(di.Audio)
5 if CERi > CERTH then
6 Labelweak.Append(di.Label)

7 forall di ∈ DSstock do
8 if di.Label ∈ Labelweak then
9 ∆DSn+1.Append(di)

10 return ∆DS(n+1)

3.4 Parameter-Efficient Fine-Tuning

Pre-trained models have a lower intrinsic dimen-
sion when they are adjusted to new challenges (Hu
et al., 2022). A low intrinsic dimension suggests
that the data can be represented or approximated
by a lower-dimensional space while most of its
structure is preserved. This allows us to split the
new weight matrix for the adapted task into smaller
matrices without compromising important details.
Suppose ∆W is the weight update for an A × B
weight matrix. Then we can decompose the weight
update matrix into two smaller matrices: ∆W =
WAWB , where WA is an A×r-dimensional matrix
and WB is an r ×B-dimensional matrix. We keep
the original weight W frozen and only train the new
matrices WA and WB . This will be considered as
a new fine-tuned adapter.

The LoRA is used as the parameter-efficient
fine-tuning. We started by loading the fine-tuned
base (FTbase) model which is the output of Section
3.2. In this stage only the parameters of the LoRA
adapters are updated, while the remaining weights
(W ) of FTbase were kept frozen.

3.5 Merging the LoRA Adapters

Building the model by correcting for each weak-
ness in a single training can be costly, time con-
suming, and takes up storage space. Multiadapter
training can overcome some of these limitations
by training a model to solve multiple weaknesses.
Loading multiple adapters and doing inference on
those require more memory. This can be solved by
merging multiple adapters together to form the sin-
gle adapter. There are various techniques to merge



Table 1: Evaluation of models in terms of Word Error Rate

Model Details WER(%)

Whisper large-v2 Model proposed by (Radford et al., 2023) 47.1

FTbase Full parameter fined tuned base model 36.2

Adapter1 LoRA fine-tuned from the base model FTbase 31.1

Adapter2 LoRA fine-tuned from the base model FTbase 33.1

Adapter3 LoRA fine-tuned from the base model FTbase 30.1

Adaptermerged All adapter merged into FTbase 27.9

the adapters together; among them, the weighted
average method is computationally friendly and
the easiest technique. We merged multiple adapters
with adapter weight βi as in Equation(1).

Adaptermerged =
n∑
i

βi ×Adapteri (1)

Where, βi is the weight of ith adapter and holds∑n
i βi = 1. The values for βi are generated from

the hyperparameter search. The actual values used
are reported in Section 4.

4 Experiments

We used the SLR54 dataset (Kjartansson et al.,
2018) which has a Nepali speech corpus of 157K
utterances and has 165 hours of speech recording
featuring 527 unique speakers. Among these 4
hours of speech dataset that are used as DStrain,
20 minutes are used as the validation dataset DSval

and the remaining are used for the pool or stock
dataset that can be used for further adapter training
(DSstock).

The Whisper (Radford et al., 2023) model fam-
ily is used as the pre-trained speech model. They
have tiny, base, small, medium, and large mod-
els ranging from 39M parameters to 1550M param-
eters. We used a pre-trained Whisper − Large−
V 2 model. This pre-trained model also receives
Nepali language training. So, there is no need to
explicitly introduce the vocabulary.

For this experiment, we used the Hugging Face
Transformer library4. To make our experiment
comparable, we trained each adapter with a total of
five (5) epochs with the following parameters:

4Hugging Face: https://huggingface.co/docs/transformer

• mixed precision training using float16 (fp16)
data type

• 8-bit Adam optimizer(adamw_bnb_8bit)

• learning rate of 1e− 3 and

• training batch size to 4

Parameter-efficient fine-tuning is implemented
using the PEFT library (Mangrulkar et al., 2022).
The best combination of LoRA configurations is
estimated by using a hyperparameter tuning tech-
nique. The best estimated parameters are as fol-
lows:

• r = 32

• alpha = 64

• dropout = 10%

To check the effectiveness of the module, a to-
tal of 3 adapters are fine-tuned, namely Adapter1,
Adapter2, and Adapter3. All of these adapters
are linearly merged to form Adaptermerged with
the weights β as in Equation(1). The value of β
obtained from the hyperparamerter tuning is as fol-
lows:

β = {0.7, 0.2, 0.1}

Fine-tuning may be performed by training any
number of adapters until the model starts to over-
fit. We observed overfitting after three iterations
of fine-tuning because of the limited size of the
dataset employed in our trials. This discovery high-
lights the necessity of carefully overseeing model
performance during fine-tuning to avoid overfitting



and guarantee effective generalization to unseen
data.

The newly produced adapter, termed
Adaptermerged is later integrated with the
fine-tuned basis model (FTbase). Upon completion
of the integration, an assessment is performed to
evaluate the performance of the merged model.

5 Results and Discussions

We used Whisper − Large − V 2 pre-trained
model. This is a multilingual large speech model
also trained in Nepali speech as well. The reported
Word Error Rate (WER) of this model is 47.1%.
While inspecting the output, we saw that the tran-
script of the module is more toward Hindi language.
Hence, we performed full-parameter fine-tuning us-
ing our dataset and ended up with a WER of 36.2%.
This language (re)introduction by full-parameter
fine-tuning improved the performance of the base
model. Now, our base model is FTbase with 36.2%
WER. All experiments are listed in Table 1.

Three different Low-Rank Adaptation (LoRA)
based adapters are trained as per Section 3.3 and
Algorithm 1. The individual WERs of the adapter
range from 33.1% to 30.1%. The best WER is
achieved by combining the three adapters together,
which is 27.9%5. This is more than 8% improve-
ment over full-parameter fine-tuned base model
(FTbase) and more than 20% improvement over
the pre-trained model Whisper − Large− V 2.

Our work can also be compared with existing
fully supervised End-to-End Nepali ASR mod-
els. The Hidden Markov Mode (HMM) based
model proposed by Baral and Shrestha (2020)
has achieved 29.45% WER. The CNN-GRU-based
model proposed by Joshi et al. (2023) has reported
a WER of 37. 50%. In all of these cases, our model
performs better. The fine-tuned model based on
active learning proposed by Ghimire et al. (2023a)
has reported the 6.77% CER. Because of the differ-
ent evaluation matrices, we could not compare the
result.

The results of our investigation indicate that com-
bining numerous LoRA adapters, each trained on
different subsets of data, allows them to comple-
ment each other’s strengths and minimize short-
comings. An adaptor may capture only specific
patterns or features, resulting in a higher WER.

5The final models are available through Informa-
tion and Language Processing Research Lab’s website,
https://ilprl.ku.edu.np

However, when integrated, these adapters can of-
fer a more thorough adaptation by addressing the
shortcomings of the others. This collective effect
improves the model’s capacity to generalize and re-
liably recognize speech, resulting in a lower overall
WER.

6 Conclusion

Fine-tuning of Large Language Models for low-
resource languages is a prevalent and growing prac-
tice, particularly in the context of speech-related
tasks. Due to Nepali being a low-resourced lan-
guage, the fine-tuning task has been comparatively
less investigated. Our study focused on evaluating
the usefulness of adapter-based fine-tuning through
experiments conducted with LoRA and Whisper.
Our strategy involves initially (re)introducing the
language into the bigger model through full pa-
rameter tuning. Subsequently, the shortcomings of
the model are recognized, and by addressing those
drawbacks, we refine certain aspects of the model
using LoRA, thereby improving the overall quality
of the model. Using this methodology, we achieved
a Word Error Rate (WER) of 27.9%, which is an
improvement over 19.2% as reported in previous
work.

Although we observed a significant improve-
ment in implementing the suggested strategy, there
is still plenty of space to improve the precision
of the model. The algorithm for generating ∆DS
uses the CER compared to some threshold. How-
ever, to achieve further improvements, this area can
be analyzed using language-specific similarity met-
rics. Additionally, at this stage, our study focused
only on Whisper. The study could be extended to
other larger models to compare the corresponding
results.
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