
Proceedings of the 17th International Natural Language Generation Conference: Generation Challenges, pages 54–58
September 23 –27, 2024. ©2024 Association for Computational Linguistics

54

RDFPYREALB at the GEM’24 Data-to-text Task:
Symbolic English Text Generation from RDF Triples

Guy Lapalme
RALI-DIRO / Université de Montréal

CP. 6128, Succ. Centre-Ville
Montréal, Québec, Canada

lapalme@iro.umontreal.ca

Abstract

We present a symbolic system, written in
Python, used to participate in the English Data-
to-text generation task of the GEM Shared
Task at the Generation Challenges (INLG’24).
The system runs quickly on a standard laptop,
making it fast and predictable. It is also quite
easy to adapt to a new domain.

1 Introduction

This paper describes PYREALB, a system for
tackling the Data-to-text generation task of the
GEM Shared Task at the Generation Challenges
(INLG’24) (Mille et al., 2024). It uses a symbolic
approach to this problem, which has become almost
forgotten due to the popularity of neural networks
and large language models. We thought it would be
interesting to compare the results between compu-
tationally intensive methods that can sometimes be
difficult to control with a predictable, lightweight
and fast symbolic approach.

The system is conceptually simple, each RDF
triple corresponds to a sentence in which the sub-
ject and the object of a triple are mapped almost
verbatim as subject and object of the sentence. The
predicate of the triple corresponds to a verb phrase
that determines the structure of the sentence. The
system orders predicates to create a meaningful
story, and merges parts of sentences when they have
shared subjects or predicates. The final realization
is performed using PYREALB, a French-English
realizer used in some data to text applications (La-
palme, 2023).

PYREALB derived from our submission to the
WebNLG Challenge (Lapalme, 2020) 2020 in
which the text realization was performed through
an API that sent JSON structures to a JSREALB1

server that returned the final text. In this case, we
perform the realization directly in Python. Our

1https://github.com/rali-udem/jsRealB

paper provided a critical review of the data and
discussed the suitability of this competition results
in a wider Natural Language Generation setting.
These remarks are still valid, given that the data
for this shared task is the same or a textual replace-
ment of entities without changing the organization
of the RDF triples. Provisions have been made to
remove singleton sets from the evaluation in this
competition, thus making sentence realization a bit
more challenging.

2 Text Generation

We recall that an RDF triple is composed of
three URIs. In this dataset, they are replaced
by English tokens, corresponding to the sub-
ject, the predicate and the object. An ob-
ject can also be a constant string, a date or
a number. The predicate of a triple declares
a relation between the subject and the object,
such as Campeonato_Brasileiro_Série_C | country

| Brazil, in which Campeonato_Brasileiro_Série_C

is the subject (a Brazilian Soccer competition),
country the predicate indicating that the subject
takes place in the country indicated by the object
Brazil.

To illustrate our NLG process, we use the set
of triples shown in Table 1 with the corresponding
generated English sentence.

The first step in text generation is to determine
what information to include in the text. In the con-
text of this shared task, this is given: it consists of
at most 7 triples, and only 4% of the sets are made
up of seven triples. Moreover, 20% of the triples
are singletons that are easy to generate, but they
were not submitted for human evaluation. Since
the predicate of a triple indicates a relationship be-
tween its subject and object, in our case, it maps
to a verb that links the subject and object of the
sentence realizing this triple.

https://github.com/rali-udem/jsRealB

55

<entry category="SportsTeam" eid="Id649" shape="(X␣(X)␣(X)␣(X␣(X))␣(X␣(X)␣(X)))" shape_type="mixed" size="7"
>
<modifiedtripleset >

<mtriple >Estádio_Municipal_Coaracy_da_Mata_Fonseca | location | Arapiraca </mtriple >
<mtriple >Agremiacao_Sportiva_Arapiraquense | league | Campeonato_Brasileiro_Série_C</mtriple >
<mtriple >Campeonato_Brasileiro_Série_C | champions | Vila_Nova_Futebol_Clube </mtriple >
<mtriple >Campeonato_Brasileiro_Série_C | country | Brazil </mtriple >
<mtriple >Agremiacao_Sportiva_Arapiraquense | numberOfMembers | 17000 </mtriple >
<mtriple >Agremiacao_Sportiva_Arapiraquense | ground | Estádio_Municipal_Coaracy_da_Mata_Fonseca </

mtriple >
<mtriple >Agremiacao_Sportiva_Arapiraquense | manager | Vica</mtriple >

</modifiedtripleset >
</entry >

Agremiacao Sportiva Arapiraquense has Vica as manager, it has 17,000 members and plays in the Campeonato
Brasileiro Série C league. It plays in Estádio Municipal Coaracy da Mata Fonseca located inside Arapiraca.
Campeonato Brasileiro Série C is from Brazil and where Vila Nova Futebol Clube were champions.

Table 1: The top part shows a triple set from D2T-1-FA-WebNLG_Factual.xml, the content of the
originaltripleset is not shown here because it is ignored in the competition. The bottom part shows the
realized sentence produced by RDFPYREALB from this input.

2.1 Microplanning

Since triples are unordered, the first critical step is
organizing them to create an interesting story. First,
we group the triples based on their subjects. We
then sort the triples within each group. For exam-
ple, when describing a person, we can begin with
their date and place of birth, then move on to their
activities, before finishing with their retirement and
death. For a university or a football club, we would
start with its creation date, then its directors and
finally its activities. To achieve this ordering, each
predicate is assigned a priority that is used to sort
the triples. These priorities were established by
hand and are currently independent of the category
of the subject.

Then the groups are processed in descending
order of triplets. We also query DBpedia to de-
termine whether the category of a group subject
corresponds to the specified category in the data.
If so, we increase its score so that the text begins
with this subject. Each group forms a sentence
as a coordination of subsentences. Because long
coordinated sentences are often difficult to follow,
groups of more than three triplets are split into two
sentences. In order to avoid very short sentences, a
group with a single triple is combined using a sub-
ordinate when its subject is the object of another
triple in a bigger group. Table 1 shows an example
of this in which the last triple of the first group has
been combined with the last triple.

Table 2 shows the result of the sorting and group-
ing process on the example of Table 1. The four
triples having Agremiacao_Sportiva_Arapiraquense

as subject are grouped and sorted to form a co-
herent story. This input is used for realizing the

Agremiacao_Sportiva_Arapiraquense
manager Vica;
numberOfMembers 17000;
league Campeonato_ ..._C;
ground Estádio_ ... _Fonseca.

Campeonato_ ..._C
country Brazil;
champions Vila_Nova_Futebol_Clube.

Estádio_ ... _Fonseca
location Arapiraca.

Table 2: mtriples from Table 1 sorted and grouped,
shown as a Turtle-like formalism, used as input for
RDFPYREALB. Predicates and objects sharing the
same subject are shown indented and separated by
semicolons. Some tokens are shown here with ellipsis
to make them fit in the two-column format. The bottom
of Table 1 corresponds closely to this text plan.

three sentences shown in the bottom part of Table 1
using PYREALB.

2.2 Surface realization

For the final realization step, we use PYREALB

a Python implementation of JSREALB (Lapalme,
2022) in which programming language instructions
create data structures corresponding to the con-
stituents of the sentence to be produced. Once the
data structure is built, it is traversed to produce the
list of words in the sentence, taking care of issues
such as conjugation, agreement, capitalization, and
other small details that help readers and evaluators.

The data structure is built by calls to functions
whose names were chosen to be similar to the sym-
bols typically used for constituent syntax trees,
such as a Terminal (e.g. N (Noun), V (Verb), A (adjec-
tive), D (determiner), Q which quotes its parameter
thus allowing canned text) or a Phrase (e.g. S (Sen-
tence), NP (Noun Phrase), VP (Verb Phrase)).

56

S(Pro("I").g('n'),
VP(V("play"),

PP(P("in"),
SP(Q("Estádio␣Fonseca"),

VP(V("locate").t('pp'),
PP(P("inside"),

Q("Arapiraca")))))))

Table 3: Top: Python functional notation for a
PYREALB expression realized as: It plays in Estádio
Fonseca located inside Arapiraca

Features added to structures with the dot nota-
tion can modify their properties. Terminals can
specify their person, number and gender. Phrases
can have a negation or be put into passive mode.
A noun phrase can be pronominalized, and coordi-
nated phrases are automatically processed, insert-
ing appropriate commas and conjunctions between
coordinated elements. Table 3, shows the Python
calls to create an internal structure that is realized
as an English sentence.

2.3 Sentence Templates

The goal is to transform the structure of Table 2
into that of Table 3. We have manually defined 250
templates corresponding to the most frequent predi-
cates in the set (those with 10 or more occurrences).
When no defined template can be found, we use a
default template (described in Section 2.4), which
was used in 5% of cases.

A predicate p corresponds to a Python lambda
expression whose parameter is the object o. The
predicate is called to create a sentence with the sub-
ject s. The actual parameters are quoted strings of
the subject or object of the triple, but replacing un-
derscores by spaces with special cases for numbers
and dates.

For example, given the two following Python
definitions:
managerP = lambda o: VP(V("have"),

o,
Adv("as"),
N("manager"))

sentence = lambda s,p,o: S(Q(s),
p(Q(o)))

the call
sentence("Agremiacao",

managerP ,"Vica")

creates the following structure:
S(Q("Agremiacao"),

VP(V("have"),
Q("Vica"),
Adv("as"),
N("manager")))

which is verbalized as Agremiacao has Vica as man-
ager. by PYREALB. This is the basic mechanism for

"city": (30, False , [
lambda o:VP(V("be"), _from(o)),
lambda o:VP(_vpas("locate"), _in(o))]),

"country": (40, False , "city"),
"ground": (50, True , [

lambda o:VP(V("play"), _in(o))]),
"league": (50, True , [

lambda o:VP(V(oneOf("be", "play", "compete")),
_in(NP(D("the"), o, N("league"))))]),

"manager": (20, False , [
lambda o:VP(_vpas("manage"), _by(o)),
lambda o:VP(V("have"),o,

Adv("as"),N("manager"))]),

Table 4: A few Python templates using auxiliary func-
tion to build passive verbs (_vpas) or prepositional
phrases such as _from(..) or _in(..)

creating sentence structures that can be combined
in various ways.

Templates are organized in a dictionary (see Ta-
ble 4). The name of the predicate is the key, and
the value is a 3-tuple with the following elements:
a priority (a number between 0 and 100) used for
sorting, a boolean indicating if its subject can be a
human, and a list of lambda expressions that can
verbalize this predicate, one of which is randomly
chosen at the realization time.

Templates associated with predicates were de-
veloped by looking at lex elements in the original
WebNLG training corpus. When two templates
have the same realizations, the third element of
the pair is the name of the original predicate (see
country in Table 4).

Once we agreed on this template structure, writ-
ing them became relatively easy. It takes less than
minute to write a lambda defining a constituent ex-
pression to reproduce some of them. We noticed
that many lexicalizations are often very similar;
crowd workers seem to often rely on copy-pasting
the subject and the object.

Unfortunately, the names of the predicates used
in the Wikidata dataset were different for the same
relation. So we developed a mapping between
them, as shown in Table 5.

2.4 Default Template

When a predicate is not in the table, a default tem-
plate is created. By detecting case changes, the
name of the predicate is split into words and taken
as the subject of the be auxiliary, the object is used
as an attribute. For example,
servedAsChiefOfTheAstronautOfficeIn =>

Q("served␣as␣chief␣of␣the␣astronaut␣
office")

In the final sentence, the subject of the triple is
taken as subject of the be auxiliary, the object of

57

wikidata_properties = {
'Occupation ':"occupation",
'PlaceOfBirth ':"birthPlace",
'DateOfBirth ':"birthDate",
'PositionHeld ':"position",
'HasChild ':"have_as␣child",
'PlaceOfDeath ':"deathPlace",
'Spouse ':"spouse",
'ParticipantIn ':"competeIn",
'HasFather ':"have_as␣father",
...

}

Table 5: Mapping between the names of predicates
used in the Wikidata dataset used as key and the name
used in the WebNLG dataset. When a name contains an
underscore (e.g., have_as), then a custom verb phrase
pattern is used.

the triple is used as an attribute. For example, the
triple

Alan_Shepard |
servedAsChiefOfTheAstronautOfficeIn
| 1963

is realized as Alan Shepard served as chief of the
astronaut office in is 1963. which is not colloquial but
understandable.

2.5 Text aggregation

In some cases, dealing with related information
(e.g., birth date and place), combining templates
using only their complements (i.e., their last ele-
ment) will simplify the text. For this we define
groups of predicates that can be combined at real-
ization time. When two or three triples are merged
into a single sentence, the subject is used at the
start but a pronoun is used for the following refer-
ences. Currently, a very simple system is used for
choosing the pronoun: if the predicate is coded as
being applicable to a human and the gender of the
subject obtained by querying DBPedia is male, he
is used, if it is female then she is chosen, otherwise
it is used. When a single triple whose subject is
used as object of another, it is combined with the
subordinate using a pronoun: who if the predicate
applies to a human, otherwise that.

3 Running the System

The PYREALB is publicly available, its source
code2 is licensed under Apache-2.0 and the linguis-
tic resources are licensed under CC-BY-SA-4.0. It
can also be used as a PyPi module.3

The Python code for RDFPYREALB is a
demo4 of PYREALB. The demo, launched with

2https://github.com/lapalme/pyrealb
3https://pypi.org/project/pyrealb/
4https://github.com/lapalme/pyrealb/tree/main/

WebGenerate.py, is illustrated with English and
French texts realized from 6 and 7 triples selected
from the original WebNLG 2020 data, which give
rise to the most interesting and challenging texts.
The script for realizing the submissions to this
shared task is GEM-2024.py.

4 Comments on the task data

#sbj WN-trn WN-dev WN-test WkData
1 57% 60% 74% 88%
2 33% 31% 20% 9%
3 9% 8% 5% 2%
4 <1% <1% - <1%

#tpl 13 124 1 667 1 779 1 712

Table 6: percentages of the number of subjects in dif-
ferent triple sets (WN- is WebNLG-2020, trn, dev and
test). WN-tst WebNLG-based (D2T-1) and WkData is
the Wikidata-based (D2T-2) of this competition.

In a previous paper (Lapalme, 2020), we argued
that the simplified triple format of WebNLG does
not adequately represent the problem of realizing
semantic web data. It short-circuits many important
issues, such as the lexical selection of the subject
and object. Additionally, the relation names do
not conform to the well-established W3C naming
conventions. We now raise another issue that we
did not notice at the time: the number of distinct
subjects in triple sets. Table 6 shows the distribu-
tion of the number of subjects in the factual sets of
data; since the both fictional and the counterfactual
were derived from the factual, their distribution is
the same. We see that the vast majority of triples
have a single subject: 74% for WebNLG and 80%
for WikiData. This simplifies greatly the problem
of the text organization leaving only the problem
of splitting into one or two sentences.

5 Conclusion

This paper described a symbolic approach to tack-
ling the GEM 2024 SHARED TASK. The approach
relies on PYREALB, an existing text realizer that
takes care of most of the low-level grammatical
aspects, so the pattern could be specified at a rela-
tively high level. After a few false starts and once
the overall program organization was settled, it was
relatively easy for me to develop and organize the
patterns. The preliminary automated scores seems
quite competitive compared to those of the other

demos/RDFpyrealb

https://github.com/lapalme/pyrealb
https://pypi.org/project/pyrealb/
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb

58

participants, whom we conjecture mostly used ma-
chine learning approaches. In fact, almost all sys-
tems seem to obtain quite similar results depending
on the scoring method. RDFPYREALB is very fast
and can easily be adapted to new domains. Con-
sidering that adding one new predicate takes about
one minute, developing 250 new ones would take
about four hours. Machine learning could be used
to develop new templates, although we doubt that
it would be any faster.

References
Guy Lapalme. 2020. RDFjsRealB: a symbolic ap-

proach for generating text from RDF triples. In
WebNLG 2020 : 3rd Workshop on Natural Language
Generation from the Semantic Web, pages 144–153,
Dublin, Ireland (virtual). SIGGEN.

Guy Lapalme. 2022. The jsRealB text realizer: Orga-
nization and use cases. (arXiv:2012.15425).

Guy Lapalme. 2023. Data-to-text bilingual generation.
Technical Report arXiv:2311.14808.

Simon Mille, João Sedoc, Yixin Liu, Elizabeth Clark,
Agnes Axelsson, Miruna-Adriana Clinciu, Yufang
Hou, Saad Mahamood, Ishmael Obonyo, and Lining
Zhang. 2024. The 2024 GEM shared task on mul-
tilingual data-to-text generation and summarization:
Overview and preliminary results. In Proceedings of
the 17th International Conference on Natural Lan-
guage Generation: Generation Challenges, Tokyo,
Japan. Association for Computational Linguistics.

https://www.aclweb.org/anthology/2020.webnlg-1.16.pdf
https://www.aclweb.org/anthology/2020.webnlg-1.16.pdf
https://arxiv.org/abs/2012.15425
https://arxiv.org/abs/2012.15425
https://arxiv.org/abs/2311.14808

	Introduction
	Text Generation
	Microplanning
	Surface realization
	Sentence Templates
	Default Template
	Text aggregation

	Running the System
	Comments on the task data
	Conclusion

