
Automatic Summarization of Long Documents

Naman Chhibbar
IIT Hyderabad

Kandi, Sangareddy
Telangana 502285, India

ma21btech11011@iith.ac.in

Jugal Kalita
University of Colorado, Colorado Springs

1420 Austin Bluffs Pkwy
Colorado Springs CO 80918

jkalita@uccs.edu

Abstract

A vast amount of text is added to the internet
daily, making utilization and interpretation of
textual data complex and cumbersome. As a
result, automatic text summarization is crucial
for extracting relevant information, saving pre-
cious time. Although many transformer models
excel in summarization, they are constrained by
their input size, preventing them from process-
ing texts longer than their context size. This
study introduces three novel algorithms that
allow any large language model to efficiently
overcome its input size limitation, effectively
utilizing its full potential without any architec-
tural modifications. We test our algorithms
on texts with more than 70,000 words, and
our experiments show a significant increase in
BERTScore with competitive ROUGE scores.

1 Introduction

Due to the ever-increasing amount of textual data
available online, document summarization has be-
come crucial for the efficient and accurate extrac-
tion of relevant information. Large Language Mod-
els (LLMs) based on the transformer architecture
(Vaswani et al., 2017) have shown outstanding
abilities in many NLP tasks, including document
summarization (Yadav et al., 2023). Recent devel-
opments have demonstrated remarkable improve-
ments in the relevancy and coherence of summaries
generated by such LLMs.

However, long document summarization, which
involves removing redundancies and makes read-
ing long texts efficient, remains a major challenge.
One of the significant limitations in the transformer
architecture is limited context size, stemming from
the quadratic memory and computational complex-
ity of the attention mechanism (Du et al., 2023).
This constraint hinders extracting relevant informa-
tion from extensive texts where summarization is
valuable to overcome the time, effort, and interpre-
tive issues posed by complex and large documents.

We experiment with three novel approaches to
address the input size limitations of transformers.
The methods introduced do not include any archi-
tectural modifications to the model used and can
be incorporated into any existing pipeline. We be-
lieve that these methods can effectively utilize the
full potential of any existing LLM by capturing
information from crucial aspects of the document.
Though our experiments only include the task of
summarization, we believe that our methods can be
applied to NLP tasks that require processing long
texts.

We start by providing the problem statement
(Section 2) and discussing related work (Section 3)
to gain insights into the problem and the state-of-
the-art solutions. We then introduce the datasets
(Section 4) and methodology (Section 5) used in
our experiments. For evaluating our results, we
present standard metrics (Section 6) used in text
summarization. We end the report by discussing
our experimental findings (Section 7) and potential
future work (Section 8) and concluding the study
(Section 9).

2 Problem Statement

Our goal is to pre-process and distill a long docu-
ment (with theoretically indefinite length) such that
it fits within the context size of the model while re-
taining important information. In our experiments,
we use documents with lengths of up to seventeen
times the context size of the model and aim to re-
duce the summary length to about 400 words or
less, preserving maximal salient information and
coherence.

3 Related Works

There have been efforts to improve the efficiency
of the attention mechanisms in transformers. Belt-
agy et al. (2020) introduce the Longformer, which
replaces the quadratic self-attention mechanism in
the transformer architecture with a sliding window



self-attention, resulting in a linear complexity with
respect to the input size. To capture long-range
dependencies, they include global attention at spe-
cific token positions. Huang et al. (2021) modify
the encoder-decoder attention mechanism such that
each attention head in the decoder attends to n/sh
tokens in the input sequence, where n is the in-
put length and sh is the number of heads. This
method has a complexity of O(mn/sh), where m
is the length of the output sequence. Bertsch et al.
(2023) introduce Unlimiformer, which also modi-
fies the encoder-decoder attention in a transformer.
The attention heads in the decoder only attend
to the tokens picked by their k-Nearest-Neighbor
(kNN) algorithm. The kNN indices between the
input tokens are created by the hidden states gener-
ated in the encoder. Phang et al. (2022) introduce
the staggered block-local attention mechanism. In
the block-local attention mechanism, the input se-
quence is divided into multiple non-overlapping
blocks. Tokens in a block attend only to the tokens
in the same block. In staggered block-local atten-
tion, the blocks are staggered such that each token
is in a different block in each head.

Other relevant approaches include VideoAgent,
introduced by Wang et al. (2024), an AI agent de-
signed to answer a given question based on a long
video. They achieve this by generating captions
from multiple uniformly sampled frames from the
video. These captions are used to answer the user’s
question. Chen et al. (2022) describe a novel algo-
rithm to classify long Chinese news into predefined
categories. They form multiple groups of sentences
based on a maximum token threshold in each group.
These groups are then encoded using BERT (Bidi-
rectional Encoder Representations from Transform-
ers) (Devlin et al., 2018) and passed through a 1D
convolution layer for local feature extraction. This
method is unique because a 1D convolution layer
replaces the attention mechanism with linear time
complexity. Chen et al. (2023) use positional inter-
polation to extend the context size of a pre-trained
model. Instead of the usual extrapolation of the
positional embeddings, they downscale and force
them into a range the model is trained on, hence
interpolating in the pre-trained range. They claim
that the model should use the positional embed-
dings on which it is trained.

Golia and Kalita (2024) take a "Divide and Con-
quer" approach to address sequence length limi-
tations in summarizing long meeting transcripts.

They begin by segmenting the transcript and then
use the BART (Bidirectional and Auto-Regressive
Transformer) (Lewis et al., 2020) model to sum-
marize each segment individually. These segment
summaries are then recursively combined and sum-
marized until a single summary remains. This
method performs well with long documents but
may take considerable time to converge due to re-
peated calls to the model.

4 Datasets

This section briefly discusses and analyzes the
datasets used in our experiments.

GovReport
Introduced by Huang et al. (2021), this dataset con-
sists of reports written by government research
agencies, including the Congressional Research
Service (CRS) and the U.S. Government Account-
ability Office (GAO). Exact word count informa-
tion is given in Table 1. Figure 1 shows the word
count distribution of the dataset.

Figure 1: Histogram of GovReport word counts. The x-
axis represents document word counts, while the y-axis
shows the number of documents.

BigPatent
Introduced by Sharma et al. (2019), this dataset
consists of over 1.3 million records of U.S. patent
documents with human-written abstractive sum-
maries. Exact word count information is given in
Table 1. Figure 2 shows the word count distribution
of the dataset.

5 Methodology

In this section, we introduce the three algorithms
used in our experiments. Two algorithms start by



Dataset Avg. Word Count Max Word Count No. of Documents
GovReport 7,700.71 73,815 7,238
BigPatent 3,055.72 71,027 1,341,362

Table 1: Dataset information

Figure 2: Histogram of BigPatent word counts. The x-
axis represents document word counts, while the y-axis
shows the number of documents.

segmenting a document into smaller, contiguous,
and exhaustive parts. This is done by using a sen-
tence tokenizer to separate sentences in the text
and then merging them such that the number of
words in each segment is more than the threshold,
min_words, a hyperparameter in both methods.

5.1 Central Truncation

Truncation is the most common and straightfor-
ward approach used to handle long texts that ex-
ceed the context size of an LLM. It can be done in
three main ways:

• Retaining Head: Keeping tokens from the
start.

• Retaining Tail: Keeping tokens from the end.

• Head and Tail: Keeping tokens from both
start and end.

Worsham and Kalita (2018) also employ "retain-
ing head" and "retaining tail" strategies on long
texts and find promising results for long text genre
classification. Though the "retaining head" method
is often used, keeping the initial tokens allowed
by the LLM, Sun et al. (2019) find that keeping
both head and tail produces better results than both
the "retaining head" and the "retaining tail" meth-
ods. Their research also shows that truncating the

middle is even better than the more complicated
hierarchical methods, displaying superiority with
simplicity. This is a time-efficient method worth
exploring.

The fraction of tokens to be taken from the head
is controlled by the hyperparameter head_size ∈
[0, 1] in our algorithm. Setting head_size = 1
results in taking tokens only from the head, whereas
setting head_size = 0 results in taking tokens only
from the tail. The truncated tokens are then sent to
the model for summarization.

5.2 Document Skimming

One way to process long texts is by employing a
speed reading strategy called skimming (Dhillon
et al., 2020). Skimming is performed by reading
the whole text in a go while selectively skipping
some parts of the text for quicker reading. The
reader usually omits the portions that seem redun-
dant or irrelevant in the text, minimizing informa-
tion loss. This method is inspired by the way Wang
et al. (2024) randomly sample video frames to gen-
erate captions. Worsham and Kalita (2018) also
use random sampling for genre identification.

This method starts by segmenting the document
with the hyperparameter min_words (introduced
at the start of Section 5). We then sample seg-
ments uniformly, meaning each segment has an
equal probability, p, to be picked. The sampled
segments are then concatenated to form a single
text and are sent to the model. This method en-
sures the model is exposed to all parts of the text
while preserving efficiency. Figure 3 is a visual
representation of the algorithm.

Below is an example of the distilled text gener-
ated by the algorithm and the summary generated
by GPT-3.5 Turbo (Brown et al., 2020):
Example Text:

Title: Awards of Attorneys’ Fees by Fed-
eral Courts and Federal Agencies. Sub-
section I. Introduction: The American
...

Distilled Text:



Figure 3: The Document Skimming Algorithm. The grey blocks represent segments of the document.

Figure 4: Visualization of the segments picked by the
Document Skimming algorithm in a specific long docu-
ment. The y-axis value of the ith segment on the x-axis
is one if picked and zero otherwise.

Alyeska Pipeline Service Co. v. Wilder-
ness Society, 421 U.S. 240, 247 (1975).
This is known as the "American rule" (as
opposed to the ...

Summary:

The American rule regarding attorneys’
fees has two common law exceptions:
the common benefit doctrine and bad
faith ...

Refer to Figure 4 to visualize the segments the
algorithm picks.

Removing Redundancy
To address the issue of redundancy in the document,
we also experiment with removing redundant seg-
ments before and after sampling. This is done to
prevent the model from seeing the same informa-
tion multiple times, which may lead to repetition
in the output. This is achieved by linearly iter-
ating over the sampled segments and selectively
removing some of the segments. We do this by
maintaining the mean embedding of the selected
segments, initialized as a zero vector. The current
segment is retained if the cosine similarity between

the mean and segment embeddings is lower than
a threshold, which is a hyperparameter. A sen-
tence transformer is used to generate the segment
embeddings. The sentence transformer is based on
MiniLM (Wang et al., 2020), a distilled version of a
larger encoder-only transformer model. In case the
current segment is retained, the mean embedding
is updated as follows:

new_mean =
n ·mean_emb+ seg_emb

n+ 1

where n is the number of sampled segments
(excluding the current segment), seg_emb is
the segment embedding of the current seg-
ment, mean_emb is the mean embedding, and
new_mean is the updated mean embedding.

While removing segments after sampling, we
waste some of the context size. To alleviate this, we
oversample the segments beforehand by increasing
the probability of choosing a segment. This fraction
is controlled by the hyperparameter prob_boost.
The updated probability is calculated as follows:

pnew = (1 + prob_boost) · p.

Even though removing redundant segments be-
fore sampling is less efficient due to the whole doc-
ument being processed, it ensures better utilization
of the LLM’s context size.

Other Calculations
We now calculate the optimal probability of picking
a segment, p. Let X denote the total number of
tokens in the sampled segments. Since segments
are sampled randomly, X is a random variable. If
the context size of the model is model_size, we
want E[X] = model_size, where E[X] denotes
the expectation of X .

Suppose we have n ∈ N segments and Xi ∼
Bernoulli(p) denotes if segment i is chosen, i ∈
{1, 2, . . . , n}. If leni denotes the number of tokens
in segment i, we can write:

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


X =

n∑
i=1

Xi · leni

⇒ E[X] = E

[
n∑

i=1

Xi · leni

]

=

n∑
i=1

E[Xi · leni]

=

n∑
i=1

E[Xi] · leni

Since Xi ∼ Bernoulli(p) ∀i ∈ {1, 2, . . . , n},
we have E[Xi] = p ∀i ∈ {1, 2, . . . , n}.

∴ E[X] =
n∑

i=1

p · leni

= p ·
n∑

i=1

leni

Let total_len be the total number of tokens in
the text, then total_len =

∑n
i=1 leni.

∴ E[X] = p · total_len = model_size

⇒ p · total_len = model_size

⇒ p = model_size/total_len

5.3 Summarization with Keyword Extraction
Document skimming (subsection 5.2) involves a
very intuitive and straightforward approach of sam-
pling segments randomly. To use the entirety of
the text, we experiment with an efficient keyword
extraction algorithm to get essential keywords that
explain the core meaning of the document. These
keywords capture the overall meaning of the docu-
ment and can help us sample segments intelligently,
ensuring we get the most important segments from
the document.

We use Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) with a single topic to get the topic
words (keywords) from the document. There are
many ways to use these keywords; a simple one we
use is to concatenate the keywords using a delimiter
(a space is used in our experiments) to form a single
sentence. This sentence is then embedded to form
the keyword embedding, which, in theory, captures
a high-level meaning of the document. The key-
word sentence and document segments are embed-
ded using the same sentence transformer used in

Figure 5: Visualization of the segments picked by the
Summarization with Keyword Extraction algorithm in a
specific long document. The y-axis value of the ith seg-
ment on the x-axis is one if picked and zero otherwise.

the previous method. The segment embeddings are
then compared to the keyword embedding using
cosine similarity to get similarity scores for each
segment embedding. The maximum possible num-
ber of segments with the highest similarity scores
are retained, concatenated and sent to the model for
summarization. Algorithm 1 describes the process.

Below is an example of the distilled text gener-
ated by the algorithm and the summary generated
by GPT-3.5 Turbo (Brown et al., 2020):
Example Text:

Title: Awards of Attorneys’ Fees by Fed-
eral Courts and Federal Agencies. Sub-
section I. Introduction: The American
...

Distilled Text:

Title: Awards of Attorneys’ Fees by Fed-
eral Courts and Federal Agencies Sub-
section I. Introduction: The American
Rule and ...

Summary:

The document discusses the American
Rule regarding attorneys’ fees, where
prevailing litigants are not typically enti-
tled to ...

Refer to Figure 5 to visualize the segments the
algorithm picks.

This approach is similar to how Golia and Kalita
(2024) use action items to pick segments of text
(a neighbourhood of 2 sentences around the action
item) to obtain meeting minutes.

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


Algorithm 1 Summarization with Keyword Extraction

Input: text (text), size (context size of model)
Output: Distilled text
segments← segmenter(text)
embeddings← sentence_transformer(segments)
keywords← LDA(text)
concatenate(keywords, delimiter)
keyword_embedding ← sentence_transformer(keywords)
Sort embeddings by decreasing cosine similarity scores with keyword_embedding
selected← {}
num_tokens← 0
for embedding ∈ embeddings do

tokens← count_tokens(embedding)
if tokens+ num_tokens ≤ size then

selected← selected ∪ {embedding}
num_tokens+ = tokens

end if
end for
concatenate(selected, delimiter)
return selected

6 Evaluation Metrics

The best way to evaluate generated natural lan-
guage is by humans, but conducting human trials
is expensive and time-consuming. Due to this diffi-
culty, we use automatic evaluation metrics to eval-
uate the quality of the generated summary given
some reference summaries. Fabbri et al. (2021)
review many such open-source and state-of-the-art
metrics. The two that we use in our experiments
are discussed below. These metrics are commonly
used in published literature.

ROUGE metrics: Lin (2004) introduces the
Recall-Oriented Understudy for Gisting Evalua-
tion (ROUGE) metrics. The basic ROUGE-N met-
ric is based on the fraction of overlaps of ideal or
reference summaries with the candidate summary,
hence being recall-oriented. His study concludes
that ROUGE-N with N = 2, ROUGE-L, ROUGE-
W, and ROUGE-S work well for the summarization
task.

BERTScore: Zhang et al. (2019) introduce
BERTScore, an automatic evaluation metric for text
generation. BERTScore is calculated by comparing
the contextual embeddings of tokens in the candi-
date and reference summaries, which are generated
using BERT (Devlin et al., 2018). BERTScore
excels at capturing semantic similarities between
sentences since it uses contextual embeddings of
tokens instead of N-gram frequencies to calculate

similarity.

7 Experimental Findings

We test our pipelines with the following models:
BART fine-tuned on the CNN/Daily Mail dataset
(Nallapati et al., 2016) with a context size of 1024,
LongT5 (Guo et al., 2021), a variant of T5 (Text-
to-Text Transfer Transformer) (Raffel et al., 2020),
fine-tuned on the BookSum dataset with a context
size of 4096, and GPT-3.5 Turbo (Brown et al.,
2020) with a context size of 4096.

We compare our results with the state-of-the-art
summarization models on the GovReport dataset,
including Unlimiformer (Bertsch et al., 2023) inte-
grated with BART and PRIMERA (Beltagy et al.,
2020), Hepos (Huang et al., 2021), PEGASUS-X
with staggered block-local attention (Phang et al.,
2022), extended LLaMA-7B with positional inter-
polation (Chen et al., 2023). We also compare our
results with BigBird-Pegasus (Zaheer et al., 2020)
on the BigPatent dataset. Refer to Table 2 and Ta-
ble 3 for results on the GovReport and BigPatent
datasets, respectively.

We could not obtain the BERTScores of our base-
lines, except for Unlimiformer, due to the unavail-
ability of code or computational limitations.

Time complexity analysis
We evaluate the time complexity of our methods
by measuring the mean time taken to process a



Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore
BART w/ Unlimiformer (1,024) 53.4 22.5 22.5 66.0

PRIMERA w/ Unlimiformer (4,096) 56.5 24.8 26.3 67.7
Hepos (10,240) 51.34 19.09 48.73 -

PEGASUS-X w/ Staggered 60.3 30.0 31.5 -
Block-Local Attention (16k)

LLaMA-7B w/ Positional 60.0 28.0 29.5 -
Interpolation (15k)

Summarization w/ Extraction 61.99 18.52 38.46 86.20
+ GPT-3.5 Turbo (4,096)

Central truncation + LongT5 (4,096) 46.20 4.38 38.27 82.19
Skimming w/ post-sampling 46.76 4.56 39.61 81.96
removal + LongT5 (4,096)

Table 2: Automatic evaluation results on the GovReport dataset. The context sizes of the models are mentioned in
parentheses. The best score in each metric category is highlighted in bold. The results of our algorithms are below
the horizontal line in the middle.

Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore
BigBird-Pegasus (16k) 60.64 42.46 50.01 -

Skimming w/ pre-sampling 27.40 3.31 21.25 82.62
removal + GPT-3.5 Turbo (4,096)

Central truncation + GPT-3.5 Turbo (4,096) 27.77 3.09 20.56 82.57
Skimming w/ post-sampling 26.16 2.13 20.21 82.40

removal + GPT-3.5 Turbo (4,096)

Table 3: Automatic evaluation results on the BigPatent dataset. The context sizes of the models are mentioned in
parentheses. The best score in each metric category is highlighted in bold. The results of our algorithms are below
the horizontal line in the middle.

document (excluding the time taken by the model
to generate the summaries). We find that "Cen-
tral Truncation" (subsection 5.1) and "Document
Skimming" (subsection 5.2) take approximately
the same time. "Skimming with post-sampling re-
moval" (removing segments after sampling) takes
slightly longer than the other two methods. We can
see a significant increase in time taken by "Skim-
ming with pre-sampling removal" (removing seg-
ments after sampling) and "Summarization with
Keyword Extraction" (subsection 5.3) due to the ad-
ditional computations required. Figure 6 illustrates
the average time taken by our methods. Check Ta-
ble 4 for exact values rounded off to two decimal
places.

8 Future Work

To segment the document, we use a basic sentence
tokenizer (nltk.sent_tokenize) with some modifica-
tions to control the minimum number of words in a
segment. In our experiments, we find that segmen-
tation is a crucial step in the distillation process

Figure 6: Mean time taken (in milliseconds) per docu-
ment using BART tokenizer on BigPatent dataset

and can greatly influence the output summary, in-
dicating that good segmentation is vital for good
distillation of text. Ensuring the uniformity of the
length of the segments while preserving coherence
within a segment is also essential for better utiliza-

https://www.nltk.org/api/nltk.tokenize.sent_tokenize.html


Method Mean time taken
Central Truncation 142.50 ms

Document Skimming 155.42 ms
Skimming w/ post- 625.17 ms
sampling removal
Skimming w/ pre- 3059.63 ms
sampling removal

Summarization 2131.40 ms
w/ Extraction

Table 4: Mean time taken (in milliseconds) per docu-
ment using BART tokenizer on BigPatent dataset

tion of the context size of the model. We encourage
future work to experiment with different kinds of
segmenters.

Future work can also focus on extending the
"Summarization with Keyword Extraction" method
(subsection 5.3). Many potential ways exist to use
the extracted keywords we do not touch upon.

9 Conclusion

Our experiments show that "Document Skimming
with post-sampling removal" (subsection 5.2) per-
forms well while being efficient. The "Central
Truncation" method (subsection 5.1) also shows
good results, which shows that simple methods
can also be effective when dealing with long in-
puts. The last two methods, "Skimming with pre-
sampling removal" (subsection 5.2) and "Summa-
rization with Keyword Extraction" (subsection 5.3),
achieve the best results but are computationally ex-
pensive.

Our experiments show significant improvement
in BERTScore compared to Unlimiformer (Bertsch
et al., 2023) on the GovReport dataset, showing
that our pipelines can efficiently utilize details in
long texts. Even though our ROUGE-2 scores are
lower than the baselines, ROUGE-1 and ROUGE-L
scores are competitive. Since BERTScore is better
at capturing semantic similarity, we highlight the
use of BERTScore compared to ROUGE scores.
Hence, we contend that our pipelines can generate
better summaries than the baselines with higher
ROUGE scores. Also, note that the models used
in our experiments have smaller context sizes than
the baselines, indicating that our algorithms have a
greater potential if used with larger models.

Acknowledgement

All work herein reported is supported by the Na-
tion Science Foundation under Grant No. 2349452.
Any opinion, finding, or conclusion in this study is
that of the authors and does not necessarily reflect
the views of the National Science Foundation.

Supplementary Materials

The datasets used in this study are available here:
GovReport, BigPatent

The code used in this study is available here:
GitHub

References
Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Amanda Bertsch, Uri Alon, Graham Neubig, and
Matthew Gormley. 2023. Unlimiformer: Long-range
transformers with unlimited length input. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 35522–35543. Curran Associates,
Inc.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3(null):993–1022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
arXiv preprint arXiv:2306.15595.

Xinying Chen, Peimin Cong, and Shuo Lv. 2022. A
long-text classification method of chinese news based
on bert and cnn. IEEE Access, 10:34046–34057.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bobby Pramjit Singh Dhillon, Herman Herman, and
Syafryadin Syafryadin. 2020. The effect of skim-
ming method to improve students’ability in reading
comprehension on narrative text. Linguists: Journal
Of Linguistics and Language Teaching, 6(1):77–88.

Jiangsu Du, Jiazhi Jiang, Jiang Zheng, Hongbin Zhang,
Dan Huang, and Yutong Lu. 2023. Improving com-
putation and memory efficiency for real-world trans-
former inference on gpus. ACM Trans. Archit. Code
Optim., 20(4).

https://gov-report-data.github.io/
https://evasharma.github.io/bigpatent/
https://github.com/NamanChhibbar/Long-Document-Summarizer.git
https://arxiv.org/abs/2004.05150
https://proceedings.neurips.cc/paper_files/paper/2023/file/6f9806a5adc72b5b834b27e4c7c0df9b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6f9806a5adc72b5b834b27e4c7c0df9b-Paper-Conference.pdf
https://dl.acm.org/doi/10.5555/944919.944937
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://ieeexplore.ieee.org/abstract/document/9743465
https://ieeexplore.ieee.org/abstract/document/9743465
https://ieeexplore.ieee.org/abstract/document/9743465
https://arxiv.org/abs/1810.04805?amp=1
https://arxiv.org/abs/1810.04805?amp=1
https://arxiv.org/abs/1810.04805?amp=1
https://ejournal.uinfasbengkulu.ac.id/index.php/linguists/article/view/3940
https://ejournal.uinfasbengkulu.ac.id/index.php/linguists/article/view/3940
https://ejournal.uinfasbengkulu.ac.id/index.php/linguists/article/view/3940
https://doi.org/10.1145/3617689
https://doi.org/10.1145/3617689
https://doi.org/10.1145/3617689


Alexander R Fabbri, Wojciech Kryściński, Bryan Mc-
Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2021. Summeval: Re-evaluating summariza-
tion evaluation. Transactions of the Association for
Computational Linguistics, 9:391–409.

Logan Golia and Jugal Kalita. 2024. Action-item-driven
summarization of long meeting transcripts. In Pro-
ceedings of the 2023 7th International Conference
on Natural Language Processing and Information
Retrieval, NLPIR ’23, page 91–98, New York, NY,
USA. Association for Computing Machinery.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago On-
tanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang.
2021. Longt5: Efficient text-to-text transformer for
long sequences. arXiv preprint arXiv:2112.07916.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1419–1436, Online.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing
Xiang, et al. 2016. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv
preprint arXiv:1602.06023.

Jason Phang, Yao Zhao, and Peter J Liu. 2022.
Investigating efficiently extending transformers
for long input summarization. arXiv preprint
arXiv:2208.04347.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Eva Sharma, Chen Li, and Lu Wang. 2019. BIG-
PATENT: A large-scale dataset for abstractive and
coherent summarization. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2204–2213, Florence, Italy. Asso-
ciation for Computational Linguistics.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In Chinese computational linguistics: 18th China
national conference, CCL 2019, Kunming, China,
October 18–20, 2019, proceedings 18, pages 194–
206. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776–5788.

Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena
Yeung-Levy. 2024. Videoagent: Long-form video
understanding with large language model as agent.
arXiv preprint arXiv:2403.10517.

Joseph Worsham and Jugal Kalita. 2018. Genre identifi-
cation and the compositional effect of genre in litera-
ture. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1963–
1973, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Avaneesh Kumar Yadav, Ranvijay, Rama Shankar Ya-
dav, and Ashish Kumar Maurya. 2023. State-of-the-
art approach to extractive text summarization: a com-
prehensive review. Multimedia Tools and Applica-
tions, 82(19):29135–29197.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283–17297.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

https://direct.mit.edu/tacl/article-abstract/doi/10.1162/tacl_a_00373/100686
https://direct.mit.edu/tacl/article-abstract/doi/10.1162/tacl_a_00373/100686
https://doi.org/10.1145/3639233.3639253
https://doi.org/10.1145/3639233.3639253
https://arxiv.org/abs/2112.07916
https://arxiv.org/abs/2112.07916
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/1602.06023
https://arxiv.org/abs/1602.06023
https://arxiv.org/abs/2208.04347
https://arxiv.org/abs/2208.04347
https://www.jmlr.org/papers/v21/20-074.html
https://www.jmlr.org/papers/v21/20-074.html
https://www.jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://link.springer.com/chapter/10.1007/978-3-030-32381-3_16
https://proceedings.neurips.cc/paper/7181-attention-is-all
https://proceedings.neurips.cc/paper/7181-attention-is-all
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2403.10517
https://arxiv.org/abs/2403.10517
https://aclanthology.org/C18-1167
https://aclanthology.org/C18-1167
https://aclanthology.org/C18-1167
https://link.springer.com/article/10.1007/s11042-023-14613-9
https://link.springer.com/article/10.1007/s11042-023-14613-9
https://link.springer.com/article/10.1007/s11042-023-14613-9
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675

