@inproceedings{saikh-etal-2024-emojis,
title = "Emojis Trash or Treasure: Utilizing Emoji to Aid Hate Speech Detection",
author = "Saikh, Tanik and
Barman, Soham and
Kumar, Harsh and
Sahu, Saswat and
Palit, Souvick",
editor = "Lalitha Devi, Sobha and
Arora, Karunesh",
booktitle = "Proceedings of the 21st International Conference on Natural Language Processing (ICON)",
month = dec,
year = "2024",
address = "AU-KBC Research Centre, Chennai, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2024.icon-1.64/",
pages = "554--561",
abstract = "In this study, we delve into the fascinating realm of emojis and their impact on identifying hate speech in both Bengali and English languages. Through extensive exploration of various techniques, particularly the integration of Multilingual BERT (MBert) and Emoji2Vec embeddings, we strive to shed light on the immense potential of emojis in this detection process. By meticulously comparing these advanced models with conventional approaches, we uncover the intricate contextual cues that emojis bring to the table. Ultimately, our discoveries underscore the invaluable role of emojis in hate speech detection, thereby providing valuable insights for the creation of resilient and context-aware systems to combat online toxicity. Our findings showcase the potential of emojis as valuable assets rather than mere embellishments in the realm of hate speech detection. By leveraging the combined strength of MBert and Emoji2Vec, our models exhibit enhanced capabilities in deciphering the emotional subtleties often intertwined with hate speech expressions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="saikh-etal-2024-emojis">
<titleInfo>
<title>Emojis Trash or Treasure: Utilizing Emoji to Aid Hate Speech Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tanik</namePart>
<namePart type="family">Saikh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soham</namePart>
<namePart type="family">Barman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harsh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saswat</namePart>
<namePart type="family">Sahu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Souvick</namePart>
<namePart type="family">Palit</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st International Conference on Natural Language Processing (ICON)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="family">Lalitha Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karunesh</namePart>
<namePart type="family">Arora</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">AU-KBC Research Centre, Chennai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this study, we delve into the fascinating realm of emojis and their impact on identifying hate speech in both Bengali and English languages. Through extensive exploration of various techniques, particularly the integration of Multilingual BERT (MBert) and Emoji2Vec embeddings, we strive to shed light on the immense potential of emojis in this detection process. By meticulously comparing these advanced models with conventional approaches, we uncover the intricate contextual cues that emojis bring to the table. Ultimately, our discoveries underscore the invaluable role of emojis in hate speech detection, thereby providing valuable insights for the creation of resilient and context-aware systems to combat online toxicity. Our findings showcase the potential of emojis as valuable assets rather than mere embellishments in the realm of hate speech detection. By leveraging the combined strength of MBert and Emoji2Vec, our models exhibit enhanced capabilities in deciphering the emotional subtleties often intertwined with hate speech expressions.</abstract>
<identifier type="citekey">saikh-etal-2024-emojis</identifier>
<location>
<url>https://aclanthology.org/2024.icon-1.64/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>554</start>
<end>561</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Emojis Trash or Treasure: Utilizing Emoji to Aid Hate Speech Detection
%A Saikh, Tanik
%A Barman, Soham
%A Kumar, Harsh
%A Sahu, Saswat
%A Palit, Souvick
%Y Lalitha Devi, Sobha
%Y Arora, Karunesh
%S Proceedings of the 21st International Conference on Natural Language Processing (ICON)
%D 2024
%8 December
%I NLP Association of India (NLPAI)
%C AU-KBC Research Centre, Chennai, India
%F saikh-etal-2024-emojis
%X In this study, we delve into the fascinating realm of emojis and their impact on identifying hate speech in both Bengali and English languages. Through extensive exploration of various techniques, particularly the integration of Multilingual BERT (MBert) and Emoji2Vec embeddings, we strive to shed light on the immense potential of emojis in this detection process. By meticulously comparing these advanced models with conventional approaches, we uncover the intricate contextual cues that emojis bring to the table. Ultimately, our discoveries underscore the invaluable role of emojis in hate speech detection, thereby providing valuable insights for the creation of resilient and context-aware systems to combat online toxicity. Our findings showcase the potential of emojis as valuable assets rather than mere embellishments in the realm of hate speech detection. By leveraging the combined strength of MBert and Emoji2Vec, our models exhibit enhanced capabilities in deciphering the emotional subtleties often intertwined with hate speech expressions.
%U https://aclanthology.org/2024.icon-1.64/
%P 554-561
Markdown (Informal)
[Emojis Trash or Treasure: Utilizing Emoji to Aid Hate Speech Detection](https://aclanthology.org/2024.icon-1.64/) (Saikh et al., ICON 2024)
ACL