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Abstract

Our submission to the GEM data-to-text shared
task aims to assess the quality of texts produced
by the combination of a rule-based system with
a language model of reduced size. Our system
first uses a rule-based generator to convert input
triples into semantically correct English text,
and then a language model to paraphrase these
texts to make them more fluent. The texts are
translated to languages other than English with
the NLLB machine translation system.1

1 Introduction

On the one hand, Very Large Language Models are
able to produce human-like texts from structured
data but require enormous amounts of energy and
computational resources to be trained, fine-tuned
and run; on the other hand, resource-efficient tech-
niques such as rule-based systems generally output
texts that are less than optimally fluent. For our
submission, we used three components: (i) a rule-
based generator, FORGe (Mille et al., 2023b) to
generate all inputs in English, (ii) a small-sized
language model, T5-Base (Raffel et al., 2020), fine-
tuned for rephrasing the rule-based outputs in a
more fluent way, and (iii) an off-the-shelf Machine
Translation system, NLLB (Team et al., 2022), for
producing outputs in languages other than English.
Our hypothesis is that using a language model for
paraphrasing textual output produced by a reliable
rule-based generator, rather than for directly map-
ping from triples to text, will make the system (i)
more accurate in term of contents, i.e. less prone to
omissions and additions (since all the contents of
the input triples are already verbalised in the input
of the language model), and (ii) generalise better
to out-of-domain data, which represents five out of
the six test sets of the GEM D2T task (since for the
language model, instead of verbalising, the task is

1Our code and data is available at https://github.com/
dcu-nlg/GEM24-DCU-NLG-Small.

Input:

Possible English output:
Ezekiel Kemboi and Oleksandr Turchynov are the

directors of The Haunted Castle, which has the
IMDb identifier "12".

Figure 1: Sample GEM counterfactual input/output pair
(D2T-1-CFA dataset).

now paraphrasing, for which much more training
data is available).

In the remainder of the paper, we briefly sum-
marise the GEM D2T shared task (Section 2), the
rule-based generator and its extension (Section 3),
the datasets we collected for fine-tuning T5 (Sec-
tion 4), the fine-tuning procedure (Section 5), and
the use of machine translation (Section 6); finally,
we comment on the preliminary results (Section 7).

2 The GEM D2T Shared Task

In GEM D2T (Mille et al., 2024), the task is to
generate texts in various languages starting from
input triples extracted from DBpedia (Subtask 1)
or Wikidata (Subtask 2) triples; see Figure 1 for
an example of an input/output pair. Each subtask
has three test sets: (i) a factual dataset (FA), which
contains only factually correct information; (ii) a
counterfactual dataset (CFA), which is the factual
dataset but with entities (Subjects and Objects, see
Figure 1) replaced by other entities of the same cat-
egory (e.g. a person is replaced by another person,
a date by another date, etc.); and (iii) a fictional
dataset (FI), in which all Subject and Object values
are fictional names made up by a language model.

The D2T-1 data is derived from WebNLG
data (Castro Ferreira et al., 2020), while the D2T-

https://github.com/dcu-nlg/GEM24-DCU-NLG-Small
https://github.com/dcu-nlg/GEM24-DCU-NLG-Small
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Subject director Object
pos=NP class=Person

A3
A1

Figure 2: Sample PredArg template corresponding to
the director property.

2 data was created for the present task using the
method proposed by Axelsson and Skantze (2023)
(i.e. collection of new Wikidata triples sets for a list
of entities, and then replacement of entities accord-
ing to steps (ii) and (iii) above). No training data
was provided to the participants, and apart from the
English Factual WebNLG data (i.e. the original test
set in (Castro Ferreira et al., 2020)), no reference
texts were available for any test set or language.
The GEM organisers encouraged submissions in
multiple languages, namely English (en), Chinese
(zh), German (de), Russian (ru), Spanish (es), Ko-
rean (ko), Hindi (hi), Swahili (sw), and Arabic (ar),
without saying beforehand which languages were
going to be assessed.

3 Rule-based Generator

For our rule-based system, we use the FORGe gen-
erator (Mille et al., 2023b), which was partly de-
veloped on the WebNLG data. FORGe is imple-
mented as a pipeline of modules that perform sub-
tasks such as text planning, lexicalisation, sentence
structuring and surface realisation. Each module
consists of a set of rules (called grammars), which
use dictionaries that describe the semantic and syn-
tactic behaviours of the lexical units used in the ver-
balisations. The generator takes as input abstract
predicate-argument structures manually crafted for
each property, as shown in Figure 2.

FORGe already has such predicate-argument
structures for the whole WebNLG 2020 dataset
in English, which means that we were able to use
FORGe off-the-shelf for Subtask 1; no modifica-
tion was performed to address new entity names of
the fictional test set. For Subtask 2, properties in the
dataset built by the organisers come from the Wiki-
data vocabulary, which is different from the DBpe-
dia vocabulary used in the WebNLG dataset. There
are 74 different Wikidata properties, 17 of which
have a direct mapping to a DBpedia property. For
these 17 properties, we use the existing predicate-
argument templates, while for the remaining 57
properties, new predicate-argument templates were
crafted, referring to the Wikipedia pages of the en-

tities used along each property to make sure we
captured the correct semantics of each property.
Crafting the 57 templates took approximately 2
hours. Minor updates to the generator’s grammars
were implemented to account for the specific as-
pects of the Wikidata test sets, in which the Subject
is always the same, unlike in the WebNLG-based
inputs.

4 Finetuning Datasets

Our objective in the paraphrasing component is
to improve the fluency of the rule-based genera-
tor without sacrificing its semantic accuracy (i.e.
avoiding what is commonly reported as omissions
and hallucinations). For this, we collected parallel
textual data, with on one side accurate but possi-
bly disfluent texts (TextDis), and on the other side
accurate and fluent texts (TextFlu). In this section,
we describe the three different datasets we created
for the experiments; Section 5 reports on how we
used this data for fine-tuning T5.

4.1 The forge2ref dataset
For data of type TextDis, we used texts generated
with the FORGe rule-based system (see Section 3)
as provided in the English version of the Mod-
D2T dataset (Mille et al., 2023a),2 which is a 10-
layer version of the whole WebNLG 2020 dataset
(training, development and test sets) produced with
FORGe. For the parallel data of type TextFlu, we
used the corresponding list of reference texts from
the original WebNLG 2020 data in each case, down-
loaded from HuggingFace.3 The final data contains
13,211, 1,667, and 1,779 pairs in the training, devel-
opment and test sets, respectively. The following
is an example pair:

• TextDis: The production of the Pontiac Ra-
geous started in 1997. The Pontiac Rageous
is a coupe.

• TextFlu: [’The Pontiac Rageous coupe went
into production in 1997.’, ’The Pontiac Ra-
geous, first produced in 1997, was a car with
a coupe body style.’, ’The coupe style Pontiac
Rageous was first produced in 1997.’]

4.2 The forge2llm dataset
In order to acquire additional high quality data, we
also collected a very small set of language model

2https://github.com/mille-s/Mod-D2T/tree/main/
conllu-en_INLG23

3https://huggingface.co/datasets/
webnlg-challenge/web_nlg

https://github.com/mille-s/Mod-D2T/tree/main/conllu-en_INLG23
https://github.com/mille-s/Mod-D2T/tree/main/conllu-en_INLG23
https://huggingface.co/datasets/webnlg-challenge/web_nlg
https://huggingface.co/datasets/webnlg-challenge/web_nlg
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outputs, using the best systems and the human eval-
uation results of the WebNLG 2020 shared task.
Three systems competing in the 2020 edition of the
shared task achieved human-level fluency: Ama-
zonAI (Guo et al., 2020), FBConvAI (Yang et al.,
2020) and OSU Neural NLG (Li et al., 2020). As-
suming that these systems are generally able to
output very fluent text, we selected the subset of
these system outputs that were rated 0.95 or more
when computing the mean for the three criteria re-
lated with the semantic faithfulness to the input
triples, namely:

• "DataCoverage: Does the text include descrip-
tions of all predicates presented in the data?;

• Relevance: Does the text describe only such
predicates (with related subjects and objects),
which are found in the data?;

• Correctness: When describing predicates
which are found in the data, does the text
mention correct the objects and adequately
introduces the subject for this specific predi-
cate?" (sic).

The system outputs and human ratings were ob-
tained from the WebNLG GitHub repository.4 For
163 inputs, we found between one and three system
outputs that met our threshold (301 texts in total).
These 163 lists of texts served as TextFlu data, and
were paired with the corresponding FORGe texts
serving as TextDis, e.g.:

• TextDis (same as forge2ref’s TextDis): The
production of the Pontiac Rageous started in
1997. The Pontiac Rageous is a coupe.

• TextFlu: [‘The Pontiac Rageous has a Coupe
body style and its production started in 1997.’,

‘Production of the Pontiac Rageous Coupe be-
gan in 1997.’]

Note that the data we are using for the forge2llm
dataset constitutes about 9% of the D2T-1-FA test
set (we use 163 data points out of the 1,779 data
points in the test set). We thus expect this to slightly
inflate our metrics scores on the D2T-1-FA set, but
should not have an important impact on the other
test sets.

4.3 The triple2ref dataset
For this dataset, we paired triples and human-
written texts, both extracted from the WebNLG

4https://github.com/WebNLG/challenge-2020

2020 dataset (Castro Ferreira et al., 2020). The in-
put triples are simply concatenated with a comma
and a space, and the output reference texts are com-
bined into a list. This dataset is used in addition
to the other two for one of the models in order to
increase its robustness to bad inputs. The final data
contains 13,211, 1,667, and 1,779 pairs in the train-
ing, development and test sets respectively, e.g.:

• TextDis: Pontiac_Rageous | productionStar-
tYear | 1997, Pontiac_Rageous | bodyStyle |
Coupe

• TextFlu (same as forge2ref’s TextFlu): [‘The
Pontiac Rageous coupe went into production
in 1997.’, ‘The Pontiac Rageous, first pro-
duced in 1997, was a car with a coupe body
style.’, ‘The coupe style Pontiac Rageous was
first produced in 1997.’]

5 Paraphrasing with T5-Base

In this section, we introduce T5-Base and all the
models fine-tuned for our experiments.

5.1 T5: Experimental setup and model
configuration

We conducted experiments with the T5-Base V1
model (250M parameters),5 alongside one full-
tuning technique and two parameter-efficient fine-
tuning (PEFT) techniques, namely LoRA (Hu et al.,
2021) and Adapter (Houlsby et al., 2019). The pri-
mary task was text-to-text generation, with the aim
of transforming FORGe outputs into more fluent
text. The T5-Base model does not inherently pos-
sess task-specific knowledge relevant to this task,
but it is well-suited for text-to-text modelling tasks
like paraphrasing.

For the evaluation phase, the model generation
settings were as follows: Temperature: 0.1; Top-k:
100; Top-p: 0.95; Repetition penalty: 0.8.

5.2 Fine-tuning experiments

All models were trained using cross-entropy loss.
For evaluating performance, we employed the Hug-
gingFace Evaluate Library6 to calculate the BLEU7

and METEOR8 metrics, comparing the predicted
text against all available references for each input.

5https://huggingface.co/google/t5-v1_1-base
6https://huggingface.co/docs/evaluate/en/index
7https://huggingface.co/spaces/

evaluate-metric/bleu
8https://huggingface.co/spaces/

evaluate-metric/meteor

https://github.com/WebNLG/challenge-2020
https://huggingface.co/google/t5-v1_1-base
https://huggingface.co/docs/evaluate/en/index
https://huggingface.co/spaces/evaluate-metric/bleu
https://huggingface.co/spaces/evaluate-metric/bleu
https://huggingface.co/spaces/evaluate-metric/meteor
https://huggingface.co/spaces/evaluate-metric/meteor
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We used the training and development sets, keeping
the test set for final model evaluation.

In our experiments, we tested three different fine-
tuning techniques:

• Full-tune involves updating all parameters
of a model to better suit a downstream task.
This traditional method, while effective, be-
comes increasingly costly as model sizes scale
up, prompting research into more parameter-
efficient alternatives (Sabry and Belz, 2023).

• Adapter (Houlsby et al., 2019) is a parameter-
efficient fine-tuning technique where a small
set of trainable parameters, typically two lin-
ear layers with an activation function in be-
tween, is inserted at strategic locations within
a model, such as after the attention and feed-
forward blocks of a transformer model. Only
these newly introduced parameters are up-
dated during finetuning, while the original
model’s parameters remain fixed. We imple-
mented Adapter with a bottleneck dimension
of 64 and a GeLU activation function.

• LoRA (Hu et al., 2021) adopts a similar ap-
proach, adding a small set of trainable param-
eters; however, it specifically targets the query
and key matrices within the attention blocks
of transformers. These added parameters are
viewed as a reparameterised form of the exist-
ing matrices, designed to accommodate task-
specific adjustments without altering the orig-
inal, fixed parameters of the model. We used
LoRA Configuration of a rank of 8, alpha of
16, and a dropout rate of 0.0.

For each fine-tuning technique, we tested 4 sets
of conditions involving different combinations of
datasets from Section 4 to assess their performance,
for a total of 12 different fine-tuned models:

• 10K: Fine-tuning for 10,000 learning steps
exclusively on forge2ref;

• 15K: Fine-tuning for 15,000 learning steps
on the two datasets that use FORGe texts,
forge2ref and forge2llm;

• 35K: Fine-tuning for 35,000 learning steps on
all three datasets: forge2ref, forge2llm and
triple2ref;

• Avg.Prm: Average of the trainable parame-
ters from each of the 3 fine-tuning techniques
(Full-tune, Adapters, LoRA, see above). This

approach is based on findings that averaging
multiple checkpoints can lead to better gener-
alisation (Izmailov et al., 2018).

All models were trained using a learning rate of
6e-5, with a Cosine decay scheduler and 10% of
the learning steps designated as a warm-up period.
The training and evaluation batch sizes were set at
16.3K and 4K tokens, respectively. Additionally, a
weight decay of 0.1 was implemented.

Training the T5-Base in NVIDIA A100-SXM-
80GB for 10,000 steps with full precision (FP32),
in our initial experiment, required the following
GPU durations: 1 hour and 14 minutes for full fine-
tuning, 55 minutes for Adapters, and 50 minutes
for LoRA. This resulted in total computations of
86 petaFLOPs for full fine-tuning, 64 petaFLOPs
for Adapters, and 58 petaFLOPs for LoRA, with
corresponding energy consumptions of 0.493 kWh
(kilowatt-hours), 0.367 kWh, and 0.333 kWh, re-
spectively. Scaling the same settings to T5-Large
could require roughly 3.5 times more, considering
the difference in the parameters of the two models
(0.2B for T5-Base vs. 0.7B for T5-Large).

When running the paraphrasing, each input is
encoded in a maximum of 512 tokens, and the
model is set to generate a maximum of 400 tokens.
With an A100 GPU, T5 base (FP32) can process
about 9K tokens per seconds, which means the
paraphrasing time for one full test set (1,8K texts)
is about 3 minutes.

6 Machine Translation with NLLB

The combination of resources we need for apply-
ing our approach (rule-based generator + paral-
lel textual data) is currently only available in En-
glish. For producing outputs in other languages, we
used the freely available NLLB machine transla-
tion tool (Team et al., 2022). NLLB is a pre-trained
model that covers translation between numerous
languages; it is available through HuggingFace9

and can be executed on various types of runtimes,
including CPUs. Each English text was split into
sentences, and sentences were processed one at a
time by NLLB; the translated sentences were then
brought back together as a text and stored in the
same format as the English outputs, in a .txt file
with one text per line. We ran nllb-200-distilled-
1.3B on a T4 GPU on Google Colab, which gener-
ally needed between 30 and 60 minutes to translate

9https://huggingface.co/docs/transformers/en/
model_doc/nllb

https://huggingface.co/docs/transformers/en/model_doc/nllb
https://huggingface.co/docs/transformers/en/model_doc/nllb


88

Fine-tuning Cond. BLEU METEOR

LoRA

10K 0.251 0.494
15K 0.295 0.536
35K 0.373 0.585

Avg.Prm 0.305 0.544

Adapters

10K 0.480 0.670
15K 0.476 0.671
35K 0.508 0.694

Avg.Prm 0.487 0.682

Full-tune

10K 0.506 0.702
15K 0.542 0.721
35K 0.536 0.719

Avg.Prm 0.538 0.719

Table 1: BLEU and METEOR scores (with multiple
references) of the 12 fine-tuned T5-Base models on the
D2T-1-FA test set; see Section 5.2 for details about the
fine-tuning techniques and the conditions.

a file. With 48 files to translate (8 target languages,
6 test sets per language) and several server interrup-
tions, we had to finish the translations on a local
HPC cluster to finish the translations on time.

We did not try to improve the translation qual-
ity, and did not perform any systematic qualitative
analysis of the translated texts; for a few languages
(Spanish, Hindi, German), we asked native speak-
ers to browse through a few translations to have
an idea of the general quality, which was judged
sufficient to submit the outputs.

7 Results and Submitted Systems

In this section, we present the results of evalu-
ating our 12 models on the D2T-1-FA test data,
using the WebNLG 2020 reference texts for cal-
culating BLEU (Papineni et al., 2002) and ME-
TEOR (Banerjee and Lavie, 2005), based on which
we selected the model for our submission. We then
briefly discuss the official results of the GEM D2T
task as provided by the organisers, which at this
point are restricted to the metrics scores for En-
glish (we report BLEU, METEOR and BertScore-
F1 (Zhang et al., 2019)).

7.1 Own evaluation of the fine-tuned models
In Table 1, we report our own BLEU and METEOR
scores on the English factual dataset of Subtask 1
(D2T-1-FA), the only one for which references are
available at the time of writing.

For all systems, both metrics indicate the same
tendencies: the Full-tune technique produces the
highest scores, closely followed by Adapter. With

LoRA, the results are much lower. We attribute this
performance to the small set of parameters added
by LoRA, the fact that they interact with the At-
tention block queries and keys, whereas the tasks
require extensive manipulation of factual knowl-
edge, stored in and retrieved from the FeedForward
block (Geva et al., 2021). However, increasing
the model size, carefully selecting hyperparame-
ters, and/or extending the number of learning steps
could mitigate these issues.

With LoRA, the more data, the better the results,
while that is not necessarily the case for the other
two techniques: Adapter produces very similar
scores with (15K) and without (10K) the forge2llm
data but gets better when adding the triple2ref data
and learning steps (35K). Full-tune benefits more
from the forge2llm data (15K) but not from adding
the learning steps and the triple2ref data (35K).
Since full fine-tuning involves adjusting a larger
number of parameters, which allows for a greater
degree of freedom to change, the model may ini-
tially focus on noisy signals before achieving con-
vergence or being steered in the desired direction
by the introduction of triple2ref data (intended to
enhance model robustness). We suspect that the
number of learning steps allocated may not be suf-
ficient to accommodate these changes.

Finally, averaging the weights from the three
fine-tuning techniques produces scores that are be-
tween those obtained for 15K and 35K learning
steps, in terms of both BLEU and METEOR.

7.2 Submissions
We submitted the Full-tune Avg.Prm model, which
did not obtain the absolute highest scores for both
metrics, but which is supposed to be more robust to
input variations (Ours in Table 2). As a secondary

System ID BLEU METEOR Bert F1
System 2 52.26 0.410 0.956

Ours 51.43 0.395 0.954
System 4 51.36 0.410 0.955
System 1 49.8 0.400 0.955
System 5 43.09 0.389 0.950
System 6 42.38 0.390 0.946

OursNoT5 40.55 0.372 0.943
System 7 39.86 0.400 0.947
System 8 34.71 0.280 0.923

Table 2: Metrics evaluation of our Full-tune Avg.Prm
system on the WebNLG 2020 test set provided by the
organisers (sorted by BLEU score).
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D2T-1 D2T-2
FA CFA FI FA CFA FI

BLEU 27.0 22.98 20.85 19.48 24.9 16.88
METEOR 0.314 0.279 0.292 0.26 0.3 0.267

chrF++ 0.537 0.488 0.507 0.438 0.51 0.442
BERT F1 0.93 0.918 0.914 0.925 0.923 0.914

Table 3: Metrics scores for our DCU-NLG-Small submission for the English D2T task released by the organisers.

submission, and for comparison, we submitted all
outputs of the rule-based generator without the T5
post-processing (OursNoT5 in Table 2). We also
submitted outputs for all languages other than En-
glish, all produced by running NLLB off-the-shelf
on the FORGe+T5 outputs.

7.3 GEM automatic evaluation results

Table 2 shows the first results released by the or-
ganisers, i.e. the metrics for the full English test
set using all WebNLG 2020 reference texts (1,779
inputs, 2.5 reference texts per input on average).
The scores of our system on this dataset cannot
be clearly interpreted, since as mentioned in Sec-
tion 4.2, we use a small portion of this dataset
to fine-tune one of the models whose parameters
were averaged to make the submitted model. One
thing that can be noticed is the extent of the in-
crease of the BLEU score when integrating the T5
post-processing. With close to 11 BLEU points dif-
ference, this suggests that our system outputs with
T5 are much more similar to the reference texts
than the FORGe outputs, which was expected.10

The organisers then released metrics results on
the 6 D2T test sets (180 inputs each), using refer-
ences collected on Amazon Mechanical Turk (one
reference text per input); see Table 3. On the D2T-1
datasets, our system’s scores substantially drop on
the counterfactual (CFA) and fictional (FI) datasets;
compared to the other participating systems, ours
actually is the one that has the most substantial
score decrease. In contrast, we have one of the
smallest decreases between the factual (FA) and
fictional (FI) D2T-2 datasets. Surprisingly, the D2T-
2-CFA scores are higher than the D2T-1-CFA coun-

10Regarding the differences between the scores in Tables 1
and 2: for BLEU, there are differences between the evaluation
package we used (Evaluate library from HuggingFace) and the
commonly used WebNLG evaluation package, in particular in
the smoothing factors applied in the BLEU metric calculation.
This explains the 2.5-point discrepancy in BLEU scores ob-
served between the results labelled ‘Avg. Prm Full-tune’ in
Table 1 and ‘Ours’ in Table 2. In addition, for our own compu-
tation of METEOR, we used multiple references, as opposed
to single references for the organisers, so the METEOR scores
in Tables 1 and 2 are not comparable.

terpart, and also than the D2T-2-FA score. How-
ever, all participating systems exhibited the same
patterns, so it is likely that the data is somewhat
responsible for this oddity. In general, the results
of the human evaluation on the 6 test sets will shed
more light on the actual quality of the contents
produced by our system.

8 Conclusions

We have presented the DCU-NLG-Small submis-
sion to the GEM’24 Data-to-text shared task. Our
system combines a rule-based generator that con-
verts triples into English text, with a small lan-
guage model that paraphrases the text to improve
its fluency. An off-the-shelf MT system is used
for producing outputs in the other languages. Our
system performs better than a purely rule-based
system according to metrics on an existing English
test set, but generally undergoes substantial score
decreases when confronted with different types of
out-of-domain data. We hope that the human eval-
uation results will allow us to draw more definitive
conclusions.
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