@inproceedings{osuji-etal-2024-dcu,
title = "{DCU}-{ADAPT}-mod{PB} at the {GEM}{'}24 Data-to-Text Generation Task: Model Hybridisation for Pipeline Data-to-Text Natural Language Generation",
author = "Osuji, Chinonso Cynthia and
Huidrom, Rudali and
Adebayo, Kolawole John and
Castro Ferreira, Thiago and
Davis, Brian",
editor = "Mille, Simon and
Clinciu, Miruna-Adriana",
booktitle = "Proceedings of the 17th International Natural Language Generation Conference: Generation Challenges",
month = sep,
year = "2024",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.inlg-genchal.7",
pages = "66--75",
abstract = "In this paper, we present our approach to the GEM Shared Task at the INLG{'}24 Generation Challenges, which focuses on generating data-to-text in multiple languages, including low-resource languages, from WebNLG triples. We employ a combination of end-to-end and pipeline neural architectures for English text generation. To extend our methodology to Hindi, Korean, Arabic, and Swahili, we leverage a neural machine translation model. Our results demonstrate that our approach achieves competitive performance in the given task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="osuji-etal-2024-dcu">
<titleInfo>
<title>DCU-ADAPT-modPB at the GEM’24 Data-to-Text Generation Task: Model Hybridisation for Pipeline Data-to-Text Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chinonso</namePart>
<namePart type="given">Cynthia</namePart>
<namePart type="family">Osuji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rudali</namePart>
<namePart type="family">Huidrom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kolawole</namePart>
<namePart type="given">John</namePart>
<namePart type="family">Adebayo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thiago</namePart>
<namePart type="family">Castro Ferreira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="family">Davis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Natural Language Generation Conference: Generation Challenges</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miruna-Adriana</namePart>
<namePart type="family">Clinciu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present our approach to the GEM Shared Task at the INLG’24 Generation Challenges, which focuses on generating data-to-text in multiple languages, including low-resource languages, from WebNLG triples. We employ a combination of end-to-end and pipeline neural architectures for English text generation. To extend our methodology to Hindi, Korean, Arabic, and Swahili, we leverage a neural machine translation model. Our results demonstrate that our approach achieves competitive performance in the given task.</abstract>
<identifier type="citekey">osuji-etal-2024-dcu</identifier>
<location>
<url>https://aclanthology.org/2024.inlg-genchal.7</url>
</location>
<part>
<date>2024-09</date>
<extent unit="page">
<start>66</start>
<end>75</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DCU-ADAPT-modPB at the GEM’24 Data-to-Text Generation Task: Model Hybridisation for Pipeline Data-to-Text Natural Language Generation
%A Osuji, Chinonso Cynthia
%A Huidrom, Rudali
%A Adebayo, Kolawole John
%A Castro Ferreira, Thiago
%A Davis, Brian
%Y Mille, Simon
%Y Clinciu, Miruna-Adriana
%S Proceedings of the 17th International Natural Language Generation Conference: Generation Challenges
%D 2024
%8 September
%I Association for Computational Linguistics
%C Tokyo, Japan
%F osuji-etal-2024-dcu
%X In this paper, we present our approach to the GEM Shared Task at the INLG’24 Generation Challenges, which focuses on generating data-to-text in multiple languages, including low-resource languages, from WebNLG triples. We employ a combination of end-to-end and pipeline neural architectures for English text generation. To extend our methodology to Hindi, Korean, Arabic, and Swahili, we leverage a neural machine translation model. Our results demonstrate that our approach achieves competitive performance in the given task.
%U https://aclanthology.org/2024.inlg-genchal.7
%P 66-75
Markdown (Informal)
[DCU-ADAPT-modPB at the GEM’24 Data-to-Text Generation Task: Model Hybridisation for Pipeline Data-to-Text Natural Language Generation](https://aclanthology.org/2024.inlg-genchal.7) (Osuji et al., INLG 2024)
ACL