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Abstract 1 

This paper presents a comparative analysis 2 

of performance of Sanskrit- Malayalam 3 

translation model developed using encoder-4 

decoder models with Long Short-Term 5 

Memory (LSTM) and attention 6 

mechanisms on two types of inputs- 7 

Sanskrit shlokas and sentence text. The 8 

model leverages the power of neural 9 

networks to capture the complex linguistic 10 

relationships between the two languages, 11 

offering a potential solution to the 12 

challenges posed by Sanskrit's intricate 13 

grammatical structure and Malayalam's 14 

rich morphological system. The complexity 15 

of Sanskrit grammar and the relative 16 

scarcity of computational resources for 17 

Malayalam cause unique challenges. By 18 

constructing a robust parallel corpus and 19 

employing state-of-the-art neural network 20 

architectures, the paper demonstrates 21 

significant improvements in translation 22 

quality compared to traditional rule-based 23 

and statistical methods. The promised work 24 

mainly focused on the translation of 25 

Sanskrit Shlokas and texts. A parallel 26 

corpus for Shlokas is created from ancient 27 

text books such as Bhagavad Gita and 28 

Ramayana and an updated Sanskrit-29 

Malayalam corpus for sentence text are 30 

used for training and testing.  Here the 31 

evaluation of the performance of the model 32 

is done on a curated dataset of Sanskrit-33 

Malayalam parallel sentence texts corpus 34 

and created domain based Shloka parallel 35 

corpus. The LSTM with attention model is 36 

out performed for sentence text input rather 37 

than for the direct Shloka input. Finally get 38 

into the conclusion that if convert shlokas 39 

into sentence form it gives more accurate 40 

results. The evaluation is done considering 41 

metrics such as BLEU score and human 42 

evaluation. The findings highlight the 43 

challenges of using shlokas as input to the 44 

model and, providing valuable insights for 45 

future research in Sanskrit-Malayalam 46 

machine translation. 47 

1 Introduction 48 

Sanskrit, an ancient Indian language with a rich literary 49 

heritage, has gained renewed interest in recent years. 50 

However, its complex grammatical structure and the 51 

dearth of annotated resources have hindered the 52 

development of effective machine translation systems. 53 

This paper aims to address these challenges by 54 

exploring the application of encoder-decoder models, a 55 

class of neural network architectures that have 56 

achieved significant success in machine translation 57 

tasks.  58 

1.1 Challenges in Processing Sanskrit Shlokas 59 

Sanskrit shlokas, with their intricate grammatical 60 

structures and rich cultural context, pose several 61 

challenges for computational processing. Here are 62 

some key difficulties: 63 

Morphological Complexity: 64 

• Inflectional and Derivational Morphology: 65 

Sanskrit has a highly complex morphological 66 

system with extensive inflectional and 67 

derivational processes. This makes it difficult 68 

to accurately analyze and understand the 69 

meaning of words and their relationships 70 

within a shloka. 71 

• Sandhi Rules: Sanskrit employs intricate 72 

sandhi rules that govern the combination of 73 

words at word boundaries. These rules can 74 

obscure the original form of words, making it 75 

challenging to identify and process them 76 

correctly. 77 

Ambiguity and Polysemy: 78 
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• Multiple Meanings: Many Sanskrit words 79 

have multiple meanings, making it difficult to 80 

determine the intended interpretation within a 81 

shloka. 82 

• Contextual Dependence: The meaning of a 83 

word or phrase often depends on the 84 

surrounding context, making it challenging to 85 

accurately interpret shlokas without 86 

considering the broader semantic context. 87 

Semantic Complexity: 88 

• Figurative Language: Sanskrit shlokas 89 

frequently employ figurative language, such 90 

as metaphors, similes, and allusions, which 91 

can make it difficult to understand the 92 

underlying meaning. 93 

• Cultural References: Shlokas often contain 94 

cultural references that may be unfamiliar to 95 

modern readers, requiring specialized 96 

knowledge to interpret accurately. 97 

Data Scarcity: 98 

• Limited Annotations: There is a lack of 99 

annotated Sanskrit shlokas, making it difficult 100 

to train and evaluate machine learning models 101 

for tasks like machine translation, sentiment 102 

analysis, and question answering. 103 

• Dialectal Variations: Sanskrit has numerous 104 

dialects and regional variations, which can 105 

introduce additional challenges in processing 106 

shlokas from different regions. 107 

 Encoding and Standardization: 108 

• Character Encoding: Ensuring consistent 109 

encoding of Sanskrit characters, especially 110 

those with diacritics and special characters, is 111 

crucial for accurate processing. 112 

• Standardization: Establishing standardized 113 

formats and conventions for representing 114 

Sanskrit text can help improve 115 

interoperability and facilitate data sharing. 116 

Addressing these challenges requires a combination of 117 

linguistic expertise, advanced computational 118 

techniques, and large-scale annotated datasets. By 119 

overcoming these obstacles, we can unlock the rich 120 

cultural and linguistic heritage encoded in Sanskrit 121 

shlokas. The proposed an encoder-decoder model 122 

trained and tested for both Sanskrit shlokas and 123 

sentence texts. 124 

The proposed LSTM with attention model employs an 125 

LSTM network as the encoder to capture the sequential 126 

nature of Sanskrit sentences. The attention mechanism 127 

is used to selectively focus on relevant parts of the 128 

encoded representation during decoding, improving 129 

the model's ability to handle long-range dependencies. 130 

 131 

2 Related Works 132 

The study builds upon previous work in MT, focusing 133 

on rule-based, statistical, and neural approaches. Rule-134 

based systems, while accurate for syntactically rigid 135 

languages, fall short for highly inflectional languages 136 

like Sanskrit and Malayalam. Statistical methods, 137 

though more flexible, require extensive parallel corpora, 138 

which are often unavailable. Recent advances in neural 139 

machine translation (NMT) have shown promise, 140 

particularly for low-resource languages. 141 

2.1 NMT for Low-Resource Languages 142 

Recent studies have focused on extending 143 

NMT to low-resource languages through techniques 144 

such as transfer learning, multilingual models, and 145 

unsupervised learning. Johnson et al. [6] demonstrated 146 

the effectiveness of multilingual NMT models that 147 

share parameters across multiple language pairs, 148 

thereby improving performance for low-resource 149 

languages. Similarly, Lample et al. [8] explored 150 

unsupervised NMT, which requires only monolingual 151 

corpora and has shown promise for languages with 152 

limited parallel data. 153 

There are several advancements in machine 154 

translation, particularly in handling low-resource 155 

languages and addressing the challenges of specific 156 

language pairs: 157 

 Adapting Transformers for Low-158 

Resource Languages: Recent works have adapted 159 

transformer models for low-resource settings. For 160 

instance, Fan et al. [9] introduced a multilingual 161 

approach using mBART (Multilingual BART), which 162 

pre-trains a sequence-to-sequence model on a large 163 

corpus of text in multiple languages before fine-tuning 164 

it on specific language pairs. This approach has shown 165 

substantial improvements for low-resource languages. 166 

Large language models can be used for developing 167 

machine translation of low resources languages  using 168 

transfer learning techniques . 169 

Data Augmentation and Back-Translation: 170 

Data augmentation techniques, such as back-171 

translation (Sennrich et al.,[10]), where synthetic 172 

parallel data is generated by translating monolingual 173 

data, have been effectively employed. Gao et al. [11] 174 

demonstrated the efficacy of these methods in 175 

630



3 

 
 

improving translation quality for underrepresented 176 

languages. 177 

Few-Shot and Zero-Shot Learning: 178 

Advances in few-shot and zero-shot learning have 179 

enabled MT systems to handle language pairs with 180 

minimal or no parallel data. For example, the work by 181 

Lin et al. [12] on few-shot learning for MT showed that 182 

with just a few examples, models could learn to 183 

translate new language pairs. 184 

 185 

Efficient Pre-training Techniques: 186 

Researchers have explored efficient pre-training 187 

techniques to enhance the performance of MT models 188 

for low-resource languages. Lewis et al. [13] 189 

introduced the BERT-like pre-training for seq2seq 190 

models, significantly boosting performance by 191 

leveraging large-scale monolingual corpora. 192 

 Specific to Sanskrit-Malayalam Translation 193 

Specific to Sanskrit-Malayalam translation, 194 

there have been limited but noteworthy efforts: 195 

Hybrid Approaches: The work by Anoop et 196 

al. [14] on Sanskrit-English translation using a hybrid 197 

approach combining RBMT and SMT methods laid the 198 

groundwork for more advanced models. 199 

Deep Learning Techniques: Recent 200 

applications of deep learning for Indian languages, as 201 

explored by Kunchukuttan et al. (2020), have provided 202 

valuable insights into the challenges and potential 203 

solutions for the proposed Sanskrit-Malayalam NMT. 204 

They utilized models like IndicTrans, a multilingual 205 

transformer-based model fine-tuned for Indian 206 

languages. 207 

2.2 Neural Machine Translation (NMT) for 208 

Sanskrit: 209 

Sanskrit-English Translation: Several 210 

studies have focused on translating Sanskrit to 211 

English using NMT models. These works have 212 

explored different encoder-decoder architectures, 213 

attention mechanisms, and data augmentation 214 

techniques. 215 

Sanskrit-Hindi Translation: There 216 

have been fewer studies on Sanskrit-Hindi 217 

translation due to the limited availability of 218 

parallel data. However, existing research has 219 

demonstrated the feasibility of using NMT for this 220 

task. 221 

Encoder-Decoder Architectures: 222 

Previous research has compared different encoder-223 

decoder architectures, such as LSTM, GRU, and 224 

Transformer, for Sanskrit-English translation. 225 

These studies have highlighted the advantages and 226 

disadvantages of each architecture in terms of 227 

performance and computational efficiency. 228 

Attention Mechanisms: Various 229 

attention mechanisms, including global attention, 230 

local attention, and hierarchical attention, have 231 

been explored in NMT for Sanskrit. Comparative 232 

studies have shown that the choice of attention 233 

mechanism can significantly impact translation 234 

quality. 235 

Data Augmentation: Data augmentation 236 

techniques, such as backtranslation and noise 237 

injection, have been used to address the 238 

scarcity of parallel data for Sanskrit. 239 

Comparative studies have evaluated the 240 

effectiveness of these techniques in 241 

improving NMT performance. 242 

Challenges and Limitations: 243 

• Data Scarcity: The limited availability of 244 

high-quality parallel data for Sanskrit remains 245 

a significant challenge. This can hinder the 246 

development of accurate and robust NMT 247 

models. 248 

• Morphological Complexity: The complex 249 

morphological structure of Sanskrit poses 250 

challenges for NMT models. Handling 251 

inflectional and derivational morphology 252 

requires specialized techniques. 253 

• Lack of Standardized Evaluation Metrics: 254 

There is a lack of standardized evaluation 255 

metrics specifically designed for Sanskrit-256 

related tasks. This makes it difficult to 257 

compare the performance of different models 258 

across studies. 259 

Overall, while progress has been made in 260 

NMT for Sanskrit, there is still room for improvement. 261 

Addressing the challenges of data scarcity, 262 

morphological complexity, and evaluation metrics is 263 

crucial for developing more accurate and effective 264 

Sanskrit translation systems. 265 

3 Methodology 266 

3.1 Dataset 267 

Two parallel corpora were created for the training and 268 

testing of the created model. Curated a parallel corpus 269 

of Sanskrit-Malayalam sentence texts, consisting of a 270 

diverse range of genres such as literature, philosophy, 271 

and religious texts. Also, shloka parallel corpus is 272 

created using Bhagavadgita and Ashtanga hrudaya. 273 
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That was a challenging phase as there is no digitized 274 

version of Malayalam is available. So the dataset was 275 

created and verified manually to ensure accuracy and 276 

consistency. The size of the sentence text corpus is 277 

around 57K and Shloka corpora contains almost 12K 278 

shlokas and its parallel meaning in Malayalam. 279 

3.2 Model Architecture 280 

Figure1: Architecture of NMT with Attention  281 

LSTM with Attention: Encoder: A bidirectional 282 

LSTM network processes the Sanskrit input sequence, 283 

both sentence text and shlokas. Decoder: A 284 

unidirectional LSTM network generates the 285 

Malayalam translation, guided by the attention 286 

mechanism. Attention: The attention mechanism 287 

calculates weights for each element in the encoder's 288 

hidden states, allowing the decoder to focus on relevant 289 

parts of the input. The architecture of the proposed 290 

system is shown I figure1. 291 

3.3 Training and Evaluation 292 

The model was trained using the Adam optimizer and a 293 

cross-entropy loss function. Initially the model 294 

overfitted for Bhagavad Gita shlokas so employed early 295 

stopping to prevent overfitting. The models were 296 

evaluated using standard metrics such as BLEU score 297 

and human evaluation. Hyperparameters are essential in 298 

shaping the performance of neural machine translation 299 

(NMT) models. Key parameters for the sequence-to-300 

sequence (seq2seq) architecture with attention include 301 

the learning rate, batch size, number of layers, hidden 302 

units, and dropout rates. In the proposed model, four 303 

layers were utilized, which enabled the network to learn 304 

more intricate patterns but also increased the 305 

computational cost. A hidden layer size of 256 units was 306 

used to enhance the model's ability to capture 307 

meaningful data representations. The system employed 308 

a batch size of 32, a learning rate of 0.01, and a dropout 309 

rate of 0.1. The learning rate, critical for the speed of 310 

convergence, must be carefully tuned to avoid either 311 

overshooting the optimal solution or slow convergence. 312 

The dropout technique was used to mitigate overfitting. 313 

Finally, the optimal combination of these 314 

hyperparameters, yielding the highest BLEU score, was 315 

selected for the final model. 316 

3.4 Results and Discussion 317 

Model Performance Comparison 318 

Model performance comparison is done interms 319 

of BLEU scores and types of inputs given. The 320 

comparison is given in the Table1and Figure3. 321 

Table1: Comparative Analysis of model based on 322 

BLEU Score and type of input. 323 

Sample output: Sample out put obtained is given in 324 

the Figure 2. 325 

 326 

Figure2: Sample Output  327 

 328 

 Input BLE
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 329 

Figure 3: Comparative Analysis of model 330 

based on BLEU Score and type of input 331 

 332 

The above table shows the comparative analysis of 333 

BLEU scores given by the model when the type of 334 

input changed. When the input given is sentence text 335 

the model consistently outperformed with the input as 336 

shlokas in terms of both BLEU and ROUGE scores, 337 

indicating its inferior ability to capture long-range 338 

dependencies and generates less accurate translations. 339 

This can be overcome by using transformer-based 340 

model which has superior ability to capture longrange 341 

dependencies and self-attention. The human 342 

evaluations revealed that the Transformer sometimes 343 

produced more generic translations, suggesting that it 344 

might benefit from incorporating more domain-345 

specific knowledge. Future research could explore the 346 

integration of domain-specific knowledge, such as 347 

using pre-trained language models or incorporating 348 

external information sources, to improve the quality of 349 

the translations. Additionally, experimenting with 350 

different attention mechanisms or using larger datasets 351 

could further enhance the performance of both models. 352 

Conclusion 353 

This paper has presented a comparative analysis of 354 

performance of encoder-decoder model, LSTM with 355 

attention for Sanskrit shlokas and sentence text to 356 

Malayalam translation. The findings demonstrate the 357 

effect of inputs to the model in capturing the complex 358 

linguistic relationships between the two languages. 359 

While the LSTM with attention model offers a balance 360 

between performance and computational efficiency 361 

with text sentences, it lacks a little these in case of the 362 

shloka input. 363 

As the transformer architecture exhibits superior 364 

performance, especially for longer sequences it may 365 

give better results for shlokas. Future research can 366 

explore that and the integration of domain-specific 367 

knowledge, transfer learning techniques, and larger 368 

datasets to further improve the quality of Sanskrit to 369 

Malayalam translation. 370 
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