
 

 
 

Abstract 

In the past decade, significant progress has 

been made in digitizing Sanskrit texts and 

advancing computational analysis of the 

language. However, efforts to advance NLP 

for complex semantic downstream tasks 

like Semantic Analogy Prediction, Named 

Entity Recognition, and others remain 

limited. This gap is mainly due to the 

absence of a robust, pre-trained Sanskrit 

model built on large-scale Sanskrit text data 

since this demands considerable 

computational resources and data 

preparation. In this paper, we introduce 

SansGPT, a generative pre-trained model 

that has been trained on a large corpus of 

Sanskrit texts and is designed to facilitate 

fine-tuning and development for 

downstream NLP tasks. We aim for this 

model to serve as a catalyst for advancing 

NLP research in Sanskrit. Additionally, we 

developed a custom tokenizer specifically 

optimized for Sanskrit text, enabling 

effective tokenization of compound words 

and making it better suited for generative 

tasks. Our data collection and cleaning 

process encompassed a wide array of 

available Sanskrit literature, ensuring 

comprehensive representation for training. 

We further demonstrate the model’s 

efficacy by fine-tuning it on Semantic 

Analogy Prediction and Simile Element 

Extraction, achieving an impressive 

accuracy of approximately 95.8% and 

92.8%, respectively. 

1 Introduction 

Sanskrit, one of the most ancient and highly 

structured natural languages, consists of a vast and 

 
1 By conservative estimate the time period of the oldest text 

in Sanskrit i.e., Ṛgveda is considered as 1000 B.C. 

diverse corpus of literature, with domains spanning 

from foundational texts on Vyākaraṇa (grammar), 

Śikṣā (phonetics), and Nirukta (etymology), to 

critical works on Mīmāmsā (exegesis), Nyāya 

(logic), Kāvyaśāstra (poetics), Sāhitya (literature), 

Nāṭyaśāstra (dramaturgy), Dharmaśāstra 

(jurisprudence), etc. With origins tracing back to 

approximately 1000 BCE1, Sanskrit remains in use 

today, not only as a language of traditional 

knowledge but also as a subject of modern 

linguistic and computational studies. 

In recent years, significant efforts have been 

directed towards the digitization of Sanskrit texts 

and the advancement of natural language 

processing (NLP) techniques tailored to process 

this classical language. Notable progress has been 

made in tasks such as word segmentation (Hellwig 

& Nehrdich, 2018) (Krishna et al., 2018), 

dependency parsing (Sandhan, Krishna, et al., 

2021), and word-order linearization (Krishna et al., 

2019) (Krishna et al., 2021). These advancements 

have been pivotal in addressing some of the unique 

challenges posed by Sanskrit's intricate 

grammatical and syntactic structures. 

Despite these strides, there remains a notable 

gap in developing NLP models capable of handling 

more complex semantic tasks such as Semantic 

Analogy Prediction, Named Entity Recognition, 

and other sophisticated downstream applications. 

The lack of a robust Sanskrit model trained on 

diverse, large-scale data is a significant barrier to 

advancing complex NLP tasks in the language. 

Models pre-trained on extensive datasets are 

critical for evaluating downstream tasks. To 

address this, we introduce SansGPT, a pre-trained 

Sanskrit language model aimed at advancing NLP 

capabilities, particularly for semantic tasks, 
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thereby simplifying the research and development 

of downstream tasks. 

Our contributions are: 

1) Release of a Cleaned Pre-Training Sanskrit 

Corpus 2 : We provide a large, meticulously 

cleaned, and pre-processed Sanskrit corpus 

consisting of approximately 51 million tokens. 

This corpus has been cleaned and prepared 

specifically for use in GPT-based pre-training.  

2) Development of a Custom Sanskrit 

Tokenizer: We developed a lightweight and 

efficient tokenizer using Byte Pair Encoding 

tailored for Sanskrit. It breaks long compound 

words while preserving the syntactic structure 

(e.g., Sandhi) for coherent text generation, 

ensuring that the tokenization maintains word 

integrity and natural flow. 

3) Pre-training and Release2 of SansGPT: We 

pre-train and release SansGPT, a generative 

model designed for the Sanskrit language. This 

model sets the foundation for advancements in 

generative pre-training and fine-tuning within 

the Sanskrit NLP domain which would help to 

advance the development of complex semantic 

down-stream tasks. 

4) High Performance in Semantic Analogy 

Prediction, Simile Element Extraction, and 

release2 of Simile (Upamā) Element 

Extraction Dataset: Demonstrating the 

efficacy of SansGPT, we achieved a 

remarkable validation accuracy of 

approximately 95.8% on the Semantic 

Analogy Prediction task. We also evaluate and 

release the Simile (Upamā) Element 

Extraction dataset, achieving a validation 

accuracy of 92.8% on the task. 

2 Methodology 

2.1 Data Collection and Preprocessing 

2.1.1 Data Sources 

Our corpus draws data from two major sources 

1) Digital Corpus of Sanskrit3  and 2) GRETIL4 . 

The details of the corpus and the texts that it covers 

are mentioned in Appendix A. 

 

2.1.2 Data Cleaning Methods 

 
2 https://github.com/rhugvedd/SansGPT-
Advancing-Generative-Pre-Training-in-

Sanskrit 

We have applied several data cleaning 

techniques to prepare the Sanskrit corpus suitable 

for pre-training. The goal was to remove noise, 

standardize formatting, and ensure the integrity of 

the text for pre-training. Below is a summary of the 

data cleaning methods used: 

1) Removal of Special Characters and Unwanted 

Symbols: The text was cleaned by removing 

special characters like period, asterisk, and 

others that do not contribute meaningfully to 

the content. Additionally, we replaced slashes 

‘/’ and pipes ‘|’ with daṇḍa (।), the punctuation 

symbol in Sanskrit, to maintain consistency in 

the corpus.  

2) Handling Numerical References Between 

Daṇḍas: Custom functions were employed to 

handle text between double daṇḍas and single 

daṇḍa. These functions identify the text 

enclosed by these symbols. If the enclosed text 

is shorter than a threshold number (likely 

numerical references or irrelevant content), it 

is replaced with a single daṇḍa or double 

daṇḍa accordingly. 

3) Removal of HTML Tags and Annotations: 

HTML tags and inline annotations (e.g., %%, 

<BR>, or numbers in square brackets [0-9]) 

were removed using regular expressions to 

ensure that only the textual content remained. 

4) Whitespace and Line Break Normalization: 

Excessive whitespaces, such as multiple 

spaces between words and unnecessary 

numerous line breaks, were removed and 

normalized. This ensured that the text adhered 

to a clean and consistent structure. 

5) Parentheses and Unwanted Punctuation: 

Parentheses containing citations or 

supplementary information were removed to 

focus on the main text, while unnecessary 

punctuation such as colons, underscores, and 

equal signs were stripped for uniformity. 

Additionally, numeric and hyphenated 

patterns, like digits followed by letters (e.g., [0-

9][a-z]), were cleaned to eliminate irrelevant 

numeric references and artifacts, ensuring a 

smoother text flow.  

6) Manual Inspection: To ensure the highest 

quality of the corpus, each file was manually 

3 http://www.sanskrit-
linguistics.org/dcs/index.php 
4 https://gretil.sub.uni-
goettingen.de/gretil.html 

https://github.com/rhugvedd/SansGPT-Advancing-Generative-Pre-Training-in-Sanskrit
https://github.com/rhugvedd/SansGPT-Advancing-Generative-Pre-Training-in-Sanskrit
https://github.com/rhugvedd/SansGPT-Advancing-Generative-Pre-Training-in-Sanskrit
http://www.sanskrit-linguistics.org/dcs/index.php
http://www.sanskrit-linguistics.org/dcs/index.php
https://gretil.sub.uni-goettingen.de/gretil.html
https://gretil.sub.uni-goettingen.de/gretil.html


 

 
 

inspected. This step allowed us to identify and 

make exceptions where necessary, addressing 

any specific issues that the automated 

processes might have missed. 

 

The final pre-training corpus consists of 51 

million tokens (with vocab size = 12000) for 

training and 1 million tokens for validation. This 

comprehensive approach to data cleaning and 

validation ensured that the corpus was well-

prepared for effective model training, enhancing 

the accuracy and performance of SansGPT. 

2.2 Tokenization 

Sanskrit, with its complex inflectional 

morphology and extensive compound word 

formation due to processes like Sandhi (euphonic 

combination), poses unique challenges for 

tokenization in NLP. Traditional methods struggle 

with Sanskrit’s long, multi-unit words. For 

effective text generation and semantic analysis, it's 

essential to break these compound words into 

smaller, meaningful sub-words or tokens. 

Assigning a single vector to long words, such as 

‘śaśikeśarikaranakharavidāryamāṇatamaḥkariku

mbhasambhavena’, can result in over-compression 

of semantic information. Also, for effective 

computational processing and semantic 

representation in transformer models, it's essential 

to break down compound words into meaningful 

sub-words or tokens. This prevents over-

compression of information and ensures each token 

contributes to a nuanced understanding. To achieve 

this, we developed a custom tokenizer using Byte 

Pair Encoding (BPE) (Sennrich et al., 2016), which 

breaks complex Sanskrit words into smaller tokens 

for more efficient neural network processing and 

improved model performance. 

 

2.2.1 Tokenizer Training Details 

BPE is a statistical method for tokenizing 

sequences of characters or bytes. The process 

involves iteratively merging the most frequent 

pairs of tokens in a corpus. This iterative merging 

continues until a desired vocabulary size is 

achieved or no further pairs are found. The core 

idea is to replace the most frequent pairs of 

characters (or sub-words) with a single new token, 

thus reducing the overall number of tokens while 

capturing common patterns and structures. The 

details of tokenizer training is mentioned in 

Appendix B. 

2.2.2 Deciding Vocabulary Size 

Before training the tokenizer, we split the entire 

text into meaningful segments. This process 

involves using ‘space’ and ‘newline’ characters as 

delimiters to split the text into segments and then 

feeding the segmented text for tokenizer training. 

Choosing an appropriate vocabulary size for 

tokenization is a balancing act. A large vocabulary 

size can lead to fewer tokens per word, potentially 

resulting in over-compression of semantic 

information into a single vector, which can be 

detrimental to the model's ability to learn nuanced 

meanings. Conversely, a small vocabulary size can 

split words into too many tokens, increasing the 

token count and potentially challenging the self-

attention mechanism of transformers, which has a 

limited context length (Vaswani et al., 2023).  

In our approach, we set the vocabulary size to 

12,000 tokens. This decision was based on the 

monitoring and analysis of the frequency of the 

appearance of every new token being created in the 

entire corpus. As the vocabulary size increases the 

frequency of appearance of the new tokens in the 

corpus decreases, as rarer tokens are added to the 

corpus. Hence, it becomes harder for the model to 

learn to predict tokens occurring rarely in the 

corpus, as is evident in Figure 1. We also manually 

inspected the tokenized text of the entire corpus for 

different vocabulary sizes. We identified a balance 

that maximizes semantic preservation while 

keeping tokenization manageable. This carefully 

chosen vocabulary size helps ensure that the GPT 

model can efficiently process the Sanskrit text, 

maintaining the richness of the language while 

fitting within computational constraints. 

Figure 1: Impact of Vocab Size on Train Loss 



 

 
 

2.3 Pre-Training 

We developed and pre-trained our own GPT-

75M model from scratch on the Sanskrit corpus 

which we have collected and cleaned. The pre-

training process for our model utilized the 

generative autoregressive language modeling 

approach, which has been proven effective for 

improving language understanding (Radford et al., 

2018). For details on autoregressive language 

modelling, refer to Appendix C. 

 

2.3.1 Pre-Training Setup 

We employed sequential batching for training to 

preserve the continuity and sequential nature of the 

Sanskrit text. This approach ensures that the order 

of tokens in the text is respected, which is essential 

for a model like GPT that relies heavily on context. 

Sequential batching maintains the coherence of the 

sequences during training, which aids in preserving 

the structural dependencies in the text and results 

in better predictions during autoregressive 

generation. 

We opted for a batch size of 8 and a context size 

of 512 tokens to balance between computational 

efficiency and model generalization. In the training 

process, the choice of batch size directly influences 

the behaviour of gradient noise and model 

generalization. Smaller batch sizes, like the one 

used (batch size = 8), introduce higher noise in the 

gradient estimates during training (Jastrzębski et 

al., 2018). This increased noise can act as a form of 

regularization, preventing the model from 

overfitting to the training data and helping it escape 

local minima in the loss landscape. The frequent 

parameter updates associated with smaller batch 

sizes lead to more iterations per epoch, which can 

aid in achieving better generalization but at the cost 

of noisier and potentially less stable training 

(Keskar et al., 2017). 

Conversely, larger batch sizes tend to produce 

smoother gradients, leading to more stable updates 

but also increasing the risk of poor generalization. 

By using a batch size of 8, we strike a balance 

between frequent updates and manageable noise 

levels, allowing the model to generalize well 

without requiring excessive computational 

resources. We conduct experiments with batch 

sizes of 8, 16, 32, 64, and 128 and plot the 

validation loss for 15 epochs over the entire dataset. 

We use a scaled higher learning rate for larger batch 

sizes, starting from 2e-4 (batch size =8) to 9e-4 

(batch size =128). 

Results obtained shown in Figure 2 demonstrate 

that larger batch sizes lead to poor generalization, 

with batch size = 128, even leading to overfitting. 

 

2.3.2 Optimization Setup 

We set a starting learning rate of 2e-4 and 

applied a cosine learning rate decay schedule to 

gradually decay the learning rate to 2e-5 by the end 

of the pre-training phase. A linear warm-up phase 

was employed for the initial 5000 iterations, during  

which the learning rate ramped up from 0 to 2e-4. 

This warm-up strategy helps prevent instabilities 

that can arise from using large learning rates early 

in training when the model is still adjusting its 

parameters. 

The relationship between batch size and 

learning rate is crucial: smaller batch sizes 

necessitate smaller learning rates to maintain stable 

updates (Jastrzębski et al., 2018). With smaller 

batches, the gradient estimates are more variable, 

and smaller learning rates help prevent 

overshooting during optimization. We monitored 

the training loss in the initial stages of training and 

fine-tuned the learning rate accordingly to ensure a 

smooth training process. We train the model for a 

longer duration, specifically for a total of 300,000 

iterations with a small batch size (=8) (~24 epochs 

over the entire dataset) (where one iteration 

corresponds to one batch), since longer training 

with smaller batch sizes helps generalization 

(Hoffer et al., 2018). We save model checkpoints 

every 50,000 iterations. The validation loss was 

evaluated every 1000 iterations for over 100 

iterations on the validation set (again batch size = 

8). Using a batch size of 8, we achieve a train loss 

Figure 2: Impact of Batch Size on Generalization 



 

 
 

of ~3 and a validation loss of ~5. The complete 

architecture details can be found in Appendix D. 

2.4 Fine-Tuning 

In the fine-tuning phase, we maintain the same 

architectural configuration that was used during the 

pre-training of our GPT model. This consistency 

ensures that the model's foundational capabilities, 

developed through extensive pre-training, are 

preserved while adapting the model to specific 

tasks or datasets. During fine-tuning, we utilize five 

special tokens to facilitate various aspects of 

sequence processing and task evaluation. These 

five tokens are the beginning of the sequence 

(<bos>), end of the sequence (<eos>), separator 

tokens (<sep1> and <sep2>), and the padding 

token (<pad>). We use decoder layer freezing 

(Howard & Ruder, 2018) of 6 layers and we pad 

the sequences to the context size of the GPT 

(=512). We also create an attention mask to ensure 

that the GPT only attends to meaningful tokens 

during fine-tuning and we exclude the pad tokens 

from the loss calculation. We discuss these aspects 

of fine-tuning in detail in Appendix E. 

3 Evaluation 

In this section, we evaluate SansGPT's 

performance on two tasks. We design the tasks, 

fine-tune the pre-trained model checkpoint, and 

report the results obtained. 

3.1 Semantic Analogy Prediction 

3.1.1 Testing Relational Understanding 

The Semantic Analogy Prediction task evaluates a 

model's ability to predict the “word d” in an 

analogy of the form “word a : word b :: word c : 

word d”, given the words only till word c. We chose 

the semantic analogy task because it directly 

assesses the model’s understanding of relational 

semantics. In languages like Sanskrit, where 

inflection and morphology play crucial roles, the 

ability to predict the correct relational word 

requires the model to have a strong grasp of 

syntactic and semantic dependencies. The analogy-

based evaluation forces the model to extrapolate 

the relationship between word pairs from one 

analogy and apply it to another. 

3.1.2 Handling Low-Resource Settings: 

The dataset used for this task consists of six 

categories: husband-wife, son-father, daughter-

father, charioteer-warrior, defeated-victorious, and 

son-mother. The dataset contains a total of 6,415 

examples, with 5,773 examples used for training 

and 642 examples reserved for validation. This 

dataset is derived from (Sandhan, Adideva, et al., 

2021). Sanskrit is a low-resource language, and the 

dataset described (6,415 examples) reflects this 

limitation. Our task design tests the model to work 

within such constraints, where robust pre-training 

and fine-tuning are required to generalize well on 

tasks with limited data. Our approach towards the 

task formulation, execution and the results show 

the essential steps that researchers can take for 

handling fine-tuning for low-resource settings and 

languages. 

3.1.3 Token Separation and Sequence Structuring 

for Enhanced Analogy Learning 

We formulate this analogy prediction task as 

follows: for each training example, we construct 

input sequences by tokenizing the analogy into the 

following structured format: 

<bos> <tokens of word a> <sep1> <tokens of word 

b> <sep1> <sep1> <sep1> <tokens of word c> 

<sep1> <tokens of word d> <eos> <pad till end>. 

The <bos> token indicates the start of the sequence, 

and the <eos> token marks the end. Each word is 

split using <sep1> token(s), with two additional 

<sep1> separators inserted between the two 

analogy pairs to ensure clear differentiation 

between them. The deliberate use of multiple 

<sep1> tokens between these pairs plays a crucial 

role in preserving the structural integrity of the 

analogy. By inserting these extra separators, we 

make sure that the model doesn’t conflate or blur 

the boundaries between the two analogy 

relationships—ensuring that “word A is to word B” 

remains distinct from “word C is to word D.” This 

separation is important for preventing semantic 

bleed between the analogy pairs, which can lead to 

confusion in the model’s understanding of how the 

words relate to each other. In transformer-based 

models, such delineation is vital for accurate 

learning, as the model relies on positional and 

contextual clues to process the relationships 

between tokens. The use of multiple <sep1> tokens 

helps the model maintain this distinction, 

improving its ability to correctly predict and 

generate analogies. Furthermore, padding tokens 

(<pad>) are applied to standardize sequence 



 

 
 

lengths to 512 tokens, ensuring uniformity in batch 

processing and making sure that shorter sequences 

do not affect the model's attention span or 

computational efficiency. The combination of 

multiple <sep1> tokens and proper padding 

optimizes both the semantic clarity and training 

efficiency of the model.  

3.1.4 Masking and Self-Attention Modification 

For each example, a mask is created, where all 

tokens until the <eos> token are assigned a value 

of 1, while all tokens after <eos> are assigned a 

value of 0. Padding tokens are introduced to 

standardize sequence lengths, but they do not carry 

any semantic value and are only placeholders. In a 

self-attention mechanism, if padding tokens were 

not masked, the model could waste computational 

resources by attending to these irrelevant tokens, 

leading to suboptimal learning. By masking, we 

prevent the model from incorporating padding into 

its predictions and gradient updates, ensuring that 

only valid tokens influence the attention 

distribution and the overall training process. This 

improves both the efficiency and accuracy of the 

model. We feed this input sequence into the GPT 

model, and the target sequence is the same as the 

input just left-shifted by one token. The model is 

trained with self-attention with the mask, as 

mentioned, and a loss function that ignores padding 

tokens, ensuring that the model learns to predict 

tokens while ignoring irrelevant padding.  

3.1.5 Top-k Sampling 

During the generation and evaluation of the 

validation set, we input tokens up to the <sep1> 

token following the word C (the second analogy). 

To predict word D, we employ top-k sampling 

(Fan et al., 2018) with a value of k = 50. Top-k 

sampling restricts the model's output to the top 50 

most likely tokens based on the model's predicted 

probability distribution. From these top 50 tokens, 

we perform multinomial sampling, selecting a 

token based on its probability within this reduced 

set. This approach allows for more diversity in 

generation while ensuring that the output remains 

plausible, as it limits the choice to high-probability 

tokens while still allowing some flexibility in the 

prediction process. 

 

3.1.6 Results 

Our model achieves an impressive validation 

accuracy of 95%, significantly outperforming the 

accuracy of 32.7% reported by (Sandhan, Adideva, 

et al., 2021). We also calculate and report the 

Precision, Recall, and F1 scores, all of which come 

out to be ~95% (0.95). The graph of the evaluation 

metrics versus the training Epochs is shown in 

Figure 3. Following are some of the analogies 

generated by the fine-tuned model: 

1) Input: Bhīṣma : Śantanu :: Jatāyu : 

Output: Aruṇa 

Bhīṣma and Śantanu have a son-father 

relationship. Similarly, Jatāyu and Aruṇa have 

a son-father relationship. 

Category: Son – Father 

2) Input: Nakula : Draupadī :: Pururavā : 

Output: Urvaśī 

Nakula and Draupadī are husband-wife, just as 

Pururavā and Urvaśī. 

Category: Husband - Wife 

3) Input: Kumbhakarṇa : Rāma :: Vṛṣaketu : 

Output: Vabhruvāhana 

In the battle, Rāma defeats Kumbhkarṇa, 

which mirrors Vṛṣaketu’s relationship with 

Vabhruvāhana, who is victorious over him. 

Category: Defeated – Victorious 

4) Input: Janamejaya: Īrāvati :: Bhīṣma : 

Output: Gaṅgā 

Janamejaya is the son of Īrāvati, which mirrors 

the relationship between Bhīṣma and Gaṅgā. 

Category: Son – Mother 

3.2 Simile Element Extraction 

3.2.1 Data Description 

For this task, we have developed a new dataset 

specifically curated for Simile Element Extraction 

in Sanskrit texts. Our data was based on instances 

from Vālmīkīya Rāmāyaṇa. This annotated dataset 

contains sentences where a simile (Upamā) 

relation exists between two words. The goal is to 

extract the two words that form the simile along 

with the word that signals the similarity between 

them. The initial dataset consists of 400 manually 

annotated examples. To enhance the dataset, we 

employed data augmentation techniques, 

increasing the size to approximately 17,000 

examples. The data was augmented with the help 

of the traditional Sanskrit lexicon 'Amarakośā.' The 

augmentation involved replacing the words 

involved in the simile with their synonyms or other 

suitable words, preserving the simile relation while 

generating new instances for training. 



 

 
 

3.2.2 Task Design 

We design this task by structuring each example 

into a formal tokenized sequence, allowing the 

model to predict the simile elements efficiently. For 

each training example, we tokenize and format the 

input in the following manner: 

1. in_sen: Tokenized input sentence. 

2. sp_word_sim: Tokenized “similarity-

indicating word prefixed by a space”. 

3. word_sim: Tokenized similarity-indicating 

word. 

4. sp_OoC: Tokenized “Object of Comparison 

(Upameya) prefixed by a space” 

5. OoC: Tokenized Object of Comparison 

(Upameya). 

6. sp_SoC: Tokenized “Standard of Comparison 

(Upamāna) prefixed by a space”. 

7. SoC: Tokenized Standard of Comparison 

(Upamāna). 

The structured input sequence for fine-tuning takes 

the following form: 

<bos> <in_sen> <sep_1> <sep_1> <sep_1> 

<sp_word_sim> <sep_2> <word_sim> <sep_2> 

<sp_OoC> <sep_2> <OoC> <sep_2> <sp_SoC> 

<sep_2> <SoC> <eos> 

3.2.3 Dual Separator Tokenization 

The use of two distinct separator tokens, <sep_1> 

and <sep_2>, is critical in this task design to guide 

the model in effectively handling different parts of 

the sequence. The <sep_1> tokens delineate the 

input sentence from the output simile elements, 

ensuring that the model treats these as two distinct 

stages: first processing the input context and then 

focusing on extracting the simile components. This 

separation is crucial because it prevents the model 

from confusing the general sentence structure with 

the specific task of simile extraction, improving the 

clarity of the task during training and inference.  

On the other hand, the <sep_2> tokens serve to 

distinguish between the different simile 

components: the word indicating similarity, the 

Object of Comparison (Upameya), and the 

Standard of Comparison (Upamāna). This 

differentiation is vital for the model to learn the 

hierarchical structure within the simile, ensuring 

that each element is correctly identified and 

mapped. The dual usage of <sep_1> and <sep_2> 

tokens ensures that both the contextual boundaries 

(input vs. output) and the internal structure 

(different simile components) are clearly 

differentiated, leading to more accurate predictions 

and better generalization across varied sentence 

structures. Padding and masking are applied as per 

our standard fine-tuning process described in task 

3.1. 

3.2.4 Dual-Form Token Handling for Space-

Sensitive Tokenization 

While formulating the Simile Element Extraction 

task, we include both forms of the output tokens—

one with a leading space (e.g., <sp_word_sim>, 

<sp_OoC>, <sp_SoC>) and one without (e.g., 

<word_sim>, <OoC>, <SoC>). This design choice 

is essential because, in our tokenizer, tokens with 

and without leading spaces are treated as distinct 

entities. By training the model to predict both 

forms, we ensure that the model learns to handle 

variations in tokenization that arise due to spacing 

Figure 4: Simile Element Extraction Eval Metrics Figure 3: Semantic Analogy Prediction Eval Metrics 



 

 
 

differences. This approach helps the model 

generalize better, as it becomes capable of 

predicting the correct output regardless of whether 

a token with a leading space or without one, 

appears in the input. In real-world text, spacing can 

vary based on context, and this formulation ensures 

that the model can handle such inconsistencies 

robustly. By incorporating both forms during 

training, the model becomes more adaptable and 

better equipped to extract simile components under 

different formatting or tokenization conditions, 

ensuring higher accuracy and resilience. 

3.2.5 Simile-Aware Tokenization 

For the Simile Element Extraction task, we employ 

a specialized Simile-Aware Tokenization method 

designed to handle the unique challenges of 

compound words and sandhi in Sanskrit. In this 

method, the system segments the input sentence by 

identifying key similarity-indicating words (e.g., 

iva, ābham, and others). For e.g.: 

bṛhaspatisamo –> bṛhaspati + samo 

This ensures that these words, which play a crucial 

role in similes, are tokenized as distinct, complete 

units rather than a possibility of being broken down 

unevenly by traditional tokenization. By 

preserving the integrity of these words and 

generating separate tokens for them, the model is 

able to more effectively recognize and predict the 

elements of a simile, as it receives a clear and 

coherent representation of the similarity 

relationship. This approach significantly enhances 

the model’s ability to process similes within the 

complex morphological structure of Sanskrit text. 

3.2.6 Results 

The model demonstrates robust performance, 

achieving an accuracy of 92.8% on the Simile 

Element Extraction task. We also evaluate the 

Precision, Recall, and F1 Score, all of which come 

out to be ~87% (0.87). The graph of the evaluation 

metrics versus the training Epochs is shown in 

Figure 4. Following are some of the similes 

extracted by the fine-tuned model: 

1) Input: ayodhyānātha kṣamayā pṛthvīsamaḥ 

 
5 This verse is an augmented version of the verse 2.15.47 

from Valmīkīya Rāmāyaṇā. 

https://www.valmiki.iitk.ac.in/content?field_kanda_tid=2&l
anguage=dv&field_sarga_value=15&field_sloka_value=47

&  

Translation- The king of Ayodhyā is like Earth 

in terms of forgivingness. 

Output: Word Indicating Similarity: samaḥ 

Upameya: ayodhyānātha (lord of Ayodhya) 

Upamāna: pṛthvī (earth) 

2) Input:  

tato mahājīmūtamahīdhara ābhaṃ 

prabhinnamatyaṅkuśamatyasahyam । 

rāmaupavāhyaṃ ruciraṃ dadarśa 

śatruñjayaṃ vāraṇaudagrakāyam ।। 

Translation- He beheld a beautiful elephant 

named Śatruñjayaṃ with a huge body on 

which Rama was to mount. It looked like a vast 

mountain or a huge cloud. With ichor flowing 

from his temples and without caring for the 

goad, the elephant was intolerant.5 

Output: Word Indicating Similarity: ābhaṃ 

Upameya: vāraṇa (Elephant) 

Upamāna: mahājīmūta (Huge cloud) 

3) Input:  

ucitaṃ ca mahābāhuḥ na jahau harṣaṃ 

ātmanaḥ ।  

śāradaḥ samudīrṇāṃśuḥ kṣapākara teja iva 

ātmajam ।। 

Translation- The mighty-armed i.e., Rāma did 

not leave his habitual cheerfulness like the 

autumnal Moon his own brightness.6 

Output: Word Indicating Similarity: iva 

Upameya: mahābāhuḥ (mighty-armed Rāma) 

Upamāna: kṣapākara (Moon) 

4 Conclusion and Future Scope 

SansGPT represents a significant step in the 

field of Sanskrit natural language processing. By 

providing a robust, pre-trained model, it addresses 

the critical gap in the development of advanced 

tools for analysing and understanding Sanskrit 

texts. The model's ability to effectively handle 

complex semantic tasks, as demonstrated by its 

evaluation performance, highlights its potential to 

facilitate a wide range of applications. SansGPT 

offers a solid starting point for various downstream 

tasks, including Named Entity Recognition, Text 

Summarization, and Sentiment Analysis.  

6 This verse is an augmented version of the verse 2.19.37 
from Valmīkīya Rāmāyaṇā. 

https://www.valmiki.iitk.ac.in/content?language=dv&field_

kanda_tid=2&field_sarga_value=19&field_sloka_value=37  

https://www.valmiki.iitk.ac.in/content?field_kanda_tid=2&language=dv&field_sarga_value=15&field_sloka_value=47&
https://www.valmiki.iitk.ac.in/content?field_kanda_tid=2&language=dv&field_sarga_value=15&field_sloka_value=47&
https://www.valmiki.iitk.ac.in/content?field_kanda_tid=2&language=dv&field_sarga_value=15&field_sloka_value=47&
https://www.valmiki.iitk.ac.in/content?language=dv&field_kanda_tid=2&field_sarga_value=19&field_sloka_value=37
https://www.valmiki.iitk.ac.in/content?language=dv&field_kanda_tid=2&field_sarga_value=19&field_sloka_value=37
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Appendices 

A.  Corpus Details 

The gathered extensive corpus encompasses a 

diverse range of literature, including epics such as 

the Rāmāyaṇa and Mahābhārata, the 

Bhagavadgīta with its various commentaries. It 

also features Purāṇa literature, religious texts 

spanning Śaiva, Vaiṣṇava, Āgama, Tantra, 

Buddhist traditions, and others. In addition, our 

corpus includes works on Alaṅkāraśastra 

(poetics), Nāṭyaśastra (dramaturgy), 

Chandaśśastra (prosody), as well as drama, 

narrative literature, and Subhāṣitas. We have also 

included texts related to various philosophical 

traditions, including Mīmāṃsā, Vedānta, Sāṅkhya, 

Yoga, Nyāya, Vaiśeṣika, Śaiva, Buddhist 

philosophies, Dharmaśastra, and others. 

We have excluded Vedic texts, such as the 

Veda[s], Brahmaṇa[s], Āraṇyaka[s], and 

Upaniṣad[s], from our corpus. The Vedic language 

differs significantly from classical Sanskrit in its 

morphological features. For instance, words 

declined in classical Sanskrit as ‘devāḥ’ are 

rendered as ‘devāsaḥ’ in Vedic texts. Additionally, 

in the Vedic texts, prefixes or ‘upasarga’, can be 

dissociated from verbs in a sentence, unlike in 

classical Sanskrit language where they are 

connected with the verb. To avoid incorporating 

these distinctive linguistic features that could affect 

the training results, we chose not to include Vedic 

data in our corpus. 

 

B.  Tokenizer Training 

Let 𝐷 represent the corpus of Sanskrit text, initially 

tokenized into byte-level tokens (0-255): 

 

𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} 

 

Given 𝑇  we define a function to compute the 

frequency of adjacent token pairs: 

 

δ(ti, ti+1, a, b) = {
1
0

       
𝑖𝑓𝑡𝑖 = 𝑎 𝑎𝑛𝑑 𝑡𝑖+1 = 𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑓(𝑎, 𝑏) = ∑ 𝛿(𝑡𝑖, 𝑡𝑖+1, a, b)

𝑛−1

𝑖=1

 

 

To find the most frequent pair (a*, b*), we 

maximize the frequency over all consecutive token 

pairs (a, b) appearing in the corpus: 

 

(𝑎 ∗, 𝑏 ∗) = arg max
(𝑎,𝑏)

𝑓(𝑎, 𝑏) 

 

Once the most frequent pair (a*, b*) is identified, 

we merge it into a new token a*b*, and the token 

sequence 𝑇 is updated by replacing all occurrences 

of (a*, b*) with the new token a*b*. We repeat the 

process of counting pairs, identifying the most 

frequent one, and merging it until the desired 

vocabulary size 𝑉 is reached, or no more pairs can 

be merged. 

 

C.  Auto-regressive Language Modelling 

Auto-regressive language modelling is a 

fundamental approach used in the pre-training of 

generative models like GPT, where the task 

involves predicting the next token in a sequence 

given the previous tokens. The objective of 

autoregressive language modelling is to maximize 

the probability of a token sequence, where the 

model learns to predict each token by leveraging 

the preceding tokens as context. The model 

generates tokens sequentially, with each predicted 

token fed back into the model to form part of the 

context for the next prediction. This method 

models language in a sequential manner, allowing 

the model to generate coherent text by learning to 

predict each word based on prior context. Below, 

we delve into the mathematical formulation and 

process that defines this approach.  

 

Mathematical Formulation: 

The goal of the language modeling task is to 

maximize the likelihood of a sequence of tokens 

𝑤1, 𝑤2, … , 𝑤𝑁,  where the model learns to predict 

each token based on the context provided by the 

preceding tokens. This can be mathematically 

represented as: 

 

𝑃(𝑤1, 𝑤2, … , 𝑤𝑁) = ∏ 𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

𝑁

𝑖=1

 

 

Here, 𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)  denotes the 

probability of token 𝑤𝑖  given the preceding 

sequence 𝑤1, 𝑤2, … , 𝑤𝑖−1.  The training objective 

is to maximize this conditional probability, 

enabling the model to generate coherent sequences 

by predicting each token based on its preceding 

context. During pre-training, we create batches by 

selecting a sequence of tokens up to a predefined 

context size. The target sequence for the batch is 



 

 
 

generated by shifting these tokens to the left by one 

position. This setup allows the model to predict the 

next token based on all preceding tokens. 

Specifically, the model learns to predict each 

subsequent token in a sequence by leveraging the 

context of prior tokens.  

At each time step 𝑡 , the model computes a 

probability distribution over the entire vocabulary 

to determine the most likely next token 𝑤𝑡, given 

the previous tokens 𝑤1, 𝑤2, … , 𝑤𝑡−1.  This 

prediction process can be mathematically 

described as: 

 

𝑃(𝑤𝑡|𝑤1, … , 𝑤𝑡−1)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓(𝑤1, … , 𝑤𝑡−1)) 

 

Where: 

• 𝑃(𝑤𝑡|𝑤1, … , 𝑤𝑡−1) represents the conditional 

probability of predicting token 𝑤𝑡,  given the 

previous tokens. 

• 𝑓(𝑤1, … , 𝑤𝑡−1) is the function learned by the 

model, which processes the input tokens 

through multiple transformer layers and 

computes logits for the softmax function. 

 

The average loss (to be minimized) in language 

modeling is the negative log-likelihood of the 

predicted probability distribution over the target 

sequence. Formally, if the sequence of tokens is 

𝑤1, 𝑤2, … , 𝑤𝑁, the average loss 𝐿 is given by: 

 

𝐿 = −
1

𝑁
 ∑ 𝑙𝑜𝑔 𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

𝑁

𝑖=1

 

 

D.  Complete Architecture Details 

The final SansGPT model has 75M parameters and 

the architecture used the following configuration: 

1. Vocabulary Size: 12,000 

2. Model Dimension (d_model): 768 

3. Number of Decoder Blocks: 12 

4. Number of Attention Heads: 12 

5. Feedforward Dimension: 2048 

6. Model Dropout Probability: 0 

7. Positional Encoding Dropout: 0 

8. Weight Decay: 1e-2 

9. Gradient Clipping Norm: 1.0 

10. Optimizer Betas: (0.9, 0.95) 

11. Mask Attention: True 

12. Pre-Norm: True 

13. Batch Overlap: None 

14. Gradient Accumulation: None 

 

In contrast to the original transformer model, which 

applies the Post-Layer Normalization (Post-LN) 

formulation, our model uses the Pre-Norm 

formulation (Xiong et al., 2020) for Layer 

Normalization (Ba et al., 2016) between sublayers 

in both the encoder and decoder. This deviation is 

crucial because Post-LN can result in larger 

gradients for parameters near the output layer, 

which, when combined with a large learning rate, 

leads to training instability and requires a longer 

warm-up phase. Pre-Norm, on the other hand, 

stabilizes gradients during initialization, enabling 

faster convergence by reducing the warm-up phase 

while speeding up training and minimizing the loss 

early on. 

 

E.  Fine-Tuning Details 

During fine-tuning, we utilize five special tokens to 

facilitate various aspects of sequence processing 

and task evaluation. 

1. Beginning of Sequence Token (<bos>): Marks 

the start of a new sequence, enabling the model 

to understand where each sequence begins. 

2. End of Sequence Token (<eos>): Signals the 

end of a sequence, helping the model to 

determine when to stop generating or 

processing tokens. 

3. Separator Tokens (<sep1> and <sep2>): Used 

to separate distinct segments within the same 

input, such as different sentences or 

contextually relevant segments. 

4. Padding Token (<pad>): Utilized to pad 

sequences to a uniform length, ensuring 

consistent input sizes across batches. 

 

To enhance fine-tuning effectiveness, we 

implement decoder layer freezing. We freeze the 

weights of the initial 6 decoder layers, meaning that 

during training, these layers' gradients are not 

computed, and their weights remain unchanged. 

This method preserves the foundational knowledge 

and representations learned by these initial layers 

during pre-training. The later 6 decoder layers, 

which are not frozen, are updated during fine-

tuning to tailor the model's features and parameters 

to the specific tasks at hand. Freezing the earlier 

layers has several benefits: it reduces the 

computational cost of training, minimizes the risk 

of overfitting, and ensures that the model’s general 

knowledge is retained while adapting the model to 

new, task-specific patterns. 



 

 
 

 

Sequences of varying lengths are padded to a 

standard length of 512 tokens using the <pad> 

token. This padding facilitates efficient batch 

processing by ensuring uniform input sizes. In the 

self-attention mechanism of SansGPT, padding 

tokens are masked using an attention mask. This 

mask ensures that the model does not attend to or 

generate output based on these padding tokens, 

which are non-informative. This helps the model 

focus solely on meaningful tokens within the 

sequence. 

Additionally, during the loss calculation, 

contributions from padding tokens are excluded to 

prevent skewing the loss metric. This ensures that 

the model’s training focuses on the meaningful 

portions of the data. The generation process is 

designed to stop as soon as an <eos> token is 

encountered, aligning the model's output with the 

expected sequence length and content and ensuring 

that the generated results are coherent and relevant 

to the given task. 

 


