
Proceedings of the 17th International Natural Language Generation Conference, pages 121–133
September 23–27, 2024. ©2024 Association for Computational Linguistics

121

Extractive Summarization via Fine-grained Semantic Tuple Extraction

Yubin Ge1, Sullam Jeoung1, Jana Diesner1, 2
1University of Illinois Urbana Champaign, USA

2Technical University of Munich, Germany
{yubinge2,sjeoung,jdiesner}@illinois.edu

Abstract
Traditional extractive summarization treats the
task as sentence-level classification and re-
quires a fixed number of sentences for extrac-
tion. However, this rigid constraint on the num-
ber of sentences to extract may hinder model
generalization due to varied summary lengths
across datasets. In this work, we leverage the
interrelation between information extraction
(IE) and text summarization, and introduce a
fine-grained autoregressive method for extrac-
tive summarization through semantic tuple ex-
traction. Specifically, we represent each sen-
tence as a set of semantic tuples, where tuples
are predicate-argument structures derived from
conducting IE. Then we adopt a Transformer-
based autoregressive model to extract the tuples
corresponding to the target summary given a
source document. In inference, a greedy ap-
proach is proposed to select source sentences to
cover extracted tuples, eliminating the need for
a fixed number. Our experiments on CNN/DM
and NYT demonstrate the method’s superiority
over strong baselines. Through the zero-shot
setting for testing the generalization of models
to diverse summary lengths across datasets, we
further show our method outperforms baselines,
including ChatGPT.

1 Introduction

The objective of automatic text summarization is
to condense the content of an original document
while preserving its essential information. Existing
summarization techniques can be categorized into
two main approaches: extractive and abstractive
methods (Ge et al., 2023b). Abstractive methods
aim to generate new sentences, often referred to
as paraphrased sentences, to compose a summary
(Widyassari et al., 2020), while extractive tech-
niques generate summaries by selecting and ex-
tracting salient sentences directly from the source
text (Kasture et al., 2014).

In this study, we focus on extractive summa-
rization, primarily formulated as sentence-level

classification. This task typically involves a
greedy method to derive binary labels for sen-
tences in a source document, indicating their inclu-
sion or exclusion in the summary (Nallapati et al.,
2017). Nevertheless, previous research (Zhou et al.,
2020) demonstrates the drawbacks of this sentence-
centric granularity for extraction as it can introduce
redundancy and unnecessary information into the
output.

Besides, during inference, a fixed-length cutoff
or threshold is often applied to restrict the sentence
length of the output summary. This practice is in-
herently limited as it fails to accommodate the vary-
ing characteristics of different documents, which
may necessitate extractive summaries of different
lengths. For instance, a long document may need
more sentences to comprehensively cover its salient
information, whereas a short document may suffice
with a more concise representation. Additionally,
in real-world applications, expecting users to spec-
ify the exact number of sentences to be extracted
when utilizing a summarization system may not be
always feasible or practical.

Motivated by the shortcomings outlined above,
we present a new fine-grained autoregressive ap-
proach for extractive summarization via semantic
tuples extraction. To this end, we exploit the inher-
ent interdependence between information extrac-
tion (IE) and text summarization as both tasks share
a common objective: extracting accurate informa-
tion from unstructured texts in alignment with a
user’s specific requirements and presenting the ex-
tracted information in a concise manner (Grishman
et al., 1999). While summarization aims to present
this information in natural language sentences, IE
aims to transform relevant information into struc-
tured representations (Ji et al., 2013).

To effectuate this integration, we first use an IE
tool to convert each sentence into a semantic mean-
ing representation based on predicate-argument
structures (Surdeanu et al., 2003), which we call

122

semantic tuples in this work. We identify these
semantic tuples corresponding to the target sum-
mary as the objective of extraction. Leveraging a
Transformer-based autoregressive model (Vaswani
et al., 2017), we train the model to extract the target
semantic tuples from each source document. This
can encourage the model to concentrate on salient
information at a more granular level compared to
conventional approaches that perform extraction at
the sentence level. During inference, we introduce
a greedy strategy to select source sentences that
cover the extracted semantic tuples, avoiding the
requirement to specify a fixed number of sentences
for extraction.

By following standard evaluation protocols, we
demonstrate that our proposed method outperforms
competitive baselines on CNN/DM and NYT. Fur-
thermore, to highlight the advantage of our ap-
proach, we examine the impact of fixed sentence ex-
traction requirements on model generalization un-
der a zero-shot setting. This involves assessing the
model’s performance on a different dataset, where
the anticipated summary lengths deviate from those
in the training data. In contrast to baselines that
consistently output summaries of the same length
for different documents, our method excels due
to its capacity to dynamically extract sentences to
cover the identified semantic tuples.

We also compare the proposed approach to using
ChatGPT (Brown et al., 2020). To do this, we pro-
vide ChatGPT with a prompt without specifying the
number of sentences to extract. The results reveal
the low performance of ChatGPT in this task —a
revelation consistent with recent work (Zhang et al.,
2023). Upon manual examination of the extrac-
tive summaries output by ChatGPT, we discovered
that ChatGPT tends to optimize recall by selecting
more sentences than expected. While ChatGPT has
demonstrated commendable capabilities across a
diverse spectrum of tasks, our observations sug-
gest that current fine-tuning approaches on smaller
models may still present promising avenues for
enhancing extractive summarization performance.

Our contributions can be summarized as follows:

• We introduce a new, fine-grained, autoregres-
sive method for extractive summarization by
using semantic tuples extraction.

• Leveraging the extracted semantic tuples, we
present a greedy strategy for selecting sen-
tences to construct extractive summaries. No-
tably, our approach avoids the convention of

necessitating a predetermined number of sen-
tences for extraction.

• Through extensive experiments, we empiri-
cally demonstrate the superior efficacy of our
method over competitive baselines. Our ap-
proach excels under the demanding zero-shot
setting.

• We test ChatGPT for extractive summariza-
tion and uncover that ChatGPT’s performance
is inferior in this task. Our findings signify the
ongoing significance of exploring mainstream
fine-tuning approaches for future research.

2 Related Work

2.1 Extractive Summarization
Extractive summarization, an NLP task with
decades of exploration, has been approached with
a wide array of methods. Sequential neural models,
which use diverse encoders such as recurrent neural
networks (Cheng and Lapata, 2016; Nallapati et al.,
2017; Xiao and Carenini, 2019), and pre-trained
language models (Zhou et al., 2018; Egonmwan
and Chali, 2019; Liu and Lapata, 2019) are fre-
quently adopted for this task. Another trajectory
in research conceptualizes extractive summariza-
tion as a node classification task and solves it by
leveraging graph neural networks to model inter-
sentence relationships (Wang et al., 2020; Zhang
et al., 2022). Despite the sophistication of these
approaches, they are formulated as sentence-level
predictions and require the specification of a fixed
quantity of sentences for extraction. Alternatives
to the sentence-centric focus are text matching
(Zhong et al., 2020; An et al., 2022) and rein-
forcement learning (Narayan et al., 2018b; Bae
et al., 2019), which have been explored through
summary-level formulations. Our approach departs
from these prior undertakings by honing in on a
more refined granularity. Specifically, we extract
semantic tuples, which we consider as semantic
representations of textual content.

2.2 Text Summarization and Information
Extraction

Previous studies of the relationship between infor-
mation extraction (IE) and text summarization have
demonstrated advantages of integrating IE methods
into text summarization, including the capacity to
enhance the overall quality of summarization out-
comes in different domains (McKeown and Kan,

123

Figure 1: An overview of the pipeline for semantic tuples extraction from a document.

1999). Furthermore, incorporating IE has improved
the coherence of multi-document abstract summa-
rization (Ji et al., 2013; Li, 2015; Venkatachalam
et al., 2020). In line with our current approach, Lit-
vak and Last introduced a graph-based IE method
for summarization. Their work represents text doc-
uments as an order-relationship graph, where nodes
correspond to discrete words and edges encapsu-
late the sequential precedence of terms within the
text. Our approach diverges from theirs by lever-
aging predicate-argument structures, which accom-
modate varying numbers of arguments. This stands
in contrast to graph-based representations, which
are characterized by a fixed number of elements
within each triplet and are limited in representing
the nuanced semantic meaning of textual content.

2.3 Flexible Extractive Summarization

The inference of extractive summarization models
conventionally entails the extraction of the top-k
most significant sentences from a given document,
determined by predicted sentence scores. Neverthe-
less, employing a fixed value k for all documents
tends to yield summaries of uniform length, thereby
constraining the diversity in summary lengths. Al-
though a few recent investigations (Jia et al., 2020;
Zhong et al., 2020) have sought to generate sum-
maries of variable lengths, their techniques either
necessitate an additional phase of hyperparameter
optimization on validation datasets to identify an
appropriate threshold or frame the problem as a se-
lection of a subset from the top-k sentences. Con-
versely, our approach relies on the extraction of
semantic tuples, which are subsequently matched
to sentences to ensure coverage in a greedy manner.
Therefore we effectively eliminate both the pre-
specification of summary lengths and conducting
hyperparameter search.

3 Fine-grained Semantic Tuples
Construction

In this section, we introduce the process of convert-
ing sentences from text into semantic tuples, which

in our case are fine-grained semantic representa-
tions based on predicate-argument structures (Sur-
deanu et al., 2003). The overall pipeline is shown
in Figure 1. This is different from conventional ap-
proaches for extractive summarization, which rely
on sentences as the primary granularity.

To extract semantic tuples from a given source
document, we employed Stanford CoreNLP (Man-
ning et al., 2014) to first perform coreference reso-
lution, thereby replacing identified mentions (e.g.,
pronouns) with their corresponding entity names.
Subsequently, an IE tool was employed to extract
fine-grained semantic information from the sen-
tences: we conducted a comparative analysis of
different IE systems, including AllenNLP OpenIE
(Stanovsky et al., 2018), Stanford CoreNLP Ope-
nIE (Angeli et al., 2015), knowledge base-based
OpenIE (Huguet Cabot and Navigli, 2021), and
AMR (Zhou et al., 2021). Our selection was based
on factors such as system accessibility and IE per-
formance on summarization datasets. Ultimately,
we chose the OpenIE tool provided by AllenNLP,
which enables us to extract a list of propositions
from each sentence, effectively yielding semantic
tuple candidates. Each semantic tuple is composed
of a single predicate and a variable number of argu-
ments. To ensure the data’s integrity, we excluded
any semantic tuples with arguments exceeding 20
tokens. Moreover, we associated each predicate
with its arguments based on predicted argument
roles, adhering to the conventions established by
Surdeanu et al., where ‘arg0’ denotes the agent,
“arg1" refers to the direct object, and “arg2" repre-
sents the indirect object.

However, upon inspecting the results, we noted
that the extracted semantic tuples exhibited certain
inaccuracies in the predicted argument roles, poten-
tially leading to semantic ambiguities. Considering
the high performance of LLMs in various tasks(Ge
et al., 2023a), we leveraged an LLM to identify
the most plausible semantic tuples from all can-
didates to address this concern. Specifically, for
each semantic tuple, we generated permutations by

124

exploring all possible argument role assignments,
i.e., “arg0" to “arg2", and concatenated each candi-
date accordingly to form a text representation. For
instance, one candidate semantic tuple {became,
arg1: Evnika Saadvakass, arg2: a YouTube sensa-
tion} would have been transformed into "became
Evnika Saadvakass a YouTube sensation".

To find the most appropriate semantic tuple, we
input all candidate texts into an LLM1, calculat-
ing their perplexity. The candidate with the lowest
perplexity was regarded as aligning best with the
language model, thus warranting selection as the
final semantic tuple. Continuing with the previ-
ous example, after querying the language model
with all different combinations, we obtain {arg0:
Evnika Saadvakass, became, arg1: a YouTube sen-
sation} as the ultimate result. This pipeline enables
us to enhance the accuracy and reliability of the
extracted semantic tuples, ultimately contributing
to a more robust knowledge representation.

4 Methodology

The overview of the proposed method is shown
in Figure 2. Given a source document X =
{x1, x2, · · · , x|X|} consisting of a sequence of sen-
tences xi, we consider each sentence xi to have
a semantic meaning representation in the form
of predicate-argument structures (Surdeanu et al.,
2003), namely semantic tuples. The process of ex-
tractive summarization entails the following steps:

1. Given the source document X and its com-
prehensive set of semantic tuples denoted as
Tfull, we first extract the subset Tsub from Tfull,
which corresponds to the target summary.

2. Subsequently, having identified the subset
Tsub, we next select the minimum number of
sentences xi from the original source docu-
ment X whose corresponding semantic tuples
cover the subset Tsub, thereby constituting the
final output summary.

4.1 Semantic Tuples Extraction

Inspired by the great success of applying
Transformer-based generative model in various IE
and semantic parsing tasks (De Cao et al., 2020;
Bai et al., 2022; Josifoski et al., 2022), we present
an end-to-end autoregressive formulation of seman-
tic tuple extraction.

1We adopted openlm-research/open_llama_3b specifically.

4.1.1 Model Training
During the training phase, we initially adopted
the widely-used greedy approach (Nallapati et al.,
2017) to acquire sentence-level ground-truth labels
for a given source document X . These labels indi-
cated which sentences should be extracted as target
sentences to form the summary. Consequently, we
identified semantic tuples corresponding to these
target sentences, which constitute the target subset
denoted as Tsub. Our goal was to extract Tsub from
the complete set of semantic tuples Tfull, which
corresponds to the source document X .

To prepare Tsub for end-to-end training and lin-
earize it as a target sequence, we introduced a spe-
cial token <sep> to connect each predicate with its
respective arguments. For instance, the semantic
tuple {arg0: Evnika Saadvakass, became, arg1: a
YouTube sensation} was transformed into "Evnika
Saadvakass <sep> became <sep> a YouTube sen-
sation". Additionally, we introduced another spe-
cial token <et> at the end of each semantic tuple
sequence to connect and form the target sequence,
denoted as y.

We used BART (Lewis et al., 2020) as our gen-
erative model. The primary objective of the model
training was to learn the conditional probability
of generating the output sequence y given the
input document X in an autoregressive manner:
pθ(y|X) =

∏|y|
i=1 pθ(yi|y<i, X), where θ repre-

sents the model’s parameters. During training, the
aim was to maximize the conditional log-likelihood
of the target sequences using the cross-entropy loss,
and label smoothing was applied as a regularization
technique (Szegedy et al., 2016).

4.1.2 Constrained Decoding with Local Tries
One challenge with common generative models,
such as BART, is that they generate unrestricted,
free-form text without explicit constraints. Con-
sequently, the trained model may generate invalid
semantic tuples that do not correspond to any se-
mantic tuples present in the complete set Tfull. To
overcome this issue, previous work in generative
IE and entity retrieval (De Cao et al., 2020; Josi-
foski et al., 2022) has resorted to constrained beam
search, establishing constraints through the use of a
prefix tree (aka trie) (Cormen et al., 2022). Specif-
ically, two distinct tries are constructed in those
prior studies based on all entity names and all rela-
tions. Each node in the trie represents a token from
a predefined vocabulary, and its children encom-
pass all allowable continuations stemming from

125

Figure 2: An overview of the proposed method. Grey solid arrows indicate the data flow during training. Red dashed
arrows represent the additional data flow during inference. The inference consists of three steps: (1) construct
semantic tuples from a source document and build a local trie; (2) run constrained decoding based on the built local
trie to ensure extracted semantic tuples are valid; (3) select sentences from the source document to cover extracted
semantic tuples in a greedy manner.

the prefix defined by traversing the trie from the
root. Using a similar mechanism for our case can
ensure that a traversal from the root to a leaf node
guarantees the generation of a valid predicate or
argument.

Nonetheless, directly applying the aforemen-
tioned strategy cannot ensure the accuracy of gen-
erated semantic tuples for our case. This limitation
arises due to the inherent independence and static
nature of the two pre-built tries, which we refer to
as global tries. Consequently, during the genera-
tion process, the model remains susceptible to pro-
ducing invalid semantic tuples comprising discon-
nected predicates and arguments. For instance, the
model may generate a tuple like { arg0: Chicago,
helps, arg1: dog }, wherein the model switches
between two independent tries. To address this
concern effectively, we propose the dynamic con-
struction of a local trie in real time. Specifically,
to generate an extractive summary for a source doc-
ument X , we create a trie that stores all semantic
tuples present in Tfull. Traversing this trie from
the root to a leaf node guarantees the generation
of a valid and complete semantic tuple. Subse-
quently, we incorporate the constructed tries into
the constrained beam search, following previous
work (De Cao et al., 2020; Josifoski et al., 2022).

4.2 Source Sentence Extraction

During the inference phase, upon identifying Tsub,
the task at hand involves mapping Tsub back to

sentences within the source document X to gen-
erate an extractive summary. To achieve this ob-
jective, we have devised a pragmatic and flexible
approach, inspired by the idea of deriving sentence-
level ground-truth labels (Nallapati et al., 2017).
Importantly, our proposed approach does not im-
pose a fixed number of sentences to be extracted,
as is commonly seen in prior methodologies.

Specifically, we adopt a greedy strategy to iter-
atively select one sentence xi at a time, gradually
building a summary. This selection is guided by the
criterion that the semantic tuples of the chosen sen-
tence xi exhibit the most significant overlap with
the elements in Tsub. After one optimal sentence is
selected at a time, we remove the semantic tuples
that correspond to the selected sentence from Tsub.
This process is repeated until Tsub becomes empty,
signifying that the final summary has encompassed
all the identified semantic tuples within Tsub.

5 Experiments and Results

We introduced our experimental settings and re-
sults in this section, and included the implementa-
tion details in Appendix Sec. A. Additionally, we
follow previous work in text summarization and
related tasks (Zhang et al., 2023; Ge et al., 2021)
to mainly report ROUGE-1 (unigram), ROUGE-2
(bigram), and ROUGE-L (longest common subse-
quence) scores (Lin, 2004) for evaluation.

126

5.1 Datasets
We performed the evaluation on two widely rec-
ognized benchmark datasets: CNN/DM (Hermann
et al., 2015; Nallapati et al., 2016) and the New
York Times Annotated Corpus (NYT) (Sandhaus,
2008):

• CNN/DM comprises news articles from both
CNN and Daily Mail. The summaries are con-
structed from highlighted bullet points. We
used the non-anonymized version and the pro-
vided training, validation, and testing splits.

• NYT consists of 110,540 articles published
by the New York Times. This dataset also
includes summaries authored by library scien-
tists. We processed the dataset as in previous
work (Durrett et al., 2016; Liu and Lapata,
2019) to obtain training, validation, and test-
ing splits.

Additionally, to show that fixing the number of
sentences to extract can influence models’ gener-
alization even in the same domain, we designed
zero-shot experiments, where we trained mod-
els on CNN/DM and tested their performance on
XSum(Narayan et al., 2018a).

• XSum is designed for single-sentence news
summarization, with each summary formu-
lated as an answer to the question "What is the
article about?". The summaries in this dataset
are professionally written and often authored
by the original document’s author(s).

5.2 Baselines
We compared our model with several competitive
baseline methods:

• HIBERT (Zhang et al., 2019) is a hierarchi-
cal Transformer-based model pre-trained on
unlabeled data.

• PNBERT (Zhong et al., 2019) combines
LSTM Pointer with the pre-trained BERT.

• BERTSum (Liu and Lapata, 2019) builds the
extractive model based on BERT.

• BERTEXT (Bae et al., 2019) augments BERT
with reinforcement learning to maximize
summary-level ROUGE scores.

• MATCHSUM (Zhong et al., 2020) conceptu-
alizes extractive summarization as a semantic

Model R1 R2 RL

ORACLE 52.59 31.24 48.87
LEAD-3 40.42 17.62 36.67

HIBERT (2019) 42.37 19.95 38.83
PNBERT (2019) 42.69 19.60 38.85
BERTEXT (2019) 42.76 19.87 39.11
BERTSum (2019) 43.85 20.34 39.90
MATCHSUM (2020) 44.22 20.62 40.38
COLO (2022) 44.10 20.97 40.19

Ours 44.91 21.54 40.61

Table 1: Experimental results on CNN/DM.

text matching problem. It generates candidate
summaries and then finds the optimal sum-
mary that is the most semantically similar to
the source document.

• COLO (An et al., 2022) is a contrastive,
learning-based re-ranking framework based
on a proposed online sampling approach.

We also included the results of an extractive OR-
ACLE as an upper bound, and LEAD-3 baseline
(which selects the first three sentences in a docu-
ment).

5.3 Experimental Results on CNN/DM
The results on CNN/DM are presented in Table 1.
The average number of sentences in our generated
extractive summaries is 4.87 with a variance of
1.83. Notably, our proposed method demonstrates
superior performance compared to other compet-
itive baselines. This superiority can be attributed
to our model’s ability to effectively concentrate
on fine-grained semantic information embedded
within sentences. By leveraging this capability, our
approach is capable of discerning and extracting
salient structured information, a feature that plays
a vital role in the summarization process.

Moreover, it is evident that our novel formula-
tion of extractive summarization, revolving around
the extraction of semantic tuples, holds significant
relevance for Information Extraction (IE) tasks:
Traditional IE tasks typically involve extracting
structured semantic information from sentences,
while our task takes a step further, aiming to ex-
tract salient structured information specifically cor-
responding to target summaries.

We find inspiration in the remarkable achieve-
ments and state-of-the-art performances observed
in performing IE and semantic parsing through
autoregressive methods (De Cao et al., 2020; Josi-
foski et al., 2022; Bai et al., 2022). Consequently,

127

Model R1 R2 RL

ORACLE 49.18 33.24 46.02
LEAD-3 39.58 20.11 35.78

BERTSum (2019) 46.66 26.35 42.62
MATCHSUM (2020) 46.32 26.07 42.17

Ours 47.87 26.70 42.83

Table 2: Experimental results on NYT. For MATCH-
SUM, we used the released BERTSum checkpoint to
generate candidates, and then trained the matching
model on NYT.

Model R1 R2 RL

ORACLE 25.62 7.62 18.72
LEAD-2 14.40 1.46 10.59

BERTSum‡ 22.86 4.48 17.16
BERTSum† 20.04 2.97 16.77
MATCHSUM† 21.50 3.47 16.98

Ours (trained on CNN/DM) 23.07 4.53 17.18

Table 3: Zero-shot testing results on XSum. ‡ repre-
sents we trained the model on XSum and † indicates
we trained the model on CNN/DM. For MATCHSUM,
we used the released BERTSum checkpoint to generate
candidates.

our decision to adopt the autoregressive model fur-
ther contributes to the performance improvement
observed in our model. By building upon the capa-
bilities of autoregressive modeling, our approach
capitalizes on the strengths of this technique, en-
abling enhanced summarization outcomes and un-
derscoring the potential of this approach in extrac-
tive summarization.

5.4 Experimental Results on NYT

The experimental results obtained on NYT are dis-
played in Table 2. Our method generates extrac-
tive summaries of different lengths, with an aver-
age sentence length of 4.01 and a variance of 1.35.
Once again, our model outperforms the considered
baselines, reaffirming the efficacy and potential of
our proposed method. Note that all the baselines
rely on fixed numbers of sentences to be extracted.
However, in more realistic scenarios, users may
not always have prior knowledge of how many
sentences to extract when presented with a new
document.

5.5 Zero-shot Experiments on XSum

To explore the impact of fixed sentence extraction
requirements on the generalization of extractive
models, we formulated zero-shot testing. This set

of experiments enables an investigation of how the
training on one dataset, characterized by certain tar-
get summary lengths, may impact the performance
of the trained model during testing on a different
dataset with different target summary lengths, even
within the same domain. Based on this idea, we
trained models on CNN/DM, where the expected
number of sentences for extraction is 3, and sub-
sequently tested on XSum, which is expected to
extract only 2 sentences.

The results are presented in Table 3. We ob-
served that the baseline BERTSum, trained on
CNN/DM, achieved inferior performance com-
pared to its performance when trained on XSum.
This discrepancy in performance highlights the
challenge of generalization under the zero-shot set-
ting and can potentially be attributed to the different
number of sentences that should be extracted for
the two datasets.

In contrast, our model, trained on CNN/DM,
outperformed the baselines trained on CNN/DM.
We attribute this improvement to the new formu-
lation of extractive summarization adopted in our
approach. Unlike traditional extractive summariza-
tion, our approach encourages the model to focus
on more fine-grained and semantic-structured infor-
mation in the form of semantic tuples. This allows
the model to effectively identify salient semantic
tuples and subsequently map flexible numbers of
sentences to cover these identified elements, en-
hancing the overall performance.

Furthermore, our model’s performance is better
than that of BERTSum trained on XSum, which
further underscores our model’s generalization ca-
pability. This might be particularly useful in real-
world applications where users may not know the
optimal number of sentences to be extracted. Our
approach offers a solution to this problem, address-
ing a crucial aspect often overlooked in previous
work.

5.6 Comparison with ChatGPT

We created a prompt (Appendix Sec. B) to task
ChatGPT2 to generate an extractive summary for
a given source document. Unlike the prompts
used by Zhang et al., our prompt does not spec-
ify the number of sentences to extract, allowing
for a meaningful comparison with our method in
scenarios where the number of extracted sentences
is not predetermined.

2We used gpt-3.5-turbo specifically.

128

Model R1 R2 RL

CNN/DM

ChatGPT-Ext(2023) 39.25 17.09 25.64
ChatGPT-Ext(ICL)(2023) 42.38 17.27 28.41

ChatGPT 30.23 12.90 19.75
Ours 44.51 21.03 40.41

XSum

ChatGPT-Ext(2023) 19.85 2.96 13.29
ChatGPT-Ext(ICL)(2023) 17.49 3.86 12.94

ChatGPT 10.50 1.22 4.33
Ours 23.07 4.93 17.18

Table 4: Comparison results with ChatGPT-based ap-
proaches on CNN/DM and Xsum. ICL refers to in-
context learning.

Model relevance faithfulness

MATCHSUM 1.41 1.83
Ours 1.74∗ 1.87

Table 5: Human evaluation results on samples from
CNN/DM. ∗p < 0.05

The outcomes are presented in Table 4. The
performance of ChatGPT exhibits notable deficien-
cies on both CNN/DM and XSum. Notably, in
comparison to the findings of Zhang et al., Chat-
GPT’s performance diminishes when the number
of sentences to extract was left unspecified. This
observation underscores the susceptibility of Chat-
GPT’s performance to fixed sentence extraction
requirements, emphasizing the influence of such
constraints on model generalization. Furthermore,
incorporating strategies such as in-context learning
(Brown et al., 2020) has been noted to marginally
enhance performance, although still falling behind
existing baselines.

Inspecting the generated extractive summaries
(for an example see Appendix Sec C), we observed
that ChatGPT demonstrates a proclivity to select an
excessive number of sentences, surpassing the ex-
pected number. For instance, on average, ChatGPT
extracts approximately 8 sentences for CNN/DM,
whereas the expected length is 3 sentences. This
suggests a potential bias of ChatGPT towards opti-
mizing recall at the expense of precision, contribut-
ing to its suboptimal performance. This unexpected
outcome underscores the imperative for future re-
search into more effective strategies to leverage
ChatGPT for extractive summarization.

5.7 Human Evaluation
We performed a human evaluation based on our
model’s outputs and those released by MATCH-
SUM. We randomly sampled 50 test instances from
CNN/DM and focused on two critical aspects: rel-
evance (whether the output summary is relevant
to the source document) and faithfulness (indi-
cating the degree to which the output summary
faithfully represents the source document). Three
proficient English-speaking students scored them
on a scale ranging from 0 (poor) to 2 (excellent),
and averages were computed for each aspect. The
outcomes are presented in Table 5. We observe
that our method reaches a notably higher relevance
score, with both methods exhibiting comparably
high levels of faithfulness. This outcome further
substantiates the efficacy of our proposed method
in extractive summarization.

6 Conclusion

This study introduces an innovative, fine-grained,
and autoregressive technique for extractive sum-
marization via the extraction of semantic tuples.
Diverging from conventional strategies that focus
on sentence-level extraction, our approach oper-
ates at a more nuanced and semantically-structured
granularity. During the inference process, we use
a greedy approach to select sentences to cover the
extracted semantic tuples, eliminating the neces-
sity to predefine a fixed number of sentences for
extraction. Empirical assessments conducted on
CNN/DM and NYT establish the superior efficacy
of our method compared to competitive baselines.
Furthermore, our investigation into the general-
ization capabilities of our approach within zero-
shot settings highlights its remarkable adaptabil-
ity across diverse summary lengths, outperforming
baseline models and achieving better generaliza-
tion. In addition, we explored the suitability of
prominent large language models for the task of
extractive summarization by evaluating ChatGPT’s
performance in generating extractive summaries.
We found ChatGPT to underperform relative to
baseline models, emphasizing the potential of fine-
tuning-centric methodologies for enhancing sum-
marization performance.

7 Limitations

Our work has the following limitations. First, our
extraction process is based on the output from infor-
mation extraction (IE). Therefore the performance

129

and type of IE tools can impact the downstream
semantic tuple extraction. With better and better
performance achieved by SOTA IE, we believe our
approach can also be improved.

Furthermore, our evaluation of LLMs for extrac-
tive summarization only involved ChatGPT, specif-
ically gpt-3.5-turbo. To make the conclusion and
findings more robust, we plan to extend the current
work by including other more recent and powerful
LLMs, such as Llama 2(Touvron et al., 2023).

References
Chenxin An, Ming Zhong, Zhiyong Wu, Qin Zhu, Xuan-

Jing Huang, and Xipeng Qiu. 2022. Colo: A con-
trastive learning based re-ranking framework for one-
stage summarization. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 5783–5793.

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2017. Guided open vocabulary im-
age captioning with constrained beam search. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 936–
945.

Gabor Angeli, Melvin Jose Johnson Premkumar, and
Christopher D Manning. 2015. Leveraging linguistic
structure for open domain information extraction. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 344–354.

Sanghwan Bae, Taeuk Kim, Jihoon Kim, and Sang-
goo Lee. 2019. Summary level training of sentence
rewriting for abstractive summarization. In Proceed-
ings of the 2nd Workshop on New Frontiers in Sum-
marization, pages 10–20.

Xuefeng Bai, Yulong Chen, and Yue Zhang. 2022.
Graph pre-training for amr parsing and generation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6001–6015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 484–494.

Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. 2022. Introduction to
algorithms. MIT press.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2020. Autoregressive entity retrieval.
In International Conference on Learning Representa-
tions.

Greg Durrett, Taylor Berg-Kirkpatrick, and Dan Klein.
2016. Learning-based single-document summariza-
tion with compression and anaphoricity constraints.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1998–2008, Berlin, Germany.
Association for Computational Linguistics.

Elozino Egonmwan and Yllias Chali. 2019.
Transformer-based model for single documents
neural summarization. In Proceedings of the 3rd
Workshop on Neural Generation and Translation,
pages 70–79.

Yubin Ge, Ly Dinh, Xiaofeng Liu, Jinsong Su, Ziyao Lu,
Ante Wang, and Jana Diesner. 2021. Baco: A back-
ground knowledge-and content-based framework for
citing sentence generation. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1466–1478.

Yubin Ge, Devamanyu Hazarika, Yang Liu, and Mahdi
Namazifar. 2023a. Supervised fine-tuning of large
language models on human demonstrations through
the lens of memorization. In NeurIPS 2023 Work-
shop on Instruction Tuning and Instruction Follow-
ing.

Yubin Ge, Sullam Jeoung, Ly Dinh, and Jana Dies-
ner. 2023b. Detection and mitigation of the negative
impact of dataset extractivity on abstractive summa-
rization. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada.
Association for Computational Linguistics.

Ralph Grishman, Jerry Hobbs, Eduard Hovy, Antonio
Sanfilippo, and Yorick Wilks. 1999. Cross-lingual in-
formation extraction and automated text summariza-
tion. Multilingual information management: current
levels and future abilities, page 14.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. Advances in neural information
processing systems, 28.

Pere-Lluís Huguet Cabot and Roberto Navigli. 2021.
REBEL: Relation extraction by end-to-end language
generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Heng Ji, Benoit Favre, Wen-Pin Lin, Dan Gillick, Dilek
Hakkani-Tur, and Ralph Grishman. 2013. Open-
domain multi-document summarization via informa-
tion extraction: Challenges and prospects. Multi-
source, multilingual information extraction and sum-
marization, pages 177–201.

130

Ruipeng Jia, Yanan Cao, Hengzhu Tang, Fang Fang,
Cong Cao, and Shi Wang. 2020. Neural extractive
summarization with hierarchical attentive heteroge-
neous graph network. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Online. Association for
Computational Linguistics.

Martin Josifoski, Nicola De Cao, Maxime Peyrard,
Fabio Petroni, and Robert West. 2022. GenIE: Gen-
erative information extraction. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4626–4643,
Seattle, United States. Association for Computational
Linguistics.

NR Kasture, Neha Yargal, Neha Nityanand Singh, Neha
Kulkarni, and Vijay Mathur. 2014. A survey on meth-
ods of abstractive text summarization. Int. J. Res.
Merg. Sci. Technol, 1(6):53–57.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Wei Li. 2015. Abstractive multi-document summariza-
tion with semantic information extraction. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1908–
1913.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Marina Litvak and Mark Last. 2008. Graph-based key-
word extraction for single-document summarization.
In Coling 2008: Proceedings of the workshop multi-
source multilingual information extraction and sum-
marization, pages 17–24.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations (ICLR).

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Kathleen McKeown and Min-yen Kan. 1999. Informa-
tion extraction and summarization: Domain indepen-
dence through focus types.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based
sequence model for extractive summarization of doc-
uments. In Proceedings of the AAAI conference on
artificial intelligence, volume 31.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çağlar Gulçehre, and Bing Xiang. 2016. Abstractive
text summarization using sequence-to-sequence rnns
and beyond. In Proceedings of The 20th SIGNLL
Conference on Computational Natural Language
Learning, pages 280–290.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018a. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018b. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1747–1759.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems (NeurIPS).

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12):e26752.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer,
and Ido Dagan. 2018. Supervised open information
extraction. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 885–
895.

Mihai Surdeanu, Sanda Harabagiu, John Williams, and
Paul Aarseth. 2003. Using predicate-argument struc-
tures for information extraction. In Proceedings of
the 41st Annual Meeting of the Association for Com-
putational Linguistics, pages 8–15.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826.

131

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Swathilakshmi Venkatachalam, Lakshmana Pandian
Subbiah, Regan Rajendiran, and Nithya Venkatacha-
lam. 2020. An ontology-based information extrac-
tion and summarization of multiple news articles.
International Journal of Information Technology,
12(2):547–557.

Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu,
and Xuan-Jing Huang. 2020. Heterogeneous graph
neural networks for extractive document summariza-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6209–6219.

Adhika Pramita Widyassari, Supriadi Rustad, Guruh Fa-
jar Shidik, Edi Noersasongko, Abdul Syukur, Af-
fandy Affandy, et al. 2020. Review of automatic
text summarization techniques & methods. Journal
of King Saud University-Computer and Information
Sciences.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations (EMNLP).

Wen Xiao and Giuseppe Carenini. 2019. Extractive
summarization of long documents by combining
global and local context. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3011–3021.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang. 2022.
Hegel: Hypergraph transformer for long document
summarization. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 10167–10176.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang. 2023. Ex-
tractive summarization via chatgpt for faithful sum-
mary generation. arXiv preprint arXiv:2304.04193.

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. HI-
BERT: Document level pre-training of hierarchical

bidirectional transformers for document summariza-
tion. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
5059–5069, Florence, Italy. Association for Compu-
tational Linguistics.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuanjing Huang. 2020. Extractive
summarization as text matching. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, Online. Association for
Computational Linguistics.

Ming Zhong, Pengfei Liu, Danqing Wang, Xipeng Qiu,
and Xuanjing Huang. 2019. Searching for effective
neural extractive summarization: What works and
what’s next. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
Florence, Italy. Association for Computational Lin-
guistics.

Jiawei Zhou, Tahira Naseem, Ramón Fernandez As-
tudillo, Young-Suk Lee, Radu Florian, and Salim
Roukos. 2021. Structure-aware fine-tuning of
sequence-to-sequence transformers for transition-
based AMR parsing. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Qingyu Zhou, Furu Wei, and Ming Zhou. 2020. At
which level should we extract? an empirical analysis
on extractive document summarization. In Proceed-
ings of the 28th International Conference on Compu-
tational Linguistics, pages 5617–5628.

Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang,
Ming Zhou, and Tiejun Zhao. 2018. Neural docu-
ment summarization by jointly learning to score and
select sentences. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 654–663.

A Implementation Details

Models are implemented using Pytorch (Paszke
et al., 2019) and Huggingface transformers (Wolf
et al., 2020). We initialized BART with
facebook/bart-base and trained the model with
AdamW (Loshchilov and Hutter, 2018). We set
the learning rate to 3e − 5, gradient clipping to
0.1, and weight decay to 0.01. The learning rate
was updated using a polynomial decay schedule
with an end value of 0. We set the warm-up step
to 1000, the total training steps to 40000, and the
batch size to 14. During inference, we used Con-
strained Beam Search (Anderson et al., 2017) and
restricted the max length for the input and the out-
put sequence to be 768 and 512, respectively. We
normalized the log probabilities by sequence length.
The training was performed on 8 NVIDIA V100

132

GPUs and it took about 30 minutes for one training
run.

B Prompt Design

The prompt utilized for querying ChatGPT is pre-
sented in Table 6. Different from the approach of
Zhang et al. (2023), we omitted the specification
of the number of sentences to be extracted. This
deliberate exclusion facilitates a direct compari-
son with our proposed method under equivalent
experimental conditions.

The extractive summary consists of exact sen-
tences from a given document, and those sen-
tences can serve as the summary of the given
document. Give the extractive summary for the
following article, and represent the extracted
sentences in a list format.

{source document }

Table 6: The designed prompt template for querying
ChatGPT to generate an extractive summary for a given
source document.

C Case Study

We provided an example generated by both our pro-
posed method and ChatGPT using the same source
document in Table 7. The prompt employed for
ChatGPT, as detailed in Table 6, intentionally omit-
ted the specification of the number of sentences to
be extracted. As discussed in Section 5.6, Chat-
GPT tends to select more sentences than the expec-
tation, thereby trading off or sacrificing precision
for recall. In contrast, our method adopts an IE-
based approach that initially extracts fine-grained
semantic tuples. Subsequently, source sentences
are chosen to cover the extracted semantic tuples,
which eliminates the a priori predetermination of
the exact number of sentences for extraction.

133

Document Tony Mowbray will be named as the new manager of Coventry on Tuesday. Mowbray has been
out of work since leaving Middlesbrough in 2013 but has agreed to return to the dugout with
the League One strugglers. Steven Pressley was sacked by the Sky Blues last week after a run
of seven games without a win. Former Middlesbrough manager Tony Mowbray will take over
as the new boss of struggling Coventry. Neil MacFarlane and Dave Hockaday took charge of
Saturday’s win over MK Dons and look set to remain in charge for Tuesday’s game at Barnsley
but Mowbray could be in the stands at Oakwell. Coventry are just above the relegation zone after
their poor run of form and will look to Mowbray to turn things around quickly. Steven Pressley
was sacked by the League One club after they became mired in a relegation battle.

Reference Tony Mowbray will take over as manager of League One Coventry City. He will replace Steven
Pressley who was sacked last month. Mowbray has been out of work since 2013 when he left
Middlesbrough. He also had spells in charge of Hibs, West Brom and Celtic .

Output Semantic Tuples Tony Mowbray<sep>been<sep>out of work<et>Tony Mowbray<sep>agreed<sep>to re-
turn to the dugout<sep>Tony Mowbray<sep>leaving<sep>Middlesbrough<et>Tony Mow-
bray <sep>take<sep>as the new boss of Coventry<et>Steven Pressley<sep>sacked<sep>by
the Sky Blues<et>

Our Output Summary Mowbray has been out of work since leaving Middlesbrough in 2013 but has agreed to return to
the dugout with the League One strugglers. Former Middlesbrough manager Tony Mowbray
will take over as the new boss of struggling Coventry. Steven Pressley was sacked by the Sky
Blues last week after a run of seven games without a win.

ChatGPT Tony Mowbray will be named as the new manager of Coventry on Tuesday. Mowbray has been
out of work since leaving Middlesbrough in 2013. Steven Pressley was sacked by the Sky Blues
last week after a run of seven games without a win. Former Middlesbrough manager Tony
Mowbray will take over as the new boss of struggling Coventry. Neil MacFarlane and Dave
Hockaday took charge of Saturday’s win over MK Dons and look set to remain in charge for
Tuesday’s game at Barnsley. Mowbray could be in the stands at Oakwell. Coventry are just
above the relegation zone after their poor run of form. The League One club sacked Steven
Pressley as they became mired in a relegation battle.

Table 7: Case study of different settings

	Introduction
	Related Work
	Extractive Summarization
	Text Summarization and Information Extraction
	Flexible Extractive Summarization

	Fine-grained Semantic Tuples Construction
	Methodology
	Semantic Tuples Extraction
	Model Training
	Constrained Decoding with Local Tries

	Source Sentence Extraction

	Experiments and Results
	Datasets
	Baselines
	Experimental Results on CNN/DM
	Experimental Results on NYT
	Zero-shot Experiments on XSum
	Comparison with ChatGPT
	Human Evaluation

	Conclusion
	Limitations
	Implementation Details
	Prompt Design
	Case Study

