@inproceedings{yadawad-etal-2024-machine,
title = "A Machine Learning Framework for Detecting Hate Speech and Fake Narratives in {H}indi-{E}nglish Tweets",
author = "Yadawad, R.n. and
Saumya, Sunil and
Nivedh, K.n. and
Padanur, Siddhaling S. and
Basti, Sudev",
editor = "Biradar, Shankar and
Reddy, Kasu Sai Kartheek and
Saumya, Sunil and
Akhtar, Md. Shad",
booktitle = "Proceedings of the 21st International Conference on Natural Language Processing (ICON): Shared Task on Decoding Fake Narratives in Spreading Hateful Stories (Faux-Hate)",
month = dec,
year = "2024",
address = "AU-KBC Research Centre, Chennai, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2024.icon-fauxhate.8/",
pages = "40--44",
abstract = "This paper presents a novel system developed for the Faux-Hate Shared Task at ICON2024, addressing the detection of hate speechand fake narratives within Hindi-English code-mixed social media data. Our approach com-bines advanced text preprocessing, TF-IDFvectorization, and Random Forest classifiersto identify harmful content, while employingSMOTE to address class imbalance. By lever-aging ensemble learning and feature engineer-ing, our system demonstrates robust perfor-mance in detecting hateful and fake content,classifying targets, and evaluating the sever-ity of hate speech. The results underscore thepotential for real-world applications, such asmoderating online platforms and identifyingharmful narratives. Furthermore, we highlightethical considerations for deploying such tools,emphasizing responsible use in sensitive do-mains, thereby advancing research in multilin-gual hate speech detection and online abusemitigation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yadawad-etal-2024-machine">
<titleInfo>
<title>A Machine Learning Framework for Detecting Hate Speech and Fake Narratives in Hindi-English Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">R.n.</namePart>
<namePart type="family">Yadawad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sunil</namePart>
<namePart type="family">Saumya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.n.</namePart>
<namePart type="family">Nivedh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siddhaling</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Padanur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudev</namePart>
<namePart type="family">Basti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st International Conference on Natural Language Processing (ICON): Shared Task on Decoding Fake Narratives in Spreading Hateful Stories (Faux-Hate)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shankar</namePart>
<namePart type="family">Biradar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kasu</namePart>
<namePart type="given">Sai</namePart>
<namePart type="given">Kartheek</namePart>
<namePart type="family">Reddy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sunil</namePart>
<namePart type="family">Saumya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md.</namePart>
<namePart type="given">Shad</namePart>
<namePart type="family">Akhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">AU-KBC Research Centre, Chennai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a novel system developed for the Faux-Hate Shared Task at ICON2024, addressing the detection of hate speechand fake narratives within Hindi-English code-mixed social media data. Our approach com-bines advanced text preprocessing, TF-IDFvectorization, and Random Forest classifiersto identify harmful content, while employingSMOTE to address class imbalance. By lever-aging ensemble learning and feature engineer-ing, our system demonstrates robust perfor-mance in detecting hateful and fake content,classifying targets, and evaluating the sever-ity of hate speech. The results underscore thepotential for real-world applications, such asmoderating online platforms and identifyingharmful narratives. Furthermore, we highlightethical considerations for deploying such tools,emphasizing responsible use in sensitive do-mains, thereby advancing research in multilin-gual hate speech detection and online abusemitigation.</abstract>
<identifier type="citekey">yadawad-etal-2024-machine</identifier>
<location>
<url>https://aclanthology.org/2024.icon-fauxhate.8/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>40</start>
<end>44</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Machine Learning Framework for Detecting Hate Speech and Fake Narratives in Hindi-English Tweets
%A Yadawad, R.n.
%A Saumya, Sunil
%A Nivedh, K.n.
%A Padanur, Siddhaling S.
%A Basti, Sudev
%Y Biradar, Shankar
%Y Reddy, Kasu Sai Kartheek
%Y Saumya, Sunil
%Y Akhtar, Md. Shad
%S Proceedings of the 21st International Conference on Natural Language Processing (ICON): Shared Task on Decoding Fake Narratives in Spreading Hateful Stories (Faux-Hate)
%D 2024
%8 December
%I NLP Association of India (NLPAI)
%C AU-KBC Research Centre, Chennai, India
%F yadawad-etal-2024-machine
%X This paper presents a novel system developed for the Faux-Hate Shared Task at ICON2024, addressing the detection of hate speechand fake narratives within Hindi-English code-mixed social media data. Our approach com-bines advanced text preprocessing, TF-IDFvectorization, and Random Forest classifiersto identify harmful content, while employingSMOTE to address class imbalance. By lever-aging ensemble learning and feature engineer-ing, our system demonstrates robust perfor-mance in detecting hateful and fake content,classifying targets, and evaluating the sever-ity of hate speech. The results underscore thepotential for real-world applications, such asmoderating online platforms and identifyingharmful narratives. Furthermore, we highlightethical considerations for deploying such tools,emphasizing responsible use in sensitive do-mains, thereby advancing research in multilin-gual hate speech detection and online abusemitigation.
%U https://aclanthology.org/2024.icon-fauxhate.8/
%P 40-44
Markdown (Informal)
[A Machine Learning Framework for Detecting Hate Speech and Fake Narratives in Hindi-English Tweets](https://aclanthology.org/2024.icon-fauxhate.8/) (Yadawad et al., ICON 2024)
ACL