@inproceedings{a-fondekar-etal-2024-unpacking,
title = "Unpacking Faux-Hate: Addressing Faux-Hate Detection and Severity Prediction in Code-Mixed {H}inglish Text with {H}ing{R}o{BERT}a and Class Weighting Techniques",
author = "A. Fondekar, Ashweta and
M. Shivolkar, Milind and
D. Pawar, Jyoti",
editor = "Biradar, Shankar and
Reddy, Kasu Sai Kartheek and
Saumya, Sunil and
Akhtar, Md. Shad",
booktitle = "Proceedings of the 21st International Conference on Natural Language Processing (ICON): Shared Task on Decoding Fake Narratives in Spreading Hateful Stories (Faux-Hate)",
month = dec,
year = "2024",
address = "AU-KBC Research Centre, Chennai, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2024.icon-fauxhate.2/",
pages = "6--11",
abstract = "The proliferation of hate speech and fake narra-tives on social media poses significant societalchallenges, especially in multilingual and code-mixed contexts. This paper presents our systemsubmitted to the ICON 2024 shared task onDecoding Fake Narratives in Spreading Hate-ful Stories (Faux-Hate). We tackle the prob-lem of Faux-Hate Detection, which involvesdetecting fake narratives and hate speech incode-mixed Hinglish text. Leveraging Hin-gRoBERTa, a pre-trained transformer modelfine-tuned on Hinglish datasets, we addresstwo sub-tasks: Binary Faux-Hate Detection andTarget and Severity Prediction. Through the in-troduction of class weighting techniques andthe optimization of a multi-task learning ap-proach, we demonstrate improved performancein identifying hate and fake speech, as well asin classifying their target and severity. Thisresearch contributes to a scalable and efficientframework for addressing complex real-worldtext processing challenges."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="a-fondekar-etal-2024-unpacking">
<titleInfo>
<title>Unpacking Faux-Hate: Addressing Faux-Hate Detection and Severity Prediction in Code-Mixed Hinglish Text with HingRoBERTa and Class Weighting Techniques</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ashweta</namePart>
<namePart type="family">A. Fondekar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milind</namePart>
<namePart type="family">M. Shivolkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jyoti</namePart>
<namePart type="family">D. Pawar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st International Conference on Natural Language Processing (ICON): Shared Task on Decoding Fake Narratives in Spreading Hateful Stories (Faux-Hate)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shankar</namePart>
<namePart type="family">Biradar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kasu</namePart>
<namePart type="given">Sai</namePart>
<namePart type="given">Kartheek</namePart>
<namePart type="family">Reddy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sunil</namePart>
<namePart type="family">Saumya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md.</namePart>
<namePart type="given">Shad</namePart>
<namePart type="family">Akhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">AU-KBC Research Centre, Chennai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The proliferation of hate speech and fake narra-tives on social media poses significant societalchallenges, especially in multilingual and code-mixed contexts. This paper presents our systemsubmitted to the ICON 2024 shared task onDecoding Fake Narratives in Spreading Hate-ful Stories (Faux-Hate). We tackle the prob-lem of Faux-Hate Detection, which involvesdetecting fake narratives and hate speech incode-mixed Hinglish text. Leveraging Hin-gRoBERTa, a pre-trained transformer modelfine-tuned on Hinglish datasets, we addresstwo sub-tasks: Binary Faux-Hate Detection andTarget and Severity Prediction. Through the in-troduction of class weighting techniques andthe optimization of a multi-task learning ap-proach, we demonstrate improved performancein identifying hate and fake speech, as well asin classifying their target and severity. Thisresearch contributes to a scalable and efficientframework for addressing complex real-worldtext processing challenges.</abstract>
<identifier type="citekey">a-fondekar-etal-2024-unpacking</identifier>
<location>
<url>https://aclanthology.org/2024.icon-fauxhate.2/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>6</start>
<end>11</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unpacking Faux-Hate: Addressing Faux-Hate Detection and Severity Prediction in Code-Mixed Hinglish Text with HingRoBERTa and Class Weighting Techniques
%A A. Fondekar, Ashweta
%A M. Shivolkar, Milind
%A D. Pawar, Jyoti
%Y Biradar, Shankar
%Y Reddy, Kasu Sai Kartheek
%Y Saumya, Sunil
%Y Akhtar, Md. Shad
%S Proceedings of the 21st International Conference on Natural Language Processing (ICON): Shared Task on Decoding Fake Narratives in Spreading Hateful Stories (Faux-Hate)
%D 2024
%8 December
%I NLP Association of India (NLPAI)
%C AU-KBC Research Centre, Chennai, India
%F a-fondekar-etal-2024-unpacking
%X The proliferation of hate speech and fake narra-tives on social media poses significant societalchallenges, especially in multilingual and code-mixed contexts. This paper presents our systemsubmitted to the ICON 2024 shared task onDecoding Fake Narratives in Spreading Hate-ful Stories (Faux-Hate). We tackle the prob-lem of Faux-Hate Detection, which involvesdetecting fake narratives and hate speech incode-mixed Hinglish text. Leveraging Hin-gRoBERTa, a pre-trained transformer modelfine-tuned on Hinglish datasets, we addresstwo sub-tasks: Binary Faux-Hate Detection andTarget and Severity Prediction. Through the in-troduction of class weighting techniques andthe optimization of a multi-task learning ap-proach, we demonstrate improved performancein identifying hate and fake speech, as well asin classifying their target and severity. Thisresearch contributes to a scalable and efficientframework for addressing complex real-worldtext processing challenges.
%U https://aclanthology.org/2024.icon-fauxhate.2/
%P 6-11
Markdown (Informal)
[Unpacking Faux-Hate: Addressing Faux-Hate Detection and Severity Prediction in Code-Mixed Hinglish Text with HingRoBERTa and Class Weighting Techniques](https://aclanthology.org/2024.icon-fauxhate.2/) (A. Fondekar et al., ICON 2024)
ACL