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Abstract

Data-to-text (D2T) generation is a natural lan-
guage generation (NLG) task in which a system
describes structured data in natural language.
Generating natural language verbalization for
structured data is challenging as the data may
not contain all the required details (here, proper-
ties such as gender are missing from the input
data and need to be inferred for correct lan-
guage generation), and because the structured
data may conflict with the knowledge contained
in the LLM’s parameters learned during pre-
training. Both of these factors (incorrect filling
in of details, pretraining conflict and input data)
can lead to so-called hallucinations.

In this paper, we propose a few-shot retrieval
augmented generation (RAG) system, using a
symbolic retriever – PropertyRetriever. Ad-
ditionally, we experiment with state-of-the-art
large language models (LLMs) to generate data
verbalizations. Our system achieves the best
results on 4 out of 6 subtasks for METEOR and
chrF++ metrics. We present our results along
with an error analysis. We release our code for
reproducing the results as well as the generated
verbalizations from all the experiments for any
further explorations here.1

1 Introduction

Nowadays LLMs are pretrained using trillions of
text tokens2 (Penedo et al., 2024). These LLMs
can not only generate grammatical and fluent text,
but they are also capable of learning new tasks
without any training data using in-context learning
techniques (Lampinen et al., 2022). One central
challenge in LLMs research is to understand the
extent to which LLMs memorize their training data
versus how they generalize to new tasks and set-
tings. There has been some empirical evidence
that LLMs do some degree of both: they clearly

1https://github.com/mayankjobanputra/d2t-gem
2https://www.together.ai/blog/

redpajama-data-v2

memorize parts of the training data – for example,
LLMs are often able to reproduce large portions
of training data verbatim (Yu et al., 2023; Carlini
et al., 2023) – but LLMs also seem to learn from
this data, allowing them to generalize to new tasks.
Do LLMs truly produce new content, or do they
only remix their training data? Until we concretely
answer this question, it is essential to test model
faithfulness systematically through various data
augmentation techniques.

The task of data-to-text generation is one of the
popular NLG tasks. In this task, the system is
given a set of RDF triplets describing facts (i.e.,
entities and relations between them) and has to pro-
duce a fluent text that is faithful to the facts. The
GEM’24 (Mille et al., 2024) challenge brings forth
a new shared task on data-to-text generation to test
LLMs for factual information (i.e., information in
the model parameters is likely to be in line with
the input), vs. counterfactual information (i.e., the
information in the prompt contrasts with what the
model encodes about this entity) vs. fictional enti-
ties (i.e., the model parameters should not contain
specific information supporting or contradicting the
prompt information.)

The GEM’24 shared task consists of two sub-
tasks of generating texts from input triple sets (Sub-
ject | Property | Object) in the WebNLG fashion.
We participate in both the subtasks. One of the
subtasks (D2T-1) is based on the WebNLG dataset.
This subtask uses the official WebNLG test set3

as input for testing the generation system. The
test data contains 1,779 input triples with proper-
ties and entities not seen in the training/dev data.
The second subtask (D2T-2) is based on the Wiki-
data. This subtask uses 1,800 newly compiled input
triples from Wikidata for testing the generation sys-
tem. Axelsson and Skantze (2023) proposed this
dataset containing 74 new properties and entities,

3https://huggingface.co/datasets/GEM/web_nlg

https://github.com/mayankjobanputra/d2t-gem
https://www.together.ai/blog/redpajama-data-v2
https://www.together.ai/blog/redpajama-data-v2
https://huggingface.co/datasets/GEM/web_nlg
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which were not part of the WebNLG dataset.
In recent years, LLMs such as GPT-4 (Achiam

et al., 2023), Gemini (Team et al., 2023) and
LLaMa (Touvron et al., 2023), have made sig-
nificant advancements in the field of natural lan-
guage generation (NLG). However, the inherent
tendency of these LLMs to generate inaccurate
or non-factual content, commonly referred to as
“hallucinations” (Puzikov and Gurevych, 2018; Ji
et al., 2023), continues to present a significant chal-
lenge. This generally occurs because the model
parameters from pretraining encode some informa-
tion, which may “overwrite” the information in the
prompt due to its high sequence probability. An-
other challenge with structured data is that the data
does not contain all the required details such as
entity type, gender and relation explanation. If the
model fails to infer these details correctly, it may
generate hallucinated verbalization.

In the literature, Shuster et al. (2021) suggests
that providing relevant examples during infer-
ence can help in reducing hallucinations. While
Moryossef et al. (2019) suggests using an explicit,
symbolic, text planning stage for generating more
faithful verbalization of data. In this work, we
combine these suggestions and propose a few-shot
RAG system to solve this task, using a symbolic re-
triever - PropertyRetriever. Figure 1 illustrates
the architecture of our system. We experiment with
state-of-the-art open-weight models for generat-
ing verbalization. In the following sections, we
describe the dataset, our approach and provide a
detailed study of the errors made by the system.

2 Dataset

The GEM’24 shared task introduced novel aug-
mented test sets for both WebNLG and Wikidata.
These augmented test sets consist of 3 parallel
datasets as follows:

• Factual (FA): This subset contains triples
from the WebNLG and Wikidata datasets.

• Counterfactual (CFA): This subset consists
of swapped entities from the factual dataset.
These entities are switched based on their
class (i.e., a person entity is replaced by an-
other person entity, a date by another date)

• Fictional (FI): This subset consists of made-
up entities, obtained via LLM prompting, in
place of factual entities.

Input Data

Property
Retriever

Training Data
Prompt

Template

### Instructions
{{input data}}

### Examples
{Ex 1}
{Ex 2}

Examples

Output

Parser

Inference

Figure 1: System architecture

Further details and example data for each subtask
are available on the shared-task website4.

3 Method

Our final system consists of a few-shot RAG
pipeline that verbalizes the input data. In the fol-
lowing subsections, we describe the details of each
component of our RAG pipeline.

3.1 Preprocessing

Our preprocessing step takes an RDF triple as
input data and removes unnecessary information
from it. For example, the input RDF triple contains
the following header:
<entry category="WikiData human",
eid="Id1", shape="unknown", shape_type=
"unknown", size="2">

We realized that the entry header does not in-
clude any helpful information for verbalization.
Hence, we remove it from the input data. We only
keep the data between <modifiedtripleset> and
</modifiedtripleset> tags.

3.2 PropertyRetriever

We observed that the verbalization mostly depends
on the number of triples and the Property fields
in the triple. The Property field should help in
determining the correct verb and verb form. Let’s
consider the following example.

INPUT TRIPLE:

Baked_Alaska | country | France
Baked_Alaska | region | New_York
Baked_Alaska | ingredient | Christmas_pudding

VERBALIZATION:

4https://gem-benchmark.com/shared_task

https://gem-benchmark.com/shared_task
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Christmas pudding is an ingredient
in Baked Alaska, which comes from the
region of New York and the country
of France.

For the example above, the model needs to be
able to connect all the generated sentences naturally
and in a human-like manner. Moreover, it needs to
infer the following details:

• Baked_Alaska is a food dish based on the prop-
erty – ingredient.

• The property ingredient suggests that
Christmas pudding is an ingredient in
Baked_Alaska.

In the literature, it is shown that the model can
learn to perform such inferences based on few-shot
prompting (Lampinen et al., 2022) and retrieval
augmented generation (Lewis et al., 2020). Gen-
erally, all RAG pipelines use a dense retriever to
retrieve relevant samples from the training data.
We started by building a dense retriever pipeline
using Haystack (Pietsch et al., 2019) framework.
The dense retriever failed to retrieve examples con-
taining similar properties, especially for the Coun-
terfactual and the Fictional datasets. We realized
that this was due to the nature of the dense retriever
which is trained to retrieve semantically similar
examples. Most of the query input consists of the
(Subject|Object) tokens. Hence, it retrieved exam-
ples that are more similar to the query Subject and
the Object tokens.

To solve this issue, we take inspiration from
Moryossef et al. (2019) and build a symbolic re-
triever – PropertyRetriever, that retrieves sam-
ples from the training based on the most similar
properties. The retriever first creates an in-memory
index of all properties from the training triples.
At query time, it takes the properties of the input
triples and returns the best-matching data points.
Additionally, these best-matching data points are
also selected in a way that the number of properties
in the query data and the retrieved data are similar
(i.e., shape matching). If no matching properties
are found, then the retriever returns the random
data points of the same shape. We observed such
random sample returns for 130 test points in the
WebNLG subtask.

Finally, we compared the verbalizations of 20
input triples using both PropertyRetriever and
dense retrievers. We find that the samples from the

PropertyRetriever helped LLMs generate better
verbalizations compared to the dense retriever.

3.3 Prompt Engineering
We employ the prompting guidelines provided by
the model publishers and Bsharat et al. (2023) for
creating our few-shot prompt. We provide our final
version of the few-shot prompt in Appendix A.1.
Note that the final prompt is a template containing
placeholders for the input data and retrieved exam-
ples, focusing majorly on task instructions. We use
Banks (Pippi, 2023) to populate this prompt tem-
plate with input data and the example data points
dynamically at run time.

3.4 Inference
The main goal of our system is to generate suitable
verbalization of the input data triples. For the same,
we prompt the state-of-the-art LLMs, in a few-shot
manner. We use Mixtral 8x7B and Command-R for
all our experiments and compare their performance.

Mixtral 8x7B: Mixtral (Jiang et al., 2024) is a
decoder-only sparse mixture-of-experts network
where the feedforward block picks from a set of 8
distinct groups of parameters. At every layer, for
every token, a router network chooses two of these
groups (i.e., “experts") to process the token and
combine their output additively. This technique
increases the number of parameters of a model
while controlling cost and latency, as the model
only uses a fraction of the total set of parameters
per token. Concretely, Mixtral only uses 12.9B
parameters per token out of 46.7B total parameters.

Command R: Command-R is a 35 billion pa-
rameter decoder-only model. It is optimized
for conversational interaction and long context
tasks. It has been trained with the ability to
ground its generations. This means that it can
generate responses based on a list of supplied
document snippets, and it will include citations in
its response indicating the source of the informa-
tion. This makes it a good candidate for RAG tasks.

Implementation details: We use Ollama5 to run
both Mixtral6 and Command-R7 models locally.
We utilize 4-bit quantized versions of these mod-
els. We run all our experiments using 2x NVIDIA

5https://github.com/ollama/ollama
6https://ollama.com/library/mixtral
7https://ollama.com/library/command-r

https://github.com/ollama/ollama
https://ollama.com/library/mixtral
https://ollama.com/library/command-r
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RTX 3090s. The inference hyperparameters are
provided in Table 1.

seed 5
temperature 0.5
repeat_penalty 1.2
top_p 0.9
top_k 25

Table 1: Inference Hyperparameters of LLMs

3.5 Postprocessing

We observe that both Mixtral and Command-R can-
not follow the formatting instructions perfectly.
Zhou et al. (2023) also made similar observations
for GPT-4 and PaLM models. We also noticed
that it is easier for these models to follow sim-
pler formatting instructions than more complex
ones. For example, we initially prompted mod-
els to generate verbalization in a JSON format,
to which they often made small mistakes such as
missing a closing bracket, a semicolon, or a closing
quote. We then updated our formatting instructions
to just keep the generated verbalization between
<verbalization>, </verbalization> tags. Af-
ter this change, Command-R always generated the
verbalization in the correct format and Mixtral’s
formatting mistakes were reduced significantly.

We parse the model’s responses by retriev-
ing the text between <verbalization>, and
</verbalization> tags. This way we detect the
erroneous responses from both models. We dis-
cuss the error patterns in the error analysis sec-
tion. Finally, we create an ensemble system with
both Mixtral and Command-R. For the final output,
we use the verbalization generated by the better-
performing model (i.e., primary model) if our sys-
tem can parse the response. Otherwise, we use the
verbalization generated by the fallback model (i.e.,
secondary model) as the final output. We discuss
the final choice of primary and secondary models
in Section 5.1.

3.6 Evaluation

The system-generated text is assessed with
reference-less automatic metrics such as
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), chrF++ (Popović, 2015),
BERTScore (Zhang et al., 2020), and via human
evaluation. The criteria for the human evaluation
are the following:

• Grammaticality: The text is free of grammat-
ical and spelling errors.

• Fluency: The text flows well and is easy to
read; its parts are connected in a natural way.

• No-Omissions: All the information from the
input data is present in the text.

• No-Additions: Only the information from the
input data is present in the text.

4 Shared Task Results

The GEM’24 shared task organizers provide evalu-
ation scores for all participating systems and sub-
tasks using 4 metrics – BLEU, METEOR, chrF++ and
BERTScore. These scores are calculated with 1
AMT reference text per data point. Our system
achieves the best results on 4 out of 6 subtasks for
METEOR and chrF++ metrics. For detailed results
and comparison with participating systems, please
refer to the overview literature (Mille et al., 2024).

5 Performance Analysis

In this section, we provide the results of our human
evaluation study. We conduct this study to final-
ize our primary and secondary model for the final
system. We also discuss observed error patterns
during the evaluation.

5.1 Human Evaluation

We conduct a human evaluation study ourselves
on a small subset of 40 input triples. These triples
are collected from Counterfactual and Fictional
datasets. We apply filtering based on our observa-
tion that the models generate better verbalization
for factual and smaller input triples. Hence, the
filtered triples contain more than 3 properties each.

We use the same evaluation criteria mentioned
in Section 3.6. We ask our human annotator to
rate the model’s response on each criterion based
on our evaluation guidelines (refer to Appendix
A.2). We report the results of this study in Table 2.
The results indicate that Mixtral performs better
compared to Command-R.

5.2 Error Analysis

We dive deeper into the human evaluation study to
figure out exact error patterns. We discuss two of
the most commonly observed issues here.
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INPUT TRIPLE:

What_Ever_Happened_to_Baby_Jane? | publisher | Gruppo_Mondadori
What_Ever_Happened_to_Baby_Jane? | followedBy | I_Am_a_Cat
What_Ever_Happened_to_Baby_Jane? | author | Horst_Köhler
What_Ever_Happened_to_Baby_Jane? | releaseDate | 1726-01-01

GENERATED VERBALIZATION:

The publisher of What Ever Happened to Baby Jane is Gruppo Mondadori. Its author is Horst
Köhler, and it was released on January 1, 1726. Following What Ever Happened to Baby Jane
is I Am a Cat.

Figure 2: Example of imperfect verbalization

Criteria Mixtral Command-R Max
Score

Fluency 110 105 120
Grammaticality 113 104 120
No Omissions 39 35 40
No Additions 39 38 40

Table 2: Human evaluation scores for the Mixtral and
Command-R models.

5.2.1 Fluency issues
We speculate that the fluency issues majorly arise
due to the unknown entity type. We provide
an example of such an instance in Figure 2.
In this case, it is evident that the entity name
“What_Ever_Happened_to_Baby_Jane?” or prop-
erties (publisher, followedBy, author,
releaseDate) may not help in identifying the en-
tity type. Here, the entity may be a movie, book, or
literary article. While humans may be able to infer
the entity type, we observed cases where LLMs fail
to infer entity type or gender from the properties.

5.2.2 Formatting issues
The other major error we observed was that both
Mixtral and Command-R can add extra tokens
at the beginning of their responses. The most
commonly observed beginning tokens for Mixtral
are: “It is mentioned that” and for Command-R:
“Modified tripleset:”. Further, we observe that
Mixtral fails to follow the formatting instructions
for almost 800 instances out of 1800 total instances.
For these 800 instances, we could not extract
the verbalization based on our postprocessing steps.

Based on the human evaluation and error anal-
ysis results, we choose Mixtral as our primary
model and Command-R as the secondary model.

6 Conclusion

In this paper, we describe our solution for the data-
to-text generation shared task. We propose a sym-
bolic retriever method – PropertyRetriever, to
retrieve better examples for Data-to-text genera-
tion problems. We further explore the capabili-
ties of two state-of-the-art LLMs, Mixtral and
Command-R. Combining the insights from our hu-
man evaluation study and error analysis, we pro-
pose an ensemble system as our final solution.

In the future, we would like to explore multi-
turn correction and planning approaches. We be-
lieve such approaches may allow the model to self-
correct its formatting errors and generate verbaliza-
tions with better fluency.

Limitations

Our findings require further experimentation on
more datasets since we only test our approach on
the GEM’24 shared task datasets. We also did
not optimize the prompt for each model separately.
Optimizing prompts individually for each model
can lead to better results. Further, we also use the
quantized version of the LLMs which may have af-
fected the accuracy. Our comparison of the 20 sam-
ples for deciding between the dense retriever and
PropertyRetriever can be further improved by
doing a more systematic study. Lastly, our human
evaluation study was conducted on a very small
subset. For more reliable results, we suggest con-
ducting the human evaluation study on a larger
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subset.
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A Appendix

A.1 Final Prompt
###Instruction###: just verbalize the
following data without beginning prompt
in a natural, human-like manner.

###Data### : {{ data }}

###Criteria###: Follow these criteria
carefully:
1. Keep the generated sentences in a flow
and the generated text should sound
human-like.
2. Copy the entities correctly from the data.
3. Replace '\_' with a space.
4. Use the punctuation marks correctly
without any extra spaces.

You may look at the following examples for
the writing style, but only for style.
Do not copy anything from the following
examples, otherwise you will be penalized.

###Examples###:
Ex-1: {{ ex_1 }}
Ex-2: {{ ex_2 }}
Ex-3: {{ ex_3 }}

###Important Notes###:
1. The verbalization output MUST only
contain the verbalization of ###Data###
in a natural, human-like manner.
2. Ensure that generated ###Data###
verbalization MUST be between
<verbalization> and </verbalization> tags.

A.2 Human Annotation guidelines

In this task, the model is given data triplets, where
each triple is made of Subject | Property | Object
and is asked to verbalize this data in a natural,
human-like manner.

We need your help to evaluate the model re-
sponses based on the following criteria:
Grammaticality: The text is free of grammatical
and spelling errors.
Fluency: The text flows well and is easy to read;
its parts are connected in a natural way.
No-Omissions: ALL the information in the table
is present in the text.
No-Additions: ONLY information from the table
is present in the text.

We would like you to focus the most on Flu-
ency and Grammaticality. No-Omissions and No-
Additions are binary criteria.
Grammaticality (1-3 scale):

• 1 (Low): The response contains severe gram-
matical errors that significantly hinder under-

https://github.com/masci/banks
https://github.com/masci/banks
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-6557
https://doi.org/10.18653/v1/W18-6557
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.48550/arXiv.2312.11805
https://doi.org/10.48550/arXiv.2312.11805
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/2023.emnlp-main.615
https://doi.org/10.18653/v1/2023.emnlp-main.615
https://doi.org/10.18653/v1/2023.emnlp-main.615
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standing. This may include missing words,
subject-verb disagreement, incorrect verb
tenses, or nonsensical sentence structure.

• 2 (Medium): The response may contain some
grammatical errors, but they are not so severe
as to completely obscure the meaning. These
errors might include misuse of articles ("a,"
"an," "the") or prepositions, or minor subject-
verb agreement issues.

• 3 (High): The response is free of grammati-
cal errors and adheres to the rules of English
grammar.

Fluency (1-3 scale):

• 1 (Low): The response is difficult to read due
to awkward phrasing, choppy sentence struc-
ture, or lack of variety. It may sound unnatural
or unclear.

• 2 (Medium): The response reads mostly
smoothly, but there may be occasional awk-
ward phrasing or clunky sentences.

• 3 (High): The response reads effortlessly
and sounds natural. The sentences are well-
constructed and varied, and the overall flow
of ideas is clear and logical.

No-Omissions - Please choose 0 to indicate Miss-
ing Information or 1 to indicate No Missing Infor-
mation.
No-Additions - Please choose 0 to indicate Ex-
tra Information/Hallucinated Information or 1 to
indicate No Extra Information.
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