
Proceedings of the 17th International Natural Language Generation Conference: Generation Challenges, pages 100–111
September 23 –27, 2024. ©2024 Association for Computational Linguistics

100

OSU CompLing at the GEM’24 Data-to-Text task

Alyssa Allen and Ash Lewis and Yi-Chien Lin and Tomiris Kaumenova and Mike White
{allen.2334, lewis.2799, lin.4434, kaumenova.1, white.1240} @osu.edu

Abstract

This paper details experiments conducted for
completing the GEM 2024 Data-to-Text task
for a WebNLG dataset (Gardent et al., 2017).
We show that model performance varies greatly
across English, Spanish, Chinese, and Russian.
Data filtering was done with automatic model
judgments via error detection, which performs
differently per language. We report English
and Spanish dev set results for a data filtering
and knowledge distillation approach to generat-
ing natural language outputs for sets of triples
across a variety of domains. Specifically, we
compare three generation conditions: 1) few-
shot prompting with ChatGPT (GPT4), 2) fine-
tuning Llama2 on the unfiltered dataset, and
3) fine-tuning Llama2 on a filtered version of
the dataset. Russian and Chinese efforts did
not result in submissions due to inconsistent
or incoherent translations being produced in
either the data synthesis or final generation
stages. We provide details on these shortcom-
ings but largely focus on Spanish and English
efforts that align with our task submissions. We
ultimately submitted outputs in English and
Spanish that were generated using a version of
Llama2 fine-tuned on a filtered dataset.

1 Introduction

In the WebNLG 2020 Challenge, the OSU system
(Li et al., 2020) and others achieved nearly flaw-
less English performance by carefully fine-tuning a
pretrained model on the training set, though perfor-
mance in Russian was remarkably poor by compar-
ison. Since then, large language models (LLMs)
like OpenAI’s ChatGPT, Anthropic’s Claude, and
Google’s Gemini have exhibited increasingly re-
markable performance on a wide variety of tasks in
multiple languages using in-context learning (i.e.,
few-shot generation), potentially obviating the need
for human annotated training data. In this work,
we first examine ChatGPT’s few-shot performance
on this data-to-text task — converting WebNLG-

style logical triples to text — in a variety of lan-
guages and find several limitations in cases with
lower-resource languages. Coupling these limi-
tations with the high computational and financial
costs, as well as lack of consistent behavior across
time, makes ChatGPT difficult to rely upon for
such tasks across languages. In this work, we lever-
age the robust capabilities of ChatGPT but attempt
to offset the aforementioned downsides via knowl-
edge distillation with smaller, more economical
open source models.

Following the example of Lewis and White
(2023), we leverage few-shot prompting to first
generate training data using the ChatGPT API, then
to detect errors in the generated data and filter them
out. The filtered and unfiltered datasets are then
used to fine-tune a Llama-2 (Touvron et al., 2023)
model for the data-to-text task. This strategy was
employed for English, Spanish, Russian, and Chi-
nese data but we ultimately found that it was not
effective for the latter two.

Specifically, Chinese fine-tuning Llama2 (pre-
trained on Chinese) on the initial filtered and un-
filtered datasets yielded inconsistent outputs. This
paper therefore describe alternative data filtering
approaches and initial dev set results.

On the other hand, Russian experimentation was
the least fruitful as there were numerous errors in
the data synthesis and filtering stages. This pa-
per describes some of the obstacles faces for this
language and details our efforts to resolve these
issues.

This work shows that filtering synthesized train-
ing data (for Spanish and English conditions) is
a promising strategy for generating fluent, infor-
mative, and concise outputs. Initial dev set results
indicate that improvements to our filtration meth-
ods would ultimately maximize performance. By
employing a knowledge distillation approach, we
capitalize on ChatGPT’s expertise while lowering
overall cost of generation by using an open-source

101

model like Llama2.

Our work also describes shortcomings of LLMs
in completing this task for Chinese and Russian. By
describing various data filtering efforts, we show
potential paths forward in generating fluent and
grammatically correct outputs across languages.

2 Related Work

The strategy of knowledge distillation in which we
use ChatGPT to generate synthetic data, apply au-
tomatic data filtering methods, and use the filtered
data to train a downstream model is most closely
related to the work of Lewis and White (2023) in
which they use the same general approach to create
a virtual tour guide for a museum. Kim et al. (2023)
use GPT-3 to construct a conversational dataset for
distilling a smaller T5 conversational model in a
similar fashion, focusing on social conversation fil-
tered for safety. Lewis and White’s (2023) setting
involves retrieval augmented generation (RAG) and
both of these works involve chat functions, while
our work here applies knowledge distillation and
filtering in a data-to-text task.

Schneider et al. (2024) explore the viability of us-
ing LLMs, both with few-shot prompting alone and
fine-tuning, for the task of semantic parsing in a
conversational setting and find that the recent mod-
els are able to perform reasonably well on the task,
though they investigate English only. Our work
also explores performance on other languages.

Madaan et al. (2023) use a self-refine approach
to refine synthetic data, which, while not immedi-
ately relevant to this work, aligns with our efforts to
refine synthetic data to improve the overall training
set. Other works that have utilized knowledge distil-
lation for seq2seq models include Tang et al. (2019)
and Chen et al. (2020), who both explore distill-
ing BERT’s bidirectional encoder knowledge into
a seq2seq model for generation. Our method can
also be viewed as the first step in an approach com-
bining knowledge distillation with self-training,
not unlike Heidari et al. (2021), who implement
self-training using an acceptability classifier (Ba-
tra et al., 2021) and ultimately distill fine-tuned
BART (Lewis et al., 2019) seq2seq models. More
recent approaches also explores using LLMs in
self-training with various refinements to how ac-
ceptability classifiers are incorporated (Gulcehre
et al., 2023; Yuan et al., 2024).

3 Methodology

We used the WebNLG dataset (Gardent et al., 2017)
to synthesize a training set, including factual, coun-
terfactual, and fictional examples. We then exper-
imented with few-shot prompting, data filtering,
and knowledge distillation via fine-tuning.

Target languages were English, Spanish, Chi-
nese, and Russian. This section provides an
overview of methods that apply to all target lan-
guages. Section 4 details language-specific efforts
that vary depending on problem cases. Section 4
for Spanish and English also provides automatic
evaluations on dev set results and initial insights
based on those findings.

3.1 Dataset Conditions

This describes how each training data for each
task condition is generated. Factual examples in-
clude sets of triples given in the WebNLG dataset
(Gardent et al., 2017) across a variety of domains.
For fictional and counterfactual data synthesis, we
followed processes and definition outlined by the
GEM task description. Our tactics differ from Ax-
elsson and Skantze’s (2023) knowledge-graph ap-
proach in that we chose to leverage the same ideas
of entity relationships as is present in the aforemen-
tioned knowledge-graph approach, but manually
assigned relationship (which we’ll call predicate
types) in order to more quickly generate our train-
ing data for this task.1

Fictional and Counterfactual examples were cre-
ated by first manually assigning a type for each
unique predicate (or second element) in a factual
data set triple. After each unique triple across do-
mains in the dataset were identified, a sample triple
was selected randomly for that predicate. We then
used our best judgment to create general categories
that reflect the type of element needed to accom-
pany the predicate. For example, if the predicate is
birthDate, the author doing the annotations would
see a triple such as Alan_Bean | birthDate |
1932-03-15. The annotator then assigns predicate
birthDate with type Person, Location.

A predicate type consists of a Subject and Object
label, indicating the relationship between the first
and third element within a triple with its predicate.
This predicate type indicates that the first element

1Had the organizers made synthetic input triples available
for development, or code to generate such triples, it would
have made it possible to spend more of the limited develop-
ment time on the text generation portion of the task.

102

(i.e., subject) needs to be a person and the third
element (i.e., object) should be a location.

After each unique predicate (372 predicates) is
assigned a type, a set of fictional elements for each
subject and object is made. For each unique sub-
ject and object label, we prompt ChatGPT (gpt-
3.5-turbo). From the example above, the prompts
would be ‘Generate 20 realistic sounding People’
and ‘Generate 20 realistic sounding Locations’. Us-
ing the subject and object labels for each generated
list, fictional elements can be swapped into the orig-
inal factual triple sets. See Appendix A for more
details.

Counterfactual examples were created by using a
similar method, except instead of prompting Chat-
GPT, the list of potential element replacements
were created by keeping track of first elements
with the same subject or object label. Any first
element of a given type could be swapped with an-
other first element of that type. The same was done
for elements in the third position in the triple.

Due to time constraints, type assignments did not
change across domains per predicate. Therefore,
some counterfactual and fictional swaps yielded
less intuitive triple sets. For example, creator is
a predicate in two domains: ‘Food’ and ‘Comic-
sCharacter’. If creator is given the predicate type
Food, Person in the labeling process, the swap
could result in one triple relating to food and the
rest if the triple set referring to a show. This dis-
connect makes the model less likely to generate
concise and fluent outputs. Ultimately, these ex-
amples were not noticeably evaluated differently
by the model than more logical triple sets. These
annotations were also used to gain a rough sense of
auto-evaluation accuracy. Further refinement of our
swapping processes could help elevate the quality
of our training data.

3.2 Data Synthesis and Knowledge Distillation
Using the training data, we prompt ChatGPT (3.5-
turbo or 4 depending on target language) to gen-
erate natural language sentences per triple set. In-
structions were given in the target language (see
Appendix B). Dataset triples were all in English.
Table 1 shows training set sizes for each lan-
guage. Unfiltered, synthesized training sets for
English, Chinese, and Russian include 1500 exam-
ples. Spanish training set size was 8,643 examples
(or 20% of all possible examples provided in the
WebNLG dataset). The Spanish data is more robust
than the other languages because we found initial

success generating coherent outputs, but wanted
to test how more data could improve model per-
formance for Spanish. Early experimentation with
Russian and Chinese was less successful and there-
fore more time needed to be spent on process versus
data quantity. We acknowledge that OpenAI does
not provide a way to produce outputs in a repro-
ducible manner. To increase transparency in our
process that uses ChatGPT outputs as training data,
we made the synthetic data generated by ChatGPT
publicly available on GitHub.2

Filtering should exclude only examples with
poor quality. However, the automatic filtering
method described in Section 3.3 is noisy, cutting
out a lot of good examples along with bad ones.
Thus, one would expect that the larger the size of
the training set, the less it matters to mistakenly
cut out some good items, as there remain plenty
of others, leaving more room to see a benefit of
using cleaner data with relatively fewer bad items
remaining. Based on the data set sizes in Table 1,
we expect filtering to work best on Spanish since it
is nearly 6x larger than Chinese and English data
sets.

We fine-tuned Llama2 on this data set to pro-
vide us with a baseline ahead of filtering (see Sec-
tion 3.3). As discussed in Section 4, each language
leveraged various pretrained versions of Llama2.

3.3 Data Filtering via Error Detection

Following data synthesis, we experimented with
filtering the training data discussed in Section 3.2.
We used ChatGPT (GPT 4) as an error detector
where we asked the model to determine if a gener-
ated text faithfully and fluently corresponded to a
given triple set (see Appendix C for full prompts).

To evaluate the error detection capabilities of
ChatGPT, the first author manually annotated a
small set of 99 examples across categories (factual,
counterfactual, and fictional) for English and Span-
ish. 8 errors were found in Spanish and 9 errors
were found in English.

Out of 99 Spanish examples, ChatGPT’s (GPT4)
performance as an error detector yielded 50% recall
and 36% precision (see Table 2). Out of 99 English
examples, error detection yielded 44% recall and
31% precision. These numbers exceed the actual
error rate of about 10% in both languages which
means the error detector performance is far from
ideal but well above chance.

2https://github.com/nicalin/2024-GEM-data

https://github.com/nicalin/2024-GEM-data

103

Language Unfilt. Size Filt. Size Filt. FA Filt. CFA Filt. FI
English 1,500 1,315 500 378 437
Chinese 1,500 1,172 463 324 385
Spanish 8,643 7,607 2,735 2,286 2,586

Table 1: Size of unfiltered and filtered training data sets. For filtered data, this table also shows how many examples
were included across languages and per category — factual (FA), counterfactual (CFA), fictional (FI).

Agreement (%) Error Detection
Language Overall FA CFA FI Recall Precision F-Score
English 87 90 80 90 0.44 0.31 0.36
Spanish 88 91 76 97 0.50 0.36 0.42

Table 2: Agreement and error detection results for training data sets across languages and triple set categories —
factual (FA), counterfactual (CFA), fictional (FI) — for model-based judgments.

As seen in Table 2, counterfactual cases had the
lowest accuracy in both English and Spanish. Qual-
itatively, the model labeled correct counterfactual
cases as incorrect when it wanted to correct the
facts or if there were conflicting dates in the triple
set. Consider the example in Figure 1.

In the above example, the generated text is faith-
ful to the information in the triples. The evaluator
is unable to ignore real-world knowledge. This
output is deemed as incorrect because of factual
contradictions.

Performance could likely be improved with more
nuanced evaluation prompts or a refined process
for creating the counterfactual triples. Time was a
constraint in making these adjustments.

Fictional cases had higher agreement than ex-
pected due to fewer errors being in the fictional cat-
egory compared to factual or counterfactual. There-
fore, the agreement between model and author was
primarily for correct cases instead of on errors.

Cases that passed the filter are added to a vali-
dated dataset. This version of the training data is
then used to fine-tune Llama2. Russian experimen-
tation did not successfully complete the filtering
stage (discussed in Section 4.4). Outputs from
Llama2 (fine-tuned on the filtered data) for English
and Spanish were ultimately submitted.

4 Experiments

This section details language-specific efforts
and offers further insights as to how model
performance differed per language.

4.1 English

Experimentation with English on data synthesis
and filtering followed the methods described in
Section 3. This section describes dev set results for
English. The dev set consists of 1,998 examples
(666 per category). Our English submission for this
task was generated using Llama2 fine-tuned on the
filtered dataset.

4.1.1 Automatic Evaluation
Since our dev set did not have gold standard out-
puts, we could not use reference-based methods
for automatic evaluation. We instead employed
the same error detection method as we used for
filtering (Section 3.3) in order to compare experi-
mental methods within a target language. Few-shot
prompting with Llama2 yielded inconsistent out-
puts. For example, common output errors were
regurgitating the triple set and printing ‘\n’ repeat-
edly. These errors were not present in the fine-
tuning conditions. Table 3 shows the percentage of
‘good’ outputs per category. As shown in Table 3,
dev set results are nearly equal for unfiltered and
filtered Llama2 fine-tuning conditions with 77%
and 75% (respectively) of the outputs being judged
as faithful to their corresponding triple sets.

4.1.2 Analysis
To quickly check efforts during the task, we per-
formed an automatic evaluation on a small dev set
of about 120 items that led us to believe a filtering
approach would yield higher quality results. Re-
sults shown in Table 3 were conducted after the
task deadline. Factual cases across conditions out-
performed counterfactual and fictional categories.
Counterfactual cases across conditions showed the

104

TRIPLES: France | country | Jinnah_International_Airport
GENERATED TEXT: Francia es el país donde se encuentra ubicado el Aeropuerto Internacional Jinnah.
ENG TRANSLATION: France is the country where Jinnah International Airport is located.
CHATGPT JUDGMENT: Bad. The triple suggests that Jinnah International Airport is in France, which is incorrect. Jinnah
International Airport is in Pakistan, not in France.
ANNOTATOR JUDGMENT: Good.

Figure 1: Example of a generated output in Spanish that is considered by the authors to be a ‘good’ example, but the
evaluator deemed it ‘bad’. As seen in the CHATGPT JUDGMENT, the evaluator labels the output as incorrect due
to the counterfactual nature of the triple.

‘good’ Judgments (%)
Condition Overall FA CFA FI
Eng_Unfiltered_LL 77 91 65 74
Eng_Filtered_LL 75 88 65 72
Eng_FewShot_GPT 84 97 72 83

Table 3: Automatic evaluation English dev set results for filtered (Llama2), unfiltered (Llama2), and few shot
(GPT4) conditions. Percentages represent how many generated outputs were judged as faithful to its triple set input.
Results are shown overall and across categories Factual (FA), Counterfactual (CFA), and Fictional (FI).

‘good’ Judgments (%)
Condition Overall FA CFA FI
Esp_Unfiltered_LL 79 92 71 75
Esp_Filtered_LL 81 92 72 77
Esp_FewShot_GPT 89 98 82 88

Table 4: Automatic evaluation for Spanish dev set for filtered (Llama2), unfiltered (Llama2), and few shot (GPT4)
conditions. Percentages represent how many generated outputs were judged as faithful to its triple set input. Results
are shown overall and across categories Factual (FA), Counterfactual (CFA), and Fictional (FI).

worst performance. Both Llama2 conditions per-
formed worse than ChatGPT.

Further experimentation with filtering is needed
to improve over an unfiltered fine-tuning approach.
Overall, filtering the data slightly decreased ‘good’
judgments of English outputs, from 77% to 75%.
As mentioned in Section 3.2, the smaller the train-
ing dataset is, the more a noisy filtering method
will likely hinder performance results. Therefore,
the filtering method was not as effective on the
smaller English dataset as it was on the larger Span-
ish dataset (see Table 1).

We expect that a more carefully orchestrated fil-
tration methodology could yield better results and
further work explore better ways to utilize LLMs
for this task via prompting or perhaps by other fine-
tuning strategies. Based on results in Section 4.2.1,
where the filtering condition improved upon the
unfiltered condition, we expect that increasing the
training data size for English would improve results
for the filtered condition.

Furthermore, we find that using ChatGPT as an
evaluator is helpful for obtaining rapid judgments
but is not fully reliable. Table 3.3 shows that agree-

ment with an annotator (the first author) is high but
imperfect, particularly in the counterfactual cases.
Because we used ChatGPT in a similar way for
our filtration methodology, it follows that it too is
imperfect. Figure 2 shows an example of disagree-
ment between annotator and model judgments for
a counterfactual case.

Because we found lower agreement with author
judgments for the CFA items (see Table 2), we ex-
pect the error rate to be somewhat inflated in these
automatic evaluation results shown in Table 4. That
said, we still expect the CFA items to be the most
difficult, and cursory inspection reveals plenty of
real errors in the text, as seen in Figure 2. Fur-
ther experimentation with explicitly prompting the
system to ignore real-world facts could lead to im-
proved CFA case results.

4.2 Spanish
Experimentation with Spanish followed the meth-
ods described in Section 3. We used a version of
Llama2 pretrained on Spanish3 for all Spanish ex-

3https://huggingface.co/clibrain/
Llama-2-7b-ft-instruct-es

https://huggingface.co/clibrain/Llama-2-7b-ft-instruct-es
https://huggingface.co/clibrain/Llama-2-7b-ft-instruct-es

105

TRIPLE: Chicago | isPartOf | Linn_County,_Oregon
TEXT: Chicago is part of Linn County, Oregon.
CHATGPT JUDGMENT: Bad. There is a geographical inaccuracy as Chicago is not part of Linn County, Oregon; it is in fact,
a city in Illinois. Therefore, the information provided in the text contradicts established facts and cannot be corrected without
changing the original triples.
ANNOTATOR JUDGMENT: Good.

Figure 2: Example of a generated output in English that is considered by the authors to be a ‘good’ example, but the
evaluator deemed it ‘bad’. As seen in the CHATGPT JUDGMENT, the evaluator labels the output as incorrect due
to the counterfactual nature of the triple.

periments. Our Spanish submission for this task
was generated using Llama2 fine-tuned on the fil-
tered dataset.

This section describes the Spanish dev set results.
As described in Section 3.1, factual inputs are com-
piled from the WebNLG dev set (Gardent et al.,
2017) and we synthesized examples for fictional
and counterfactual categories. Our dev set consists
of 1,998 examples (666 per category).

4.2.1 Automatic Evaluation

Error detection (described in Section 3.3) was used
for data filtering. Few-shot prompting with Llama2
yielded inconsistent outputs. As seen in Table 4,
fine-tuning with our full training set yielded 79%
‘good’ judgments during the automatic evaluation.
Fine-tuning on a filtered dataset yielded 81% ‘good’
judgments. Using ChatGPT (GPT4) to generate
outputs yielded 89% ‘good’ judgments.

Unlike the English case, this method resulted in
some improvement for counterfactual and fictional
conditions, thereby increasing the overall accuracy
in Spanish.

4.2.2 Analysis

Similar to the process mentioned in Section 4.1.2,
this evaluation was conducted on a substantial dev
set after the deadline for this task. Within the scope
of the task, we conducted an initial automatic eval-
uation on a small dev set of about 90 examples,
where results were comparable for the two fine-
tuning conditions.

Factual cases yielded the highest percentage of
‘good’ cases across conditions. Counterfactual
cases were also the worst performing across condi-
tions. This trend is consistent with trends found in
English results, see Table 4.

Results for the GPT condition shown in Table 3
and Table 4 are surprising given English’s pre-
sumed greater prevalence in ChatGPT’s training
data. The reason for Spanish results outperforming
English results is unknown.

Of note, as mentioned in Section 3.2, the Span-
ish training dataset was significantly larger than
the training set used for any other language (see
Table 1). This increase in training data could have
led to overall improvement in filtered (79%) vs.
non-filtered (81%) conditions for Spanish, but not
English. To further improve filtered condition per-
formance, further refinement of filtration method-
ology is needed. More training data could also im-
prove results for both filtered and unfiltered model
conditions.

4.3 Chinese

For Chinese, we used the same data synthesis meth-
ods as described in Section 3. We ultimately at-
tempted to fine-tune a version of Llama2 trained on
Chinese (Zefeng Du, 2023) with filtered Chinese
data, but were unsuccessful in generating consis-
tent, high-quality results. One recurring issue with
dev set results was that Llama2 would provide addi-
tional narration to the outputs such as: ‘好的，让
我来给您介绍一下... (English translation: Okay,
let me introduce you to...)’.

Due to the time constraints, we were not able to
investigate the cause of this issue or otherwise im-
prove our fine-tuned model. While we did not sub-
mit Chinese results to this task, this section details
experimentation with data filtering for Chinese.

4.3.1 Chinese Data Synthesis and Filtering
As mentioned in Section 3, we used ChatGPT
(GPT 4) for data synthesis and filtering via few-
shot prompting. In addition to generating one Chi-
nese output per triple set (One-to-One), we exper-
imented with generating five Chinese outputs per
triple set (One-to-Many), with the aim of increas-
ing the size of the filtered dataset (see Section 3.3
for error detection and filtering methods).

We also experimented with different data fil-
tering methods using GPT 4 for One-to-One and
One-to-Many datasets. For One-to-One, we experi-
mented with two data filtering methods: (1) error
detection and (2) reconstruction. For One-to-Many,

106

we experimented with likelihood rankings.

Filtering via Error Detection

Filtering via error detection leverages methods out-
lines in Section 3.3. We provided ChatGPT with a
triple set and a Chinese output. We then prompted
ChatGPT to judge outputs as ‘good’ or ‘bad’ (See
Appendix C for full prompt). In addition to ask-
ing ChatGPT to provide judgments, we also ex-
perimented with two different settings: (1) asking
ChatGPT to only provide the judgment (i.e., ‘good’
or ‘bad’) and (2) asking ChatGPT to provide a cor-
rection for any output labeled ‘bad’.

Filtering via Reconstruction

For filtering via reconstruction, we employed Chat-
GPT as a reverse model to reconstruct the English
triple set from a given Chinese synthesized output.
In principle, if the reconstructed English triple sets
are overly different (see Section 4.3.2) from the
corresponding original triple sets, the synthesized
outputs are likely to have poor quality and should
be discarded.

Filtering via Likelihoods

For the One-to-Many dataset, we used the ChatGPT
logprobs parameter to assign a pair likelihood
scores to each output per triple set. Specifically,
we treated this process as a binary classification
task. Each candidate output per triple set received
two log probability scores (likelihood that output
is labeled ‘good’ and likelihood that output is la-
beled ‘bad’). The output with the highest ‘good’
score compared to other candidate outputs for a
given triple set was kept as the output for that triple
set. An output was selected at random if multiple
candidates received the same score.

4.3.2 Automatic Evaluation
Automatic evaluation for each filtering method
discussed in Section 4.3.1 follows error detection
methods as described in Section 3.3. In order to
justify automatic evaluation results, we compare
model judgments with author judgments. For each
data filtering method, we manually annotated 30
examples to compare filtering method performance.
The sets of annotated examples differ per filtering
method. Therefore, the comparisons in Table 5 are
not directly comparable.

We excluded the odd cases in the 30 examples,
resulting in 29, 30, 29, and 30 annotated examples
respectively for model judgment with correction

(Judge/Corr), model judgment without correction
(Only_Judge), reconstruction, and likelihood. Ta-
ble 5 shows precision, recall, and agreement result-
ing from author judgment compared to ChatGPT’s
judgment.

Judge/Corr and Only_Judge model outputs are
synonymous with filtering method judgments. For
reconstruction, we did not reach a stage of auto-
matic filtering based on similarity of the recon-
structed triple set to the original triple set. There-
fore, the annotator manually judged each recon-
structed triple set. Reconstructed triple sets deemed
as faithful to the original triple set are expected
to yield faithful natural language outputs as well.
These judgments on the reconstructed triples (i.e.,
acting as pseudo–model judgments) are compared
to the original author annotations.

For filtering via likelihood, an output is labeled
‘bad’ if it has a higher likelihood for ‘bad’ instead
of ‘good’. Similarly, the output is labeled ‘good’ if
it has a higher likelihood for ‘good’ instead of ‘bad’.
These judgments serve as the model judgments to
compare with the author annotations.

Table 5 shows results of model agreement with
the manual annotations. As shown in Table 5, filter-
ing with reconstruction yielded the best precision
and recall, albeit with manual similarity judgment
of triple sets.

4.3.3 Analysis
In the Judge/Corr condition, outputs which were
incorrectly judged as ‘bad’ were either counterfac-
tual or fictional. Cases judged incorrectly as ‘good’
were most often due to missing information in the
triple sets, hallucination, or incorrectly represent-
ing the relation.

In the Only_Judge condition, the outputs incor-
rectly judged as ‘bad’ by ChatGPT were counterfac-
tual and were often due to the model fact-checking
the output. Outputs with incorrect ‘good’ judg-
ments were mostly due to incorrect or disfluent
translations of the relations, which were not de-
tected by ChatGPT.

In the reconstruction condition, outputs which
were incorrectly judged as ‘bad’ were across all
three categories, mainly due to the reconstructed
triple set missing information. The reconstruction
condition also incorrectly judged some outputs as
‘good’, mainly because the reconstructed triple sets
were not able to show disfluency and incorrect
translation in the synthesized sentences.

In order to automate the reconstruction filtering

107

Filtering Method Precision Recall Agreement (%)
Judge/Corr 0.33 0.50 79
Only_Judge 0.50 0.40 83
Reconstruction 0.63 0.56 76
Likelihood 0.33 0.25 83

Table 5: Precision, recall, and agreement of the different data filtering methods for the Chinese data. Precision and
recall are for error detection. Judge/Corr, Only_Judge, and Reconstruction methods are One-to-One. Likelihood
method is One-to-Many.

process, we would need a process for comparing
the reconstructed triple set to the original triple set.
Additionally, an added complication of Chinese is
that some Chinese terms can have multiple English
translations. Therefore, translating from English to
Chinese and then back to English leaves increasing
room for error. Using LLMs to automating the pro-
cess of comparison could be a potential direction
to explore in future work.

Lastly, for the likelihood condition, the final
candidates incorrectly detected as errors are either
counterfactual or fictional. The main error found
in this case was incorrect translations and missing
information.

Due to time constraints, data filtering via er-
ror detection (without correction) was the filtering
method ultimately used to create the filtered Chi-
nese training data for fine-tuning. However, given
more time to refine processes, filtering via recon-
struction could potentially improve model perfor-
mance.

4.4 Russian

We employed few-shot prompting to synthesize
Russian outputs for the training data triple sets.
This method involved providing GPT-4 with 5 ex-
amples (1 factual, 2 counterfactual and 2 fictional)
in Russian. The model generated sentences often
exhibited unnatural phrasing, incorrect case end-
ings, as well as inconsistencies and inaccuracies in
translating proper names (see Appendix D).

Grammatical issues persisted after attempting
to repair errors via automatic judgment and error
correction. We provided ChatGPT with a few-shot
prompt where the examples included faulty out-
puts, suggested corrections, and then the corrected
version of the outputs. We also prompted ChatGPT
to make judgments without repairing the errors. In-
structions were given in Russian. The model failed
to consistently detect and correct errors in the syn-
thesized data. Low model performance indicates
the need for more sophisticated techniques and

training datasets to improve the quality of Russian
text generation in future work.

4.4.1 Analysis
Our primary approach for synthesizing Russian
data was few-shot prompting which did not yield
satisfactory results. The attempt to use model-
generated judgments to filter and correct outputs
did not sufficiently mitigate the issue of fluency.
In future work, advanced translation models could
assist in synthesizing Russian data by translating
English outputs. Additionally, further experimenta-
tion with fine-tuning approaches using a small man-
ually constructed set of Russian examples could
improve the quality of generated sentences.

5 Preliminary English Results

The task organizers provided preliminary results for
the English data set (Mille et al., 2024). Results are
for factual, counterfactual, and fictional cases for
the WebNLG test set (i.e., the ‘seen’ subtask) and
the WikiData test set (i.e., the ‘unseen’ subtask).

As expected, our team’s best performing cate-
gory was WebNLG FA with a BLEU score of 30.03.
WebNLG FI performed worse than WebNLG CFA
with BLEU scores of 21.44 and 24.45, respectively.

The seen results for FA and FI results were
higher than the unseen ones in the same categories
with BLEU scores of 24.97 for unseen FA and 16.9
for unseen FI cases.

Given aforementioned challenges with our CFA
training data in terms of potentially nonsensical
triple sets, it is not surprising that CFA unseen
BLEU score (27.06) outperformed the seen BLEU
score (24.45).

Fictional cases were our lowest performing for
both subtasks. This may be due to the system’s
desire to adhere to real-world facts. As mentioned
in Section 4.1.2, more explicit prompting could
have led to improved performance.

Compared to other systems that completed this
data-to-text task, our system ranked in the mid-

108

dle across categories. A difference that potentially
led other systems to outperform our system is that
we opted out of using existing supervised training
data. Instead, we chose to use a limited amount
of few-shot synthetic data generated by ChatGPT.
Because our efforts expanded across English, Span-
ish, Chinese, and Russian, we avoided tactics that
may give English an advantage over the other lan-
guages of interest (for which the same supervised
training data was not available). We could have
also experimented with generating more few-shot
synthetic data and using self-training methods to
improve our system’s performance but did not due
to expense and lack of time.

While we did not have access to Spanish results
at the time of publishing, we expect overall im-
proved performance due to increased training data
set size compared to the English training set.

6 Discussion and Conclusion

For all languages, newer state of the art models
such as Llama3 (AI@Meta, 2024) could have im-
proved output performance — specifically in the
cases of Russian and Chinese where incorrect trans-
lations were a large portion of errors qualitatively
found.

We also chose to not mention in the evaluation
prompts how to handle non-factual triple sets and
corresponding output being tested. The evaluations
for counterfactual and fictional cases could poten-
tially have been improved if the prompt included
explicit instructions to ignore any non-factual in-
formation and focus on the representation of the
triple sets in the output.

A data synthesis and knowledge distillation ap-
proach yielded promising results in English and
Spanish. ChatGPT was successful in synthesizing
training data, but was less-than-ideal in acting as
an evaluator — particularly for Chinese. ChatGPT
was less successful in generating usable synthetic
data for Russian.

Further work could focus on refining our ap-
proach to data filtering and experiment with self-
training, which could potentially yield results com-
parable to or even exceeding few-shot prompting
with ChatGPT using a cheaper and more reliable
open source model. Based on the experiments pre-
sented in this paper, we see that LLMs perform
better on data-to-text tasks for higher resource lan-
guages (English and Spanish) and struggle with
others (Chinese and Russian).

References
AI@Meta. 2024. Llama 3 model card.

Agnes Axelsson and Gabriel Skantze. 2023. Using
large language models for zero-shot natural lan-
guage generation from knowledge graphs. Preprint,
arXiv:2307.07312.

Soumya Batra, Shashank Jain, Peyman Heidari, Ankit
Arun, Catharine Youngs, Xintong Li, Pinar Donmez,
Shawn Mei, Shiunzu Kuo, Vikas Bhardwaj, Anuj
Kumar, and Michael White. 2021. Building adaptive
acceptability classifiers for neural NLG. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 682–697,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Yen-Chun Chen, Zhe Gan, Yu Cheng, Jingzhou Liu, and
Jingjing Liu. 2020. Distilling knowledge learned in
BERT for text generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7893–7905, Online. Association
for Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating training
corpora for nlg micro-planners. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
179–188. Association for Computational Linguistics.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. 2023.
Reinforced self-training (rest) for language modeling.
Preprint, arXiv:2308.08998.

Peyman Heidari, Arash Einolghozati, Shashank Jain,
Soumya Batra, Lee Callender, Ankit Arun, Shawn
Mei, Sonal Gupta, Pinar Donmez, Vikas Bhardwaj,
Anuj Kumar, and Michael White. 2021. Getting to
production with few-shot natural language genera-
tion models. In Proceedings of the 22nd Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 66–76, Singapore and Online.
Association for Computational Linguistics.

Hyunwoo Kim, Jack Hessel, Liwei Jiang, Peter West,
Ximing Lu, Youngjae Yu, Pei Zhou, Ronan Le Bras,
Malihe Alikhani, Gunhee Kim, Maarten Sap, and
Yejin Choi. 2023. Soda: Million-scale dialogue dis-
tillation with social commonsense contextualization.
Preprint, arXiv:2212.10465.

Ashley Lewis and Michael White. 2023. Mitigating
harms of LLMs via knowledge distillation for a vir-
tual museum tour guide. In Proceedings of the
1st Workshop on Taming Large Language Models:
Controllability in the era of Interactive Assistants!,
pages 31–45, Prague, Czech Republic. Association
for Computational Linguistics.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2307.07312
https://arxiv.org/abs/2307.07312
https://arxiv.org/abs/2307.07312
https://doi.org/10.18653/v1/2021.emnlp-main.53
https://doi.org/10.18653/v1/2021.emnlp-main.53
https://doi.org/10.18653/v1/2020.acl-main.705
https://doi.org/10.18653/v1/2020.acl-main.705
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/P17-1017
https://arxiv.org/abs/2308.08998
https://aclanthology.org/2021.sigdial-1.8
https://aclanthology.org/2021.sigdial-1.8
https://aclanthology.org/2021.sigdial-1.8
https://arxiv.org/abs/2212.10465
https://arxiv.org/abs/2212.10465
https://aclanthology.org/2023.tllm-1.4
https://aclanthology.org/2023.tllm-1.4
https://aclanthology.org/2023.tllm-1.4

109

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Xintong Li, Aleksandre Maskharashvili, Symon Jory
Stevens-Guille, and Michael White. 2020. Lever-
aging large pretrained models for WebNLG 2020.
In Proceedings of the 3rd International Workshop
on Natural Language Generation from the Semantic
Web (WebNLG+), pages 117–124, Dublin, Ireland
(Virtual). Association for Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: It-
erative refinement with self-feedback. Preprint,
arXiv:2303.17651.

Simon Mille, João Sedoc, Yixin Liu, Elizabeth Clark,
Agnes Axelsson, Miruna-Adriana Clinciu, Yufang
Hou, Saad Mahamood, Ishmael Obonyo, and Lining
Zhang. 2024. The 2024 GEM shared task on mul-
tilingual data-to-text generation and summarization:
Overview and preliminary results. In Proceedings of
the 17th International Conference on Natural Lan-
guage Generation: Generation Challenges, Tokyo,
Japan. Association for Computational Linguistics.

Phillip Schneider, Manuel Klettner, Kristiina Jokinen,
Elena Simperl, and Florian Matthes. 2024. Evalu-
ating large language models in semantic parsing for
conversational question answering over knowledge
graphs. Preprint, arXiv:2401.01711.

Raphael Tang, Yao Lu, and Jimmy Lin. 2019. Natu-
ral language generation for effective knowledge dis-
tillation. In Proceedings of the 2nd Workshop on
Deep Learning Approaches for Low-Resource NLP
(DeepLo 2019), pages 202–208, Hong Kong, China.
Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,

Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-
son Weston. 2024. Self-rewarding language models.
Preprint, arXiv:2401.10020.

Longyue Wang Zefeng Du, Minghao Wu. 2023.
Chinese-llama-2. https://github.com/
longyuewangdcu/Chinese-Llama-2.

7 Appendices

A Fictional Element Prompts

The following prompts showcase the process of
creating fictional examples.

Example Predicate types

Examples are of the form - predicate: [Subject la-
bel, Object label] foundingDate: [Company, Date]
author: [Book, Author] starring: [Film, Person]

Example Prompt

Each label is then substituted into the following
prompt ‘Generate 20 realistic-sounding...’.

Creating Fictional Examples

After prompting ChatGPT, each subject or object
label has a list of options. For each example in the
factual dataset, the appropriate labels are found per
predicate and an item from the fictional element
lists for that label is selected at random. Substitions
are then made accordingly. For example:

Factual Triple
1. Siomay | ingredient | Peanut sauce
2. Batagor | dishVariation | Siomay

Predicate Types
1. ingredient: Dish, Ingredient
2. dishVariation: Dish, Dish

Fictional Triple
1. Beef enchiladas with cilantro lime
rice | ingredient | Almond flour
2. Penne pasta in creamy tomato sauce |
dishVariation | Mediterranean Chickpea
Salad

https://aclanthology.org/2020.webnlg-1.12
https://aclanthology.org/2020.webnlg-1.12
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2401.01711
https://arxiv.org/abs/2401.01711
https://arxiv.org/abs/2401.01711
https://arxiv.org/abs/2401.01711
https://doi.org/10.18653/v1/D19-6122
https://doi.org/10.18653/v1/D19-6122
https://doi.org/10.18653/v1/D19-6122
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2401.10020
https://github.com/longyuewangdcu/Chinese-Llama-2
https://github.com/longyuewangdcu/Chinese-Llama-2

110

B Generation Prompts

The following prompts were used for each language
of interest. Native speakers wrote the English, Chi-
nese, and Russian prompts. Spanish prompt was
written by an L2 Spanish speaker.

Additionally, Chinese prompt includes both in-
structions and few-shot examples. For the Chinese
prompt, only instructions are included here. For
Russian, since our Russian prompt is a few-shot
prompt consisting of 5 translated examples without
explicit instructions, we do not list the prompt here.

English
Write a text version of the info in the input. The text
should include all of the information in the triples,
and only that information. The output should be
fluent, grammatically correct, and concise.

Spanish
Analiza los siguientes ejemplos de tríos y textos. El
texto debe incluir toda la información de los tríos
y solo esa información. Además, el texto debe ser
fluido, gramaticalmente correcto y conciso. Escribe
el texto para el caso de prueba.

Chinese
请把以下每组三词词组转换成中文文字。请不
要省略任何信息或是增加任何不必要的信息。
有些三词词组可能不符合事实，但请还是把提
供的三词词组转换成中文。

C Error Detection Prompts

The following instructions were used with Chat-
GPT to evaluate the generated texts. Prompts for
English and Spanish evaluation were in English.
Results were used to determine which cases pass
the error detection filter.

English and Spanish
Examine the following triples and [Spanish] text.
The [Spanish] text should include all the informa-
tion in the triples without adding unnecessary in-
formation. The [Spanish] text should be fluent,
grammatically correct, and as concise as possible.
If the [Spanish] text is all correct, respond with
‘Good.’ If not, respond with ‘Bad.’ and explain the
error and then rewrite the answer.

Chinese
For Chinese, there are four different prompts each
filtering method (i.e., automatic judgment (with cor-
rection), automatic judgment (without correction),

likelihood, and reconstruction). The instructions
for the first three filtering methods are in Chinese
while instruction for reconstruction is in English.

Error Detection with Correction
检查以下的内容以及正文。管有些容及正文
可能不符合事，正文是应该包含所有内容里的
资讯，并且正文不能包含不必要的资讯。正文
必须流畅且文法正确。如果判断正文为完全正
确，回覆‘好’。如果有任何错误，回答‘坏’，
并且解释错误以及修改正文。

Error Detection without Correction
检查以下的内容以及正文。管有些容及正文
可能不符合事，正文是应该包含所有内容里的
资讯，并且正文不能包含不必要的资讯。正文
必须流畅且文法正确。如果判断正文为完全正
确，回覆‘好’。如果有任何错误，回答‘坏’。

Likelihood
请根据以下的内容检查每个句子。尽管有些内
容及句子可能不符合事实，正文是应该包含所
有内容里的资讯，并且正文不能包含不必要的
资讯。正文必须流畅且文法正确。如果判断正
文为完全正确，将句子归类到‘好’的类别。如
果有任何错误，将句子归类到‘坏’的类别。

Reconstruction
Convert the following Chinese text into a set of
English triples. The Chinese text might be counter-
factual. Please still try to convert the Chinese text
into English triples.

D Russian Errors

Russian
1. As shown in the example, the model exhibited

unnatural phrasing.

GENERATED TEXT: Эл-
лиот Си был летчиком-
испытателем и был выбран NA-
SA в 1962 году. Он родился 23
июля 1927 года и умер 28 фев-
раля 1966 года в Сент-Луисе.
Сейчас его статус - умерший.
ENG TRANSLATION: Elliot See
was a test pilot and was selected by
NASA in 1962. He was born on
July 23, 1927 and died on
February 28, 1966 in St. Louis.
Currently his status is dead.
CORRECTED TEXT: Эл-
лиот Си был выбран в NASA

111

летчиком-испытателем в 1962
году. Он родился 23 июля 1927
года и умер 28 февраля 1966
года в Сент-Луисе.

2. Some words, especially proper nouns, were
not properly translated.

GENERATED TEXT: Эллиот
Си, родившийся 23 июля 1927
года в Далласе, был граждани-
ном США. Он занимался про-
фессией тестового пилота. Си
учился в Университете Теха-
са в Остине, который состо-
ит в Большой 12 конференции.
Эллиот Си скончался в Сент-
Луисе.
ENG TRANSLATION: Elliot See
born on July 23, 1927 in Dallas was
an American citizen. He worked as
a test pilot. See studied at the Uni-
versity of Texas at Austin which is
a part of Big 12 conference. Elliot
See died in St. Louis.
CORRECTED TEXT: Америка-
нец Эллиот Си, родившийся
23 июля 1927 года в Далла-
се, был летчиком-испытателем.
Си учился в Университете Те-
хаса в Остине, который входит
в состав конференции Big 12.
Эллиот Си скончался в Сент-
Луисе.

3. Case endings were often generated incor-
rectly.

GENERATED TEXT: Техни-
ческим кампусом института
технологий Ачарьи был при-
знан Всеиндийским советом
по техническому образованию
(AICTE), расположенным в
Мумбаи. Институт находится
в городе Бангалор, штат Карн-
атака, который граничит с Ара-
вийским морем на западе. Ин-
ститут Ачарьи аффилирован с
Вишвесваройским технологиче-
ским университетом.
ENG TRANSLATION: The
Acharya Institute of Technology

was recognized as the ‘Technical
Campus’ by the All India Council
for Technical Education in Mumbai.
The institute is located in Banga-
lore, Karnataka, which borders
the Arabian Sea to its west. The
Acharya Institute is affiliated with
the Visvesvaraya Technological
University.
CORRECTED TEXT: Институт
технологий Ачарьи получил
статус технического кампуса от
Всеиндийского совета по техни-
ческому образованию (AICTE),
расположенного в Мумбаи. Ин-
ститут находится в городе Бан-
галор, штат Карнатака, кото-
рый граничит с Аравийским мо-
рем на западе. Институт Ача-
рьи является филиалом Вишве-
сваройского технологического
университета.

	Introduction
	Related Work
	Methodology
	Dataset Conditions
	Data Synthesis and Knowledge Distillation
	Data Filtering via Error Detection

	Experiments
	English
	Automatic Evaluation
	Analysis

	Spanish
	Automatic Evaluation
	Analysis

	Chinese
	Chinese Data Synthesis and Filtering
	Automatic Evaluation
	Analysis

	Russian
	Analysis

	Preliminary English Results
	Discussion and Conclusion
	Appendices
	Fictional Element Prompts
	Generation Prompts
	Error Detection Prompts
	Russian Errors

