
Mocktails of Translation, Ensemble Learning and Embeddings to tackle
Hinglish NLP challenges

Abstract

Social media has become a global platform001
where users express opinions on diverse con-002
temporary topics, often blending dominant lan-003
guages with native tongues, leading to code-004
mixed, context-rich content. A typical example005
is Hinglish, where Hindi elements are embed-006
ded in English texts. This linguistic mixture007
challenges traditional NLP systems, which rely008
on monolingual resources and need help to pro-009
cess multilingual content. Sentiment analysis010
for code-mixed data, mainly involving Indian011
languages, remains largely unexplored. This012
paper introduces a novel approach for senti-013
ment analysis of code-mixed Hinglish data,014
combining translation, different stacking clas-015
sifier architectures, and embedding techniques.016
We utilize pre-trained LoRA weights of a fine-017
tuned Gemma-2B model to translate Hinglish018
into English, followed by the employment of019
four pre-trained meta embeddings: GloVe-T,020
Word2Vec, TF-IDF, and fastText. SMOTE is021
applied to balance skewed data, and dimen-022
sionality reduction is performed before imple-023
menting machine learning models and stacking024
classifier ensembles. Three ensemble archi-025
tectures, combining 22 base classifiers with026
a Logistic Regression meta-classifier, test dif-027
ferent meta-embedding combinations. Exper-028
imental results show that the TF-W2V-FST029
(TF-IDF, Word2Vec, fastText) combination per-030
forms best, with SVM radial bias achieving031
the highest accuracy (91.53%) and AUC (0.96).032
This research contributes a novel and effective033
technique to sentiment analysis for code-mixed034
data.035

1 Introduction036

In communities where multiple languages are spo-037

ken, individuals often blend their native language038

with other prevalent languages during conversa-039

tions. In digital space, including social media and040

texting with friends and family (Thara and Poor-041

nachandran, 2018), mixing languages emerges as042

a key force to steer a paradigm shift. Using more 043

than one language in a single text, whether through 044

code-mixing or code-switching, is a distinctive fea- 045

ture of social media communication. Social media 046

and social networks (SMSN) platforms emerge as 047

the key systems to encourage this contextual data. 048

Today, social media platforms are used for var- 049

ious activities, including keeping up with news, 050

political and social events, sports, business, enter- 051

tainment, and socializing (Kamwangamalu, 1989). 052

Users also share reviews and opinions about prod- 053

ucts and services, often using multiple languages 054

(Kim, 2006). This code-mixed text, written in an- 055

other language’s phonetic script, conveys strong 056

sentiment and emotion, adding depth and authen- 057

ticity. A significant portion of this text is in lan- 058

guages like Spanish, Chinese, Arabic, Hindi, and 059

Urdu. The shift in opinion sharing has fueled 060

interest in sentiment analysis to understand user 061

content better. Initially, traditional data analytics 062

provided insights into product reviews, trending 063

topics, and targeted advertising. Now, NLP re- 064

searchers focus on the complex code-mixed text, 065

which includes spelling errors, hashtags, creative 066

spellings (e.g., "b4" for "before"), abbreviations 067

(e.g., "BTW" for "by the way"), phonetic typing 068

(e.g., "becoz" for "because"), and wordplays (e.g., 069

"gooood" for "good"). 070

In recent years, users in multilingual countries 071

like India have increasingly used native and Ro- 072

man scripts to express their feelings (Parshad et al., 073

2016). With the growth of the internet and the 074

expansion of user-generated content online, this 075

practice has become increasingly prevalent in writ- 076

ten text. For instance, Hinglish Tweet: "@naren- 077

dramodi ji, 2024 ke chunav mein phir se PM bante 078

dekh khushi hui. Aapke netritva mein desh ka 079

vikas aur unnati hoga.” and English Translation: 080

"@narendramodi ji, It was a joy to see you become 081

PM again in the 2024 elections. Under your leader- 082

ship, the country will progress and prosper." 083
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Sentiment analysis of code-mixed text is chal-084

lenging (Srivastava and Singh, 2021) due to un-085

structured sentences, phonetic typing, mixed lan-086

guages, spelling variations, and grammatical errors.087

This study builds on existing work by proposing a088

novel approach for Code-Mixed sentiment analysis089

for Hinglish. We utilize LoRA weights of fine-090

tuned LLM, fine-tuned on a code mixed (Hinglish-091

to-English) machine translation task, with different092

NLP & meta-embedding techniques.093

1.1 Motivation and Research Questions (RQs)094

Code-mixed text, standard on social media, is es-095

sential for sentiment analysis and emotion detec-096

tion tasks. However, existing NLP tools struggle097

with the unique challenges of mixed-language data.098

This work addresses the complexities of Hinglish,099

a blend of Hindi and English prevalent on plat-100

forms like Twitter, especially in regions like India.101

This paper proposes a novel sentiment analysis102

framework for Hinglish tweets on X platform. We103

utilize LoRA weights of a fine-tuned LLM on a104

Hinglish-to-English machine translation task, com-105

bined with various NLP and meta-embedding tech-106

niques. We aim to predict the sentiment (positive107

or negative) of code-mixed tweets. This research108

aims to enhance NLP tools for code-mixed social109

media content, improving the analysis of emotions110

and opinions on products, politics, and events from111

social media. The conducted work is guided by the112

following research questions (RQs):113

• RQ1: How do various text representation114

techniques (e.g., TF-IDF, meta-embeddings)115

compare in their ability to capture semantics116

relevant to code-mixed sentiment classifica-117

tion when configured in different ways?118

• RQ2: How do evaluation metrics like Accu-119

racy and AUC differ across data balancing120

techniques in category prediction for code-121

mixed Hinglish data?122

• RQ3: Can ensemble methods improve classi-123

fication models’ reliability and generalization124

efficiency, and how do different models com-125

pare in their performance?126

1.2 Contributions and Outline127

The following outlines the contributions of this128

work:129

1. The proposition of a novel sentiment anal-130

ysis framework for code-mixed language131

’Hinglish’ tweets (from X platform) utiliz- 132

ing a fine-tuned Large Language Model for 133

Hinglish-to-English translation as introduc- 134

tory work. 135

2. The proposed framework explores the vari- 136

ous pre-trained meta-embedding techniques 137

and their combinations in conjunction with 138

an advanced sentiment analysis to deliver a 139

pipeline. It thus utilizes combined efforts for 140

the intended purpose. 141

2 Related Work 142

In recent work, Jadon et al. (Jadon et al., 2024) 143

explored a hybrid LSTM-GRU model for senti- 144

ment analysis on Hinglish data, combining Long 145

Short-Term Memory (LSTM) and Gated Recur- 146

rent Unit (GRU) architectures. This approach 147

handled Hinglish’s linguistic complexities effec- 148

tively, achieving 96.76% accuracy. Frias et al. 149

(Frias et al., 2023) examined Cross-lingual Word 150

Embedding (CLWE) for sentiment analysis on a 151

code-mixed Filipino-English corpus, developing 152

a large, manually annotated feedback dataset on 153

Higher Education Institutions. Using pre-trained 154

transformer-based CLWE methods like mBERT, 155

XLM-R, and XLM-T, they fine-tuned an Attention- 156

based BiLSTM-CNN neural architecture. XLM-T 157

achieved the highest performance with 91.30% ac- 158

curacy, 90.36% precision, 90.92% recall, and a 159

90.61% F1-score. 160

Sampath and Supriya (Sampath and Supriya, 161

2024) introduced a method for translating 162

code-mixed Hinglish, Malayalam-English, Tamil- 163

English, and Telugu-English text into monolingual 164

English using IndicLID for language identification 165

and IndicTrans for transliteration and translation. 166

IndicLID identified Indic languages with over 99% 167

accuracy and code-mixed variants with 95%. Addi- 168

tionally, various ML and DL models were assessed 169

for sentiment analysis on code-mixed data, with 170

the DistilBERT tokenizer and classifier proving 171

the most accurate. Similarly, Ansari and Govilkar 172

(Ansari and Govilkar, 2018) proposed language 173

identification at the word level along with POS 174

tagging. Identified words were transliterated into 175

native Indian languages (Hindi and Marathi), and 176

sentiment scores were derived from SentiWord- 177

Net. NB and SVM classifiers were used, with the 178

F1 scores for NB and Linear SVM outperforming 179

those of RBF-based SVM for Hinglish. 180

Singh and Lefever (Singh and Lefever, 2020) 181
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investigated sentiment analysis for Hinglish using182

unsupervised cross-lingual embeddings to capture183

word meanings across languages. This method,184

trained on SemEval 2020 data ((Patwa et al., 2020)),185

outperformed models trained on monolingual em-186

beddings, achieving an F1-score of 0.635 compared187

to a baseline of 0.616. The cross-lingual embed-188

dings facilitated transfer learning, allowing a senti-189

ment model trained on English data to be applied190

to Hinglish data, resulting in an F1-score of 0.556.191

Singh (Singh, 2021) found that the highest F1-192

score of 0.6907 on the SemEval 2020 dataset was193

achieved using an Ensemble Voting (soft) ((Patwa194

et al., 2020)) classifier. This ensemble included195

SVM, Logistic Regression, and Random Forest,196

with the RF estimator parameter set to 750 and the197

SVM probability parameter set to true. The data198

was vectorized using a TF-IDF vectorizer with un-199

igrams and a minimum occurrence frequency of200

2.201

To analyze Hinglish data, Sasidhar et202

al.(Sasidhar et al., 2020) created a dataset203

of 12000 Hindi-English code-mixed texts and204

annotated them with Happy, Sad, and Anger205

emotions. Then, a trained bilingual model206

was used to generate feature vectors, and deep207

neural models like 1D-CNN, LSTM, Bi-LSTM,208

CNN-LSTM, and CNN-BiLSTM were employed209

as classification models. They observed that the210

selected features, CNN-BiLSTM, performed best211

with 83.21% classification accuracy. Awatramani212

et al. (Awatramani et al., 2021) discussed the213

Lexicon-Based, Rule-Based, and ML approaches214

to study the effectiveness of classifying the text215

corpus with their appropriate sentiment labels.216

The Support Vector Machine (SVM) and Logistic217

Regression (LR) approaches gave the best results,218

with both algorithms giving an F1-score of 0.86219

and an accuracy of 86%.220

Gupta et al. (Gupta et al., 2021) introduced an221

unsupervised self-training framework for sentiment222

analysis of code-switched data using fine-tuned223

BERT models with pseudo labels from zero-shot224

transfer, achieving an F1-score of 0.32 and 36%225

accuracy for Hinglish. Mamta and Ekbal (Mamta226

and Ekbal, 2024) proposed a multilingual, multi-227

task model with a transformer-based pre-trained228

encoder for sentiment analysis of code-mixed and229

English texts. By incorporating English sentiment230

analysis as an auxiliary task, they fine-tuned the231

BERT encoder to capture shared and task-specific232

features, outperforming SOTA single-task systems233

on Hindi-English, Punjabi-English, and English 234

datasets. 235

3 Study Design 236

Figure 1 illustrates the proposed pipelines of the 237

work, with all the computational elements and inter- 238

actions placed. The computational modules are de- 239

signed using either of the fundamental techniques, 240

e.g. meta-embedding, data balancing, feature se- 241

lection, feature scaling, or classification. The pro- 242

posed research study consists of two individual sets 243

of modules: the Translation and Prediction mod- 244

ules. The translation module is a dedicated module 245

for the ’Hinglish to English’ translation of code- 246

mixed Tweets from Twitter, aka the ’X’ platform. 247

This module is prefixed and postfixed using data- 248

cleaning techniques. Further, prediction modules 249

take care of computations using different methods. 250

The inherent details within each technique are pro- 251

vided subsequently. 252

Figure 1: Proposed Pipeline for Sentiment Prediction
on Hinglish Code-Mixed Text.

3.1 Dataset Details 253

In this research, we utilized a dataset of tweets 254

from the Mendeley Data repository (Pratibha et al., 255

2024) (dataset available at Mendeley Data). This 256

data contains Hinglish tweets that vividly express 257

raw emotions, sentiments, and textual gestures re- 258

lated to various conflict situations, with 410 and 259

984 for Positive and Negative sentiment labels, re- 260

spectively. This includes, but is not limited to, wars, 261

crises, civil unrest, and world wars I, II, etc. 262

1. tweets emotion 200: This file contains 195 263

rows of Hinglish tweets, each labelled with 264
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one of 15 emotions, such as empathy, compas-265

sion, resilience, hope, gratitude, fear, anger,266

etc. The emoji field contains any emoji or267

emoticons if present in the tweet.268

2. emotions_tweets 1205: This file contains269

1,204 rows of Hinglish tweets, each labelled270

with one of 15 emotions: empathy, compas-271

sion, resilience, etc.272

3.2 Data Preprocessing273

The preprocessing steps are essential to ensuring274

the dataset’s suitability and enhancing the over-275

all performance of the sentiment analysis work-276

flow. Three key processing steps are integrated:277

Pre-translation data cleaning and Class grouping,278

translation of Hinglish text, and post-translation279

data cleaning and Normalization elaborated below.280

3.2.1 Sentiment Class Grouping and281

Pre-Translation Text Cleaning282

Datasets contain 15 emotion classes in both files.283

These emotions are grouped into two major classes:284

positive and negative. positive class included285

classes such as ’empathy’, ’compassion’, ’re-286

silience’, ’hope’, and ’gratitude’, while negative287

class encompassed ’fear’, ’anger’, ’sadness’, ’anx-288

iety’, ’shame’, ’guilt’, ’hopelessness’, ’frustra-289

tion’, ’disgust’, and ’grief’. A new column named290

"Sentiment" was created to store these respective291

binary labels, positive or negative. This binary clas-292

sification facilitated an effective sentiment analysis.293

Further, the text cleaning within Hinglish tweets in-294

cludes the removal of hashtags, Mentions, Special295

Characters and URLs, and Lowercasing. We have296

used regular expressions and pattern matching for297

this step. As a result of this thorough cleaning pro-298

cess for Hinglish tweets, the file emotions_tweets299

1205 lost four rows of data. Consequently, the total300

number of rows in the file decreased from 1204 to301

1199. We then concatenated both files to make a302

single CSV file.303

3.2.2 Translation of Hinglish Tweets and304

Post-Translation Cleaning305

To handle code-mixed Hinglish tweets, we utilized306

pre-trained Low-Rank Adaptation (LoRA) weights307

of a fine-tuned high-performance LLM (available308

on the Hugging Face platform) to translate Hinglish309

to standard English. The model, fine-tuned on310

gemma-2b 1, employs PEFT (LoRA) with rank 128.311

1hf://google/gemma-2b-keras

This approach adapts the model’s attention and 312

feed-forward layers using low-rank matrices, al- 313

lowing significant adaptation to Hinglish’s unique 314

syntactical and lexical characteristics with mini- 315

mal parameter updates. Low-rank weight metrics 316

occupy less storage space and provide similar per- 317

formance. 318

We enabled LoRA on the GemmaCausalLM 319

model with a rank of 128 and a sequence length 320

of 256; loading pre-trained LoRA weights fine- 321

tuned for Hinglish-to-English translation. A tem- 322

plate with placeholders for Hinglish input and En- 323

glish output was used. To maintain grammatical 324

integrity, we created a utility function to append 325

periods to sentences lacking terminal punctuation. 326

The translation process involved formatting the 327

Hinglish sentence with the template, generating the 328

English translation using the LoRA-enabled Gem- 329

maCausalLM model from the keras_nlp library, 330

and extracting the translated text. We applied this 331

translation function to each tweet in our dataset, 332

creating a new column named ’Translated_Tweet’ 333

to store the English versions. This translation 334

step was a critical component of our preprocess- 335

ing pipeline, ensuring that our sentiment analysis 336

approach could operate effectively on a uniform 337

language basis, thus enhancing the accuracy and 338

robustness. 339

The translated tweets underwent text cleaning 340

and normalization using the Natural Language 341

Toolkit (NLTK) for punctuation, special character 342

removal, and stop-word removal. These preprocess- 343

ing steps ensured the dataset was clean and consis- 344

tent, enhancing the input data quality and signifi- 345

cantly improving the machine learning model’s per- 346

formance in subsequent stages. Our choice of trans- 347

lating to English was influenced by the strengths 348

of the employed LLM and embeddings in English, 349

which allowed for higher accuracy and contextual 350

understanding. 351

3.3 Mocktails of Word Embeddings 352

Techniques 353

Word embeddings are critical in transforming tex- 354

tual data into a numerical format, enabling ma- 355

chine learning models to process and understand 356

language effectively. We employed four pre- 357

trained word embedding techniques, e.g. GloVe-T, 358

Word2Vec (CBOW approach), TF-IDF, and fast- 359

Text (character n-grams), in different combinations, 360

aka Mocktail, e.g. TF-FST, TF-GL-FST, etc, to rep- 361

resent the textual data in a continuous vector space. 362
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Our approach leverages meta-embedding learning,363

which involves generating a single (meta) word364

embedding from a set of pre-trained source word365

embeddings without pre-training the source embed-366

dings or requiring access to the text corpora used367

to train them. Employed embeddings are computa-368

tionally lightweight, require less computationally369

intensive resources.370

3.4 Data Sampling and Feature Selection371

To address the class imbalance, we used the372

Synthetic Minority Over-sampling Technique373

(SMOTE), which generates synthetic samples by374

interpolating between existing minority class sam-375

ples. This method helps balance the class distri-376

bution and improves the model’s learning from377

majority and minority classes.378

For feature selection, we used a correlation-379

based dimensionality reduction approach. We re-380

moved highly correlated features by calculating381

correlation coefficients between feature pairs (ab-382

solute correlation coefficient ≥ 0.7) to reduce re-383

dundancy, eliminating multicollinearity and pre-384

serving the most informative features. We have385

also normalized these datasets using a Min-Max386

scaler, ensuring feature values ranged between 0387

and 1, and removed columns with NaN values to388

maintain data integrity.389

3.5 Classification Techniques and Validation390

In the proposed pipeline, various stacking clas-391

sifier configurations with different base learners392

were evaluated using cross-validation. We designed393

stacking classifiers with two to four base learners to394

enhance predictive performance, each operating on395

distinct meta-embedding feature spaces for diverse396

perspectives. The base learners included Naive397

Bayes (Gaussian, Bernoulli, Multinomial), Deci-398

sion Trees, Logistic Regression, k-nearest Neigh-399

bors, and Support Vector Classifiers (linear, ra-400

dial bias, polynomial kernel). Ensemble classifiers401

such as Bagging, Random Forest, Extra Trees, Ad-402

aBoost, Gradient Boosting, XGBoost, LightGBM,403

and Multi-Layer Perceptron (MLP) with different404

solvers (lbfgs, sgd, adam) were also employed. Lo-405

gistic Regression served as the final estimator. Each406

stacking classifier incorporated two to four mod-407

els from 22 machine-learning models trained on408

different meta-embedding features. For instance,409

Figure 2 shows a three-model stacking classifier us-410

ing three distinct meta-embedding features for each411

classifier. Fifteen combinations of four embedding412

techniques were utilized, and the mentioned classi- 413

fiers (excluding ensembles) were assessed for the 414

single meta-embedding techniques. We used 3-fold 415

cross-validation for robust performance evaluation, 416

shuffling and splitting the data into training and 417

testing sets.

Figure 2: Instance of embedding Mocktails, as Triadic
Word Embedding concatenation

418

4 Experimental Evaluation and Analysis 419

In the experimental analysis, the original dataset 420

(ORGD) is transformed using 4 meta-embedding 421

techniques, creating 4 new datasets. These datasets 422

are balanced with SMOTE, resulting in 8 datasets. 423

Dimensionality reduction is then applied, produc- 424

ing 16 datasets. We evaluate the predictive perfor- 425

mance of various classifiers using our standalone 426

meta-embedding techniques and three stacking ar- 427

chitectures, combining various meta-embedding 428

techniques with 2 to 4 classifiers from 22 ML mod- 429

els, using Logistic Regression as the meta-classifier. 430

This process is applied to all 08 datasets, explor- 431

ing 15 combinations of the 4 meta-embeddings 432

for each of the 02 sets (SMOTE and ORGD). In 433

total, 660 unique classification pipelines are cre- 434

ated, representing different combinations of meta- 435

embeddings, data balancing techniques, and clas- 436

sification algorithms. This comprehensive setup 437

allows for a robust analysis of tweet categorization, 438

enhancing the predictive modeling process. 439

The prediction pipelines are evaluated using Ac- 440

curacy and AUC metrics, where accuracy indicates 441

the proportion of correctly classified instances, and 442

AUC measures the classifier’s ability to distinguish 443

between classes. Comparisons are made using box 444

plots for AUC and accuracy, descriptive statistics 445

(min, max, mean, median, Q1, Q3), and hypothesis 446

testing using the Friedman and Wilcoxon Signed 447

Rank Test. 448

4.1 Exploring the effect of Word-Embedding 449

Techniques 450

The impact of embedding techniques on pipeline 451

performance is evaluated using AUC and Accuracy, 452

analyzed with box plots, descriptive statistics, and 453
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Figure 3: Performance box plots of employed Embedding techniques and Mocktails

hypothesis testing via the Friedman and Wilcoxon454

Signed Rank Test.455

Descriptive statistic and Box-plots analysis: Fig-456

ure 3 provides the box-and-whisker diagram of457

accuracy and AUC values. The stacking classifiers458

are trained on 15 combinations of our four orig-459

inal meta-embeddings. Figure 3 depicts that the460

models developed using the embedding technique461

TF-W2V-FST (TF-IDF, Word2Vec, and fastText)462

show the best performance with a mean AUC of463

0.94, a median AUC of 0.94 and mean accuracy of464

88.74%. TF-W2V technique shows similar perfor-465

mance.466

Friedman test with Wilcoxon signed rank test:467

Two hypothesis tests have also been conducted on468

performance analysis: the Friedman and Wilcoxon469

Signed Rank Test with Bonferroni correction. First,470

the Friedman test has been used to examine the471

null hypothesis “The performance values of stack-472

ing classifiers trained using twenty-two different473

classifiers show no significant improvement after474

applying different embedding techniques and their475

combinations”. We rejected H0 only if p ≤ 0.05.476

Table 2 present the Friedman test results on Ac-477

curacy and AUC values, demonstrating that the478

models trained using different embedding tech-479

niques are significantly different. As indicated in480

Table 2, TF-W2V-FST secures the best mean rank481

on accuracy values of 3.18, and on AUC values, it is482

3.30. This concludes that the technique TF-W2V-483

FST is best for developing the models for code-484

mixed sentiment analysis. Conversely, GLOVE485

has the highest mean rank, 13.02 on Accuracy and486

12.80 on AUC, indicating that the model devel-487

oped using standalone embeddings like GLOVE488

has the worst performance. After the Friedman test489

results, the study performed the Wilcoxon signed- 490

rank test with Bonferroni correction. The consid- 491

ered hypothesis for the Wilcoxon test is “The per- 492

formance values of different embedding techniques 493

when compared pairwise are significantly same”. 494

Table 2 shows the results of this test. This table 495

shows that the performance of various word em- 496

bedding techniques differs significantly for the task 497

of code-mixed sentiment classification. 498

RQ1: How do various text representation tech- 499

niques (e.g., TF-IDF, meta-embeddings) compare 500

in their ability to capture semantics relevant to 501

code-mixed sentiment classification when con- 502

figured in different ways? ut of all the meta- 503

embedding techniques and their combinations, TF- 504

W2V-FST outperformed every other configuration 505

with a mean AUC value of 0.94 and a mean AUC 506

rank of 3.30. 507

4.2 Exploring the effect of Data Balancing 508

Technique 509

The effectiveness of the SMOTE data balancing 510

technique is evaluated by comparing accuracy 511

and AUC, with results analyzed through box-and- 512

whisker diagrams and hypothesis testing. 513

Descriptive statistic and Box-plots analysis: 514

Figure 4 provides the box-and-whisker diagram of 515

accuracy and AUC values. Figure 4 shows that the 516

models trained on SMOTE-augmented data outper- 517

formed, with a mean AUC of 0.94, a median AUC 518

of 0.95, and a mean accuracy of 87.96%. In com- 519

parison, models trained on original data achieved 520

a mean AUC of 0.89 and a median AUC of 0.91. 521

Thus, employing the SMOTE approach improved 522

the AUC values of models from 0.89 to 0.94, rep- 523

resenting a 5.62% enhancement in their predictive 524
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Table 1: Hypothesis testing statistics of different Word Embedding and Mocktails.

TFIDF GLOVE W2V FST TF-GL TF-W2V TF-FST GL-W2V GL-FST W2V-FST TF-GL-W2V TF-GL-FST TF-W2V-FST GL-W2V-FST All

TFIDF 1.00 0.63 0.23 0.64 0.00 0.00 0.00 0.01 0.03 0.08 0.00 0.00 0.00 0.02 0.00
GLOVE 0.63 1.00 0.28 0.98 0.00 0.00 0.00 0.02 0.05 0.11 0.00 0.01 0.00 0.03 0.00
W2V 0.23 0.28 1.00 0.31 0.05 0.01 0.03 0.14 0.37 0.57 0.08 0.10 0.01 0.19 0.06
FST 0.64 0.98 0.31 1.00 0.01 0.00 0.00 0.02 0.06 0.15 0.01 0.01 0.00 0.04 0.00
TF-GL 0.00 0.00 0.05 0.01 1.00 0.37 0.71 0.52 0.27 0.16 0.92 0.80 0.37 0.40 0.81
TF-W2V 0.00 0.00 0.01 0.00 0.37 1.00 0.58 0.19 0.06 0.03 0.29 0.25 0.99 0.15 0.45
TF-FST 0.00 0.00 0.03 0.00 0.71 0.58 1.00 0.41 0.17 0.09 0.63 0.52 0.52 0.34 0.82
GL-W2V 0.01 0.02 0.14 0.02 0.52 0.19 0.41 1.00 0.46 0.32 0.83 0.70 0.20 0.81 0.53
GL-FST 0.03 0.05 0.37 0.06 0.27 0.06 0.17 0.46 1.00 0.77 0.43 0.39 0.05 0.61 0.26
W2V-FST 0.08 0.11 0.57 0.15 0.16 0.03 0.09 0.32 0.77 1.00 0.24 0.23 0.03 0.39 0.13
TF-GL-W2V 0.00 0.00 0.08 0.01 0.92 0.29 0.63 0.83 0.43 0.24 1.00 0.89 0.25 0.71 0.72
TF-GL-FST 0.00 0.01 0.10 0.01 0.80 0.25 0.52 0.70 0.39 0.23 0.89 1.00 0.22 0.65 0.57
TF-W2V-FST 0.00 0.00 0.01 0.00 0.37 0.99 0.52 0.20 0.05 0.03 0.25 0.22 1.00 0.13 0.43
GL-W2V-FST 0.02 0.03 0.19 0.04 0.40 0.15 0.34 0.81 0.61 0.39 0.71 0.65 0.13 1.00 0.46
All 0.00 0.00 0.06 0.00 0.81 0.45 0.82 0.53 0.26 0.13 0.72 0.57 0.43 0.46 1.00

Accuracy 12.01 13.02 10.74 12.02 7.67 3.69 6.42 7.08 8.32 7.67 6.83 7.35 3.18 7.80 6.19
AUC 12.73 12.80 10.09 12.30 6.64 3.32 5.61 6.91 8.59 9.73 7.52 7.30 3.30 7.48 5.70

capability, with optimally balanced data to the pre-525

diction task.526

Friedman test with Wilcoxon signed rank test:527

The same Friedman and Wilcoxon Signed Rank528

Test has been used here with Bonferroni correction529

to find the significant impact of using the sampling530

approach. Further, Table 4 lists the Friedman test531

values for SMOTE are 1.09 on accuracy and 1.01532

on AUC, both lower than ORGD. Thus, models533

trained with SMOTE data are better for CMSA.534

A comparison of ORGD with SMOTE using the535

Wilcoxon signed rank test has been conducted fol-536

lowing this test. Table 4 shows the result of this537

test, and we reject the hypothesis suggesting signif-538

icantly improved performance on SMOTE-based539

prediction models than ORGD.540
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Figure 4: Performance box-plots of ORGD vs. SMOTE-
based data.

Table 2: Hypothesis testing stats of Classes Imbalanced
problem.

ORGD SMOTE

ORGD 1.00 0.63
SMOTE 0.63 1.00

Accuracy 1.91 1.09
AUC 1.99 1.01

RQ2: How do evaluation metrics like Accuracy 541

and AUC differ across data balancing techniques 542

in category prediction for code-mixed Hinglish 543

data? After applying SMOTE, the mean AUC 544

value for ORGD, 0.89, improved to 0.94. Mean- 545

while, mean accuracy improved from 85.19% to 546

87.96%. Thus, balancing the data using SMOTE 547

proved beneficial for CMSA task. 548

4.3 Exploring the performance of 549

Classification Techniques 550

The stacking classifier architectures are validated 551

with 3-fold cross-validation, and their effectiveness 552

is assessed using Accuracy and AUC metrics, fol- 553

lowed by hypothesis testing for further analysis. 554

Descriptive statistic and Box-plots analysis: 555

Figure 5 shows the accuracy and AUC box plots 556

for the different classifiers. The examination of Fig- 557

ure 5 concluded that among the general classifiers, 558

the SVM with radial bias (SVCR) demonstrated 559

superior performance, achieving a mean AUC of 560

0.96 and a mean accuracy of 91.53%. In contrast, 561

the NB Bernoulli (BNB) classifier exhibited the 562

lowest performance, with a mean AUC of 0.73 and 563

a mean accuracy of 74%. Within the ensemble clas- 564

sifiers, LightGBM (LGBMC) performed the best 565

with a mean AUC of 0.96 and a mean accuracy of 566

91.23%, closely followed by XGBoost (XGBC). 567

However, AdaBoost (AdaB) and GradientBoosting 568

(GRaB) displayed the lowest performance, with 569

a mean AUC of 0.88. For MLP classifiers utiliz- 570

ing different solvers, the MLP with Adam solver 571

(MLPA) outperformed, achieving a mean AUC of 572

0.94 and a mean accuracy of 89.56%. In contrast, 573

the MLP with SGD solver (MLPS) had the lowest 574

performance, with a mean AUC of 0.90 and a mean 575

accuracy of 86.69%. Overall, the SVCR classifier 576

emerged as the top performer, while LGBMC and 577
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Figure 5: Performance Box-plots of employed Classifiers for Prediction.

XGBC performed similarly, securing second-best578

results. BNB classifier had the weakest perfor-579

mance.580

Friedman test with Wilcoxon signed rank test:581

The Friedman test employs the Null hypothesis582

‘performance values of stacking classifiers show583

no significant improvement after changing training584

algorithms’, and the summary listed in the Table585

6 depicts that the stacking classifiers trained us-586

ing different algorithms are not significantly sim-587

ilar. From Table 6, with a mean AUC rank of588

2.00 and mean accuracy rank of 2.10, the analysis589

of the experiment concludes that SVCR performs590

best, while the GRaB classifier technique performs591

worst, with a mean AUC rank of 20.67 and mean592

accuracy rank of 19.78. AdaB offers a similar per-593

formance. After finding the best training algorithm,594

the investigation used the Wilcoxon signed rank595

test with Bonferroni correction to compare differ-596

ent training methods pairwise. The considered hy-597

pothesis for the Wilcoxon test is “The performance598

values of stacking classifiers of different training599

algorithms, when compared pairwise, are signif-600

icantly same”. Table 6 shows the results of the601

Wilcoxon test with Bonferroni correction. Finally,602

it is observed that the SVCR outperforms signifi-603

cantly compared to other training methods. There-604

fore, the investigation recommends a classifier like605

SVCR to predict the sentiment of the code-mixed606

text.607

RQ3: Can ensemble methods improve the re-608

liability and generalization efficiency of classifi-609

cation models, and how do different models com-610

pare in their performance? As we saw, the TF-611

W2V-FST embedding approach outperformed oth-612

ers, demonstrating that a triad model ensemble is613

more effective than standalone classifiers. Among614

all the base classifiers, SVCR performed best with615

a mean AUC of 0.96 and an accuracy of 91.53%. 616

5 Conclusion 617

The paper exemplifies how LLMs, classifiers, em- 618

bedding techniques, feature selection, and sam- 619

pling can be combined effectively to enhance the 620

performance and efficacy of predicting sentiment 621

for code-mixed tweets. Accuracy and AUC are 622

used to validate the effectiveness of each technique, 623

while the Wilcoxon Sign Rank test and Friedman 624

test statistically analyze the findings. The results 625

conclude that for code-mixed Hinglish data, the TF- 626

W2V-FST embedding approach achieved the best 627

rank based on AUC and accuracy values, demon- 628

strating that combining embedding techniques with 629

ensembling outperforms standalone embeddings 630

with general classifiers. The experimental findings 631

also demonstrated improved performance after em- 632

ploying the SMOTE sampling technique. Addition- 633

ally, the best mean rank for the CMSA task was 634

obtained with the SVM radial bias (SVCR) classi- 635

fication algorithm, and LGBMC and XGBC both 636

showed second-best results. The future directions 637

may employ optimization methods to refine our re- 638

search findings. Additionally, we aim to develop an 639

LSTM-based approach for generating embeddings 640

specifically tailored to Hinglish. 641
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Table 3: Hypothesis testing of different ML classifiers.

MNB BNB GNB DTC LOGR KNN SVCL SVCLP SVCR BAGN BAGND BAGL BAGK RF EXTR ADaB GRaB XGBC LGBMC MLPL MLPS MLPA

MNB 1.00 0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.04 0.00
BNB 0.01 1.00 0.50 0.21 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.42 0.47 0.00 0.00 0.00 0.00 0.00
GNB 0.00 0.50 1.00 0.17 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.09 0.04 0.00 0.00 0.03 0.00 0.00
DTC 0.00 0.21 0.17 1.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.52 0.83 0.00 0.00 0.00 0.00 0.00
LOGR 0.00 0.00 0.00 0.00 1.00 0.10 0.24 0.06 0.00 0.00 0.63 0.08 0.72 0.08 0.03 0.00 0.00 0.00 0.00 0.04 0.06 0.75
KNN 0.03 0.00 0.00 0.00 0.10 1.00 0.70 0.00 0.00 0.00 0.11 0.68 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.20 0.90 0.04
SVCL 0.00 0.00 0.00 0.00 0.24 0.70 1.00 0.01 0.00 0.00 0.28 0.51 0.21 0.03 0.01 0.00 0.00 0.00 0.00 0.14 0.52 0.17
SVCLP 0.00 0.00 0.00 0.00 0.06 0.00 0.01 1.00 0.12 0.00 0.07 0.01 0.06 0.46 0.89 0.00 0.00 0.33 0.27 0.00 0.00 0.08
SVCR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 1.00 0.00 0.00 0.00 0.00 0.02 0.13 0.00 0.00 0.31 0.35 0.00 0.00 0.00
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RF 0.00 0.00 0.00 0.00 0.08 0.01 0.03 0.46 0.02 0.00 0.14 0.01 0.09 1.00 0.36 0.00 0.00 0.09 0.09 0.00 0.01 0.21
EXTR 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.89 0.13 0.00 0.04 0.01 0.04 0.36 1.00 0.00 0.00 0.40 0.32 0.00 0.00 0.05
ADaB 0.00 0.42 0.09 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.51 0.00 0.00 0.00 0.00 0.00
GRaB 0.00 0.47 0.04 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51 1.00 0.00 0.00 0.00 0.00 0.00
XGBC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.31 0.00 0.00 0.00 0.00 0.09 0.40 0.00 0.00 1.00 0.81 0.00 0.00 0.00
LGBMC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.35 0.00 0.00 0.00 0.00 0.09 0.32 0.00 0.00 0.81 1.00 0.00 0.00 0.00
MLPL 0.82 0.00 0.03 0.00 0.04 0.20 0.14 0.00 0.00 0.35 0.02 0.31 0.02 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.39 0.01
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