
Proceedings of the 17th International Natural Language Generation Conference, pages 254–271
September 23–27, 2024. ©2024 Association for Computational Linguistics

254

Automatically Generating IsiZulu Words From Indo-Arabic Numerals
Zola Mahlaza and Tadiwa Magwenzi and C. Maria Keet

University of Cape Town
South Africa

{zmahlaza,mkeet}@cs.uct.ac.za, MGWTAD001@myuct.ac.za

Langa Khumalo
SADiLaR, Northwest University,

Potchefstrom, South Africa
langa.khumalo@nwu.ac.za

Abstract
Artificial conversational agents are deployed
to assist humans in a variety of tasks. Some
of these tasks require the capability to com-
municate numbers as part of their internal and
abstract representations of meaning, such as for
banking and scheduling appointments. They
currently cannot do so for isiZulu, due to the
lack of speech and text data and the complexity
of the generation due to dependence on noun
that is counted. We solved this by extracting
and iteratively improving on the rules for speak-
ing and writing numerals as words and creating
two algorithms for it. Evaluation of the output
by two isiZulu grammarians showed that six
out of seven number categories were 90-100%
correct. The software was used with an addi-
tional set of rules to create a large monolingual
text corpus, made up of 771,643 sentences, to
enable future data-driven approaches.

1 Introduction

Artificial conversational agents are frequently de-
ployed to interact with humans and execute simple
tasks on their behalf. For such agents to be use-
ful for people who speak South African languages,
various Natural Language Processing (NLP) tools
need to be built. For instance, if an isiZulu speaker
is negotiating with a digital assistant to book a
restaurant table, it may present a feasible option as
follows:

Indawo yokudlela iX inetafula labantu aba-2
ngomhla ka-25 (IsiZulu)

‘Restaurant X has a table for 2 people available
on the 25th’
where the underlined parts are used to mark agree-
ment between numbers and their subjects in the
sentence: the aba- is determined by the noun class
of abantu ‘people’, the subject of the number 2, and
the ka is determined by the range of the number that
follows it. Since isiZulu, the largest South African
language by L1 speakers, has an agglutinating mor-
phology and agreement markers in numbers and

other parts of speech, the inclusion of Indo-Arabic
numerals in text often yields hard-to-read text, espe-
cially if the underlined prefixes are omitted, since
then the text is grammatically incorrect. Then, the
reader has to figure out what is being counted, as
it is not encoded in the text as it should be. This
issue can also lead to inconsistencies in orthogra-
phy (Ndimande-Hlongwa, 2010, p218) and con-
fusion due to differences in how the reader ought
to interpret the text in the absence of an explicit
concord. It can be addressed by presenting num-
bers as words instead of numerals, which also will
solve this gap in text-to-speech systems. However,
that is currently impossible to do, because there are
no comprehensive algorithms to convert numerals
into their equivalent word form. There are also no
large datasets that can be used to build seq2seq text
normalisation models for the task.

It is, however, not only a case of agreeing pre-
fixes. Consider the verbalisation of the number 2,
-bili: it renders as abantu ababili for ‘two people’
and izinja ezimbili for ‘two dogs’, among many
forms. Ababili is formed by appending the subject
concord aba- to the stem -bili. Ezimbili, however,
was subjected to phonological conditioning rules
when combining the subject concord ezin- with -
bili hence the word has an -m-. The form depends
on the noun class of the noun it quantifies over,
which is indicated with the underlined prefixes.
This, in turn, is due to the noun class system em-
blematic of the Niger-Congo B (NCB) languages1

(Herbert and Bailey, 2002); abantu is in noun class
2 whereas izinja is in noun class 10. IsiZulu has 17
noun classes. The formation of such words requires
understanding of the numerical categories, the pat-
terns for each category, and the resolution of the
appropriate prefix for the various categories. After-
ward, rules for combining a variety of morphemes
need to be applied to obtain the final word.

1Some historical sources use the term ‘Bantu’ languages.

255

In this paper, we propose the first solution to this
problem of generating words from Indo-Arabic nu-
merals for ‘standard’ isiZulu. We collected, anal-
ysed, tested, and formalised the text generation
rules and designed and implemented two new al-
gorithms that convert numerals to words. The al-
gorithms cover cardinal, ordinal, and set-of-items
numerals, and numerical adverbs, which generate
noun phrases such as, e.g., ama-apula ayisishiyaga-
lolunye ‘nine apples’ (with -shiyagalolunye ‘nine’),
ama-apula wesishiyagalolunye ‘ninth apple’, ama-
apula omasishiyagalolunye ‘all nine apples’, and
ngithenge ama-apula kasishiyagalolunye ‘I bought
apples nine times’, respectively.

To demonstrate utility of the algorithms, we de-
veloped a sentence generation system for isiZulu,
focusing on handling various numerical types and
generated a corpus of 771,643 grammatically cor-
rect sentences. This is the first publicly accessible
isiZulu dataset of its size that is not based on the
Bible, government documents, or technical manu-
als. It contains ten times more sentences than the
clean NCHLT monolingual isiZulu dataset (Eiselen
and Puttkammer, 2014) that is widely used.

These algorithms were developed and imple-
mented using two iterations; for each iteration, we
used grammar literature to identify the linguistic
categories of numbers, determined the patterns for
forming words in each category, and used our lin-
guistic knowledge. Our final evaluation is expert-
focused, relying on two isiZulu grammarians, work-
ing collaboratively, to ascertain the accuracy of
the algorithms’ output. It showed that five of the
seven number categories had 100% valid output,
one 90%, and one had 30% correctness due to a
change in concord.

The remainder of the paper is structured as fol-
lows: Section 2 introduces key linguistic properties
of isiZulu to demonstrate why generating text from
numerals is not trivial and it also discusses existing
Natural Language Generation (NLG) work with a
special emphasis on isiZulu. Section 3 presents our
novel algorithms and the procedure followed for
their development. Section 4 presents the expert-
driven evaluation and results, Section 5 discusses
the results and demonstrates the utility of the al-
gorithms via generating a large corpus that can be
used in creating data-driven models, and Section 6
concludes.

2 Natural language generation and
isiZulu

NLG research focuses on generating natural lan-
guage text from a variety of different inputs (e.g.,
(van der Lee et al., 2018; Gkatzia et al., 2016)).
With respect to NCB languages, a few NLG sys-
tems and algorithms have been developed, notably
grammar rules to generate texts in a specific subject
domain (Byamugisha et al., 2016a; Mahlaza, 2018)
or for a specific task, such as verbalisers for maths
equations, ontologies, or language learning exer-
cises (Keet et al., 2017; Byamugisha, 2019; Smith,
2020; Mahlaza and Keet, 2020; Gilbert and Keet,
2018). To the best of our knowledge, there are no
existing algorithms, let alone implementations, that
can be used to programmatically convert numerals
to isiZulu words. There only exists a grammar frag-
ment to verbalise numbers in the range 1-99 in the
WeatherFact grammar (Marais, 2021a).

Relevant text-to-speech work include Marais
et al.’s (2020) grammar that has the type Small-
Number to verbalise numbers in isiZulu. There is
insufficient documentation of the grammar, but the
dataset used to create it shows that its capability
is likely limited to numbers between 1-10 (Marais,
2021b). Schlünz et al.’s (2017) work has greater
coverage for isiZulu, but they only generate ordinal
numbers that agree with nouns from noun class
3, the coverage is limited to numbers up to 100
based on our analysis of the documentation, and
there is insufficient detail of the number generation
process other than regular expressions with modulo
arithmetic.

This lack of capability is partly due to the com-
plexity of the language, and of the number system
specifically. IsiZulu is a NCB language, most of
which possess a highly agglutinating morphology,
i.e., words are formed through combining multi-
ple morphemes. All nouns belong to a noun class,
which is used to make a part-of-speech in agree-
ment with a noun. The number of noun classes in
a NCB language varies depending on the language
and the chosen noun classification system. For
instance, Grout’s (1893) classification system has
eight noun classes, whereas the most used classifi-
cation system, originally due to Meinhof (Katamba,
2014), has 17 noun classes for isiZulu.

To obtain agreement in isiZulu sentences, the
class of the noun that is qualified by the number
is first identified, its concord(s) (i.e., special mor-
phemes for marking agreement) are identified, and

256

then used together with other morphemes to form
the final string for the qualifying number. This pro-
cess may require phonological conditioning rules
to ensure that one obtains a valid word; e.g., afore-
mentioned ezimbili ‘two’, because isiZulu disal-
lows the voiced alveolar nasal n to be followed by
the voiced bilabial implosive b and so noun class
8’s n of the ezin concord is changed to m.

Thus, there is still a need for a comprehensive
algorithm that can verbalise numbers, both when
they agree with a noun or on their own. Especially
since there are no existing parallel datasets that can
be used to train a number-to-text model2.

3 Verbalising numbers

The algorithms were created by codifying rules
from grammar literature over two iterations. All the
linguistic knowledge was extracted from (Wilkes
and Nkosi, 2012; Stuart, 1940; Grout, 1893) and
supplemented with the first author’s knowledge as
a researcher who works with isiZulu.

Due to space limitations, we discuss key aspects
in the remainder of this section; the complete set
of rules are available as supplementary material in
the Appendix.

Number categories We chose to support only
numbers within the range 0-9,999 for the numeral
categories shown in Figure 1, as the use case mo-
tivation was in the context of building a personal
finance digital assistant that supports isiZulu and
the range was sensible for the target audience.

Patterns and rules for using them The
high-level patterns that were extracted from the
literature are listed in Appendix A; e.g., Pattern 1c
for cardinal numbers:
adj.conc-(yi∣ngama)-shumi ((ama∣ayisi)-
stemcount10)? (na-(stemnumber<10 ∣ noun))?
where adj.conc is the adjectival concord, shumi
‘ten’, and stem the stem of the number that is
grammatically a noun in isiZulu. The patterns
still require further assessment to determine when
to use which pattern in each category, where
to use which morpheme for a segment when
there are multiple options, and when an optional
segment should be included. For instance, for
Pattern 1c, there is no information yet when to use
-yi- or -ngama- in the first word. Similarly, when

2A list of relevant isiZulu datasets can be found at https:
//github.com/masakhane-io/masakhane-community/
blob/master/list-of-datasets.md.

verbalising the number 5 as a cardinal number, the
Patterns 1a-1h do not include with of those 8 rules
is the one to apply in a particular case.

The pattern selection for each category is based
on the range of the number and whether it has to in-
clude an agreement marker. The ranges supported
by each pattern are included in Appendix B; that
is, which pattern apply to numbers 0 < n < 10,
10 ≤ n < 100, and so on. Some patterns include an
adjectival or possessive concord; those that have
concords are only used when verbalising numbers
that need to agree with a noun. For instance, the
cardinal number 2 is verbalised as ababili ‘two’
when it agrees with nouns in noun class 2 and it is
isibili without agreement marker.

Once a pattern is selected for the range and agree-
ment marker, there is another set of rules to select
an appropriate morpheme for the pattern parts that
have multiple values (the parts that are coloured in
the patterns), and then rules for deciding whether
to include the optional segments.

The pattern selection is decided using the rules
described in Appendix B. We describe one of those
rules here, for brevity. The stems that are used for
numbers that are less than 10 (i.e., stemnumber<10)
may be preceded by an optional segment (e.g., see
Patterns 1b and 3a) and these segments are only
included if the first number to be verbalised is in
the range of [6,9] inclusive. For instance, if we take
Pattern 1b to verbalise the number 5 for a noun in
noun class 2, it generates abahlanu (the -yisi- is
omitted), whereas the number 6 (still with noun
class 2) is verbalised as abayisithupha—with-yisi-,
instead of abathupha—since it belongs to the [6,9]
range.

Pattern use illustration We demonstrate how the
patterns can be used to verbalise the cardinal num-
bers 25 and 26 when they agree with nouns from
class 2. The patterns must output abangamashumi
amabili nanhlanu ‘two tens and five’ (i.e., twenty-
five) and abangamashumi amabili nesithupha ‘two
tens and six’ (i.e., twenty-six). In all the generated
texts, the first word is a reference to tens, the sec-
ond word references the number of tens (i.e., two),
and the third word references the remainder that
is left after subtracting the two tens (i.e., 5 and 6,
respectively). The final morphemes that are cho-
sen for each word are given in Table 1, which are
explained in the remainder of this paragraph.

We use the pattern selection rules in Appendix B
to identify the rule:

https://github.com/masakhane-io/masakhane-community/blob/master/list-of-datasets.md
https://github.com/masakhane-io/masakhane-community/blob/master/list-of-datasets.md
https://github.com/masakhane-io/masakhane-community/blob/master/list-of-datasets.md

257

uthathe izincwadi kathathu
‘they took books three times’

Number Definite
number

Numerical
adverb

Numerical
adjective

Indefinite
number

‘Set of items’
number

Ordinal
number

Cardinal
number

izincwadi zontathu
‘all three books’

incwadi yesithathu
‘third book’

zintathu izincwadi
‘three books’

izincwadi zodwa
‘only books’

Figure 1: A taxonomy of the several types of numbers in isiZulu (Adapted from (Grout, 1893)). Green shaded boxes
indicate the categories covered by our algorithms.

Table 1: Pattern used to verbalise the numbers 25 and 26 when they agree with noun class 2, and, for comparison,
the components and output for 14 and 17 when in agreement with noun class 4, and 84 and 87 with noun class 8.
For each number, the values for each slot have been inserted and the appropriate segment is chosen when there are
multiple options.

First word ‘agreement tens’ Second word ‘amount of tens’ Third word ‘and remainder’
Pattern adj.conc (yi∣ngama) shumi ((ama∣ayisi) stemcount10)? (na stemnumber<10 ∣ noun)?

Agreement with noun class 2
25 aba ngama shumi ama bili na hlanu

abangamashumi amabili nanhlanu
26 aba ngama shumi ama bili na isithupha

abangamashumi amabili nesithupha
Agreement with noun class 4

14 emi yi shumi ∅ ∅ na ne
emiyishumi nane

17 emi yi shumi ∅ ∅ na isikhombisa
emiyishumi nesikhombisa

Agreement with noun class 8
84 ezi yi shumi ayisi isishiyagalombili na ne

eziyishumi ayisishiyagalombili nane
87 ezi yi shumi ayisi isishiyagalombili na isikhombisa

eziyishumi ayisishiyagalombili nesikhombisa

1. First, both numbers are in the range [10,100],
second, they have agreement markers, third,
they are cardinal numbers, hence Pattern 1c is
applicable.

2. The first word in the pattern
adj.conc-(yi∣ngama)-shumi)
and the following optional segments,
i.e., ((ama∣ayisi)-stemcount10)? (na-
(stemnumber<10 ∣ noun))?)
have morphemes whose value must be chosen
from two possible values (in pink and blue
colour).

3. To form the first word (from left-to-right),
we start by resolving the adjectival concord,3

which is aba- for noun class 2. We then use
Table 2 to determine the prefix for the sec-
ond morpheme: Segment 2, 10/100 column,
plural, agreement, cardinal, which gives us
-ngama-. The first word’s third morpheme
is -shumi for every input. So, the first word
becomes abangamashumi.

4. For the second word on multiples of ten, we
3https://github.com/mkeet/MoRENL/blob/main/

resources/ZuluConcordsListof22.pdf

start with Table 3 to resolve the value of the
morpheme: for the 10/100 row, and with 2
being in the [2-5] range, the prefix is ama-.
For the second morpheme, the stem is -bili
‘two’ since there are two tens in the input,
resulting in amabili.

5. For the last word, we start with the conjunc-
tion na- ‘and’ irrespective of the remainder
and then either i) use the stem of the number
that is associated with the remainder after re-
moving the two 10s, for numbers in the range
[1-5], or ii) use the stem to form a noun for
the remainder, for numbers in the range [6-9].
So, with a remainder of 5, we use the stem
-hlanu ‘five’ to obtain nanhlanu, and for 6,
being isithupha, we obtain nesithupha after
phonological conditioning, applying the na +
i- → ne- rule.

As mentioned before, combining morphemes
may activate phonological conditioning rules,
which is a separate issue not considered here (see
further below).

https://github.com/mkeet/MoRENL/blob/main/resources/ZuluConcordsListof22.pdf
https://github.com/mkeet/MoRENL/blob/main/resources/ZuluConcordsListof22.pdf

258

Table 2: List of possible prefix values used for the segments that are used to construct the strings that refer to special
multiples of ten. We use the ∅ symbol to denote that a prefix is not applicable for a category. Abbreviations used:
Plural = Pl., Singular = Sg.

10/100 1000 10/100 1000 Category

Agreement
Sg. Pl. Sg. Pl. Sg. Pl. Sg. Pl.
∅ ∅ ∅ ∅ yi ngama yi yizi Cardinal
∅ ∅ ∅ ∅ i ama i izi Ordinal
∅ ∅ ∅ ∅ li ma i yizi Set-of-items

No Agree-
ment

∅ ∅ ∅ ∅ i ama i izi Cardinal, ordinal, set-of-items
kali kanga ∅ ∅ i ama i izi Adverb

Segment 1 Segment 2

Table 3: List of prefixes used in the word that count the
number of multiples of 10s (e.g., the second word in
amakhulu amathathu ‘three hundred’). The value of 1
is not included in the ranges (second column), because
the segments with the prefixes are not included when
there is only one 10, 100, or 1000.

Quantified
number(s)

Value/range
of count

Prefix

10/100 6-9 ayisi-
10/100 2-5 ama-
1000 2, 4 ezim-
1000 3 or 5 ezin-
1000 6-9 eziyi-

Algorithms Using the patterns and rules de-
scribed in the previous sections as a basis, we
created Algorithms 1 and 2 (see supplementary
material) to capture all the necessary information.
Algorithm 1 is used to verbalise numbers that do
not have an agreement marker while Algorithm 2 is
created to generate numbers have one. In both algo-
rithms, we use a plus sign to denote the concatena-
tion of morphemes, and the symbol mod to denote
the modulo arithmetic operator. This operation
is not a simple appending of morphemes since it
may activate the necessary phonological condition-
ing rules. We used the phonological conditioning
rules described in (Mahlaza and Keet, 2020) and
extended them with rules for combining nasals and
fricatives (Raper, 2012; Naidoo, 2005). All these
auxiliary rules are implemented in a Java-based
grammar engine for Nguni languages4. The algo-
rithms for the text generation for numerals were
implemented using Java, they rely on the previously
grammar engine for phonological conditioning, and
the implementations are available as supplementary

4https://github.com/AdeebNqo/
NguniTextGeneration

material5.
To demonstrate it, we use the generation of text

for the ordinal 105 using Algorithm 2 with nouns
from class 8 to produce zekhulu nanhlanu. When
tracing the algorithm, and ‘line(s)’ here referring
to the lines in Algorithm 2:

1. The closest multiple of 10 is 100 (lines 15-16)
with a remainder of 5 (line 19).

2. Since the value is ordinal (line 23), the chosen
concord is za- (line 25), the prefix and stem
are -i- and -khulu respectively (line 29), and

3. they are combined to form zekhulu for the first
word where the rule a+i→ e is applied to elim-
inate the prefix and the -a- from the concord
(rule is encoded in the grammar engine).

4. After removing 100 from the input, the re-
mainder is 5 (lines 33-41) and

5. it is less than six, therefore its stem -hlanu is
combined with the conjunction na- (line 34)
to form nanhlanu where the -n- is introduced
by phonological conditioning.

Related to the previous example, when using
Algorithm 1 to generate text for the number 84
when there is no agreement marker, the output is
kangamashumi ayisishiyagalombili nane ‘eighty-
four times’. Specifically, and with ‘line(s)’ refer-
ring to the lines in Algorithm 1):

1. The algorithm first establishes that the cate-
gory is a numerical adverb and that the closest
multiple of 10 is 10 (lines 17-20) with a re-
mainder of 4 (line 21).

2. Since there are 8 tens (line 22), hence, the mul-
tiples are plural (line 23), the algorithm then
retrieves the prefixes kanga- (i.e., Segment
1), -ama- (line 25) and stem shumi to produce
kangamashumi (line 25) where a phonologi-
cal conditioning rule removes the duplication

5https://github.com/KEEN-Research/
ZuluNum2Text

https://github.com/AdeebNqo/NguniTextGeneration
https://github.com/AdeebNqo/NguniTextGeneration
https://github.com/KEEN-Research/ZuluNum2Text
https://github.com/KEEN-Research/ZuluNum2Text

259

of -a- when combining of kanga + ama.
3. Following that, since there are multiple tens

(line 29-30), the algorithm combines ayi- with
-isishiyangalombili to form ayisishiyangalom-
bili (line 30) for the second word.

4. The remainder is 4, hence, the numerical stem
-ne is selected and combined with the conjunc-
tion na- to form nane (line 34), forming the
third word.

5. The three words are then combined to form
the final output.

4 Evaluation of the algorithms

The aim of the experiment is to evaluate the accu-
racy of the algorithms we developed. The entire
process of algorithm developed up to good quality
output took two iterations, illustrated in Figure 2,
but due to space limitations, we only report on
the evaluation of the second, and final, iteration.6

It is also with human judgements, since there is
no corpus to check the numbers against. To max-
imise the likelihood of being able to determine why
generated texts are grammatically incorrect, if the
need were to arise, we chose to rely on two isiZulu
grammarians to collaboratively evaluate the texts
instead of only using isiZulu speakers. We describe
the methods and results in this section and discuss
them in Section 5.

4.1 Materials and Methods

We sought to create a survey that is made up of
numbers that are representative of the various num-
ber categories and not biased in favour of a specific
noun class. This was balanced against keeping
the number of generated texts as low as possible
to avoid obtaining untrustworthy judgements due
to fatigue. As such, we randomly sampled one
noun and then used it to generate numbers that
have agreement markers across the relevant num-
ber categories. We could not reasonably include
all the numbers and for every noun classes since
that would have meant that the grammarians would
have to evaluate 519,948 texts (i.e., (9,999 num-
bers * 16 noun classes * 3 categories of numbers
with agreement markers) + (9,999 numbers * 4
categories of numbers without agreement mark-
ers)). The validity of the generated strings is not
compared, at least not directly, with strings from
another system or algorithm since no comparable

6Details of the first iteration can be found in the report by
Moraba (2021).

system or algorithm exists. We will return to this
point in Section 5.

We generated 70 texts by first sampling five num-
bers from the list of numbers that have unique word
stems (see Section 3) and another five from num-
bers that do not have unique stems, in the range
between 10 and 10,000. We then verbalised those
ten numbers for the cardinal, ordinal, set-of-items,
and adverb categories such that they are not in
agreement with any noun; the resulting number
of strings are listed in Table 4 in the first three
columns.

Table 4: List of the 70 texts judged by isiZulu gram-
marians, separated by number category and agreement,
and the percentage of valid texts. Abbreviation(s) used:
Agreement = Agr., Percentage = Pct., Number = Num.

Category Noun
Class

Num.
texts

Pct.
valid

N
o

A
gr

. Cardinal n/a 10 100%
Ordinal n/a 10 100%
Set-of-items n/a 10 100%
Numerical ad-
verb

n/a 10 100%

A
gr

. Cardinal 2 10 100%
Ordinal 2 10 90%
Set-of-items 2 10 30%

In order to generate numbers that agree with
some noun, we selected the first plural noun in
the first section of an English-IsiZulu dictionary
(de Schryver, 2015). We used the sampled noun
ababhali ‘writers’ from noun class 2 to verbalise
the selected numbers for all the categories that have
agreement markers.

The 70 texts were packaged into a single spread-
sheet and collaboratively analysed by the two gram-
marians to determine whether each of them was
valid or invalid, or state whether they were uncer-
tain. If the verbalisation was invalid, they were
asked to provide optional comments to describe the
source of the error. Since the evaluation was col-
laborative, inter-annotator agreement scores were
not applicable. They were recruited through direct
invitation by email, from our pool of prior collabo-
rators and evaluators.

4.2 Results
The aggregated results of the judgments made by
the grammarians are summarised in Table 4 in the
last column. They are overwhelmingly correct,
except for the set-of-items category.

260

Figure 2: Steps taken to develop the algorithms. Evaluation in iteration 1 relied on L1 and L2 isiZulu speakers for
evaluation while iteration 2 relied on grammarians.

Table 5: List of old and updated prefix values used for
the segments that are used to construct the strings that
refer to special multiples of ten. Prefixes are grouped
for patterns that agreement markers and patterns with no
markers. The ∅ symbol denotes an inapplicable prefix.
Abbreviations used: Plural = P., Singular = S.

10/100 1000 10/100 1000
- S. P. S. P. S. P. S. P.
Old ∅ ∅ ∅ ∅ li ma i yizi

New ∅ ∅ ∅ ∅ yi ngama yi yizi

Error analysis shows that the set-of-items cat-
egory received a low percentage because of an
incorrect use of an adjectival concord instead of
possessive concord in patterns that “appl[y] more
to numbers above five than those below” (Grout,
1893). The grammarians also pointed out that the
Segment 2 values used in the set-of-items patterns
are also incorrect. We have updated it accordingly;
the changes are listed in Table 7. After making
these changes, we used the grammarians’ com-
ments, where they specified the correct forms, to
confirm that the changes resolve all the errors.

The second, and minor, issue concerned ordi-
nals with agreement marker, obtaining 90% correct.
The error analysis shows that only one number was
deemed invalid, which was due to the use of -isi-
instead of -i- when forming a noun using the stem -
khulu, resulting in besikhulu instead of the expected
bekhulu. This was caused by missing a rule that
is not explicitly mentioned by Grout (1893, pg90).
Grout (1893) specifies that nouns are formed by
prefixing isi- to the stem and we were able to de-
termine, using Grout’s examples of nouns (Grout,
1893), that the number 10 is an exception as it uses
i-. This i- exception turned out to apply also to 100
and 1000.

Therefore, we updated Table 2’s column that
specifies the prefix values when there is agreement

in a word. The old and new values for the set-
of-items category are given in Table 5. This now
allows the generation of two 100s (i.e., 200), as
set-of-items, when it agrees with noun class 8 as
ezingamakhulu amabili instead of ezimakhulu am-
abili (updated and old prefix values, respectively,
underlined). This also induced a minor change to
lines 17-42 of Algorithm 2 so that it now uses the
possessive concord and basic prefix. The validity
of the change was confirmed by comparing the out-
put to the correct value provided via comments by
the grammarians.

5 Discussion

The ‘old-fashioned’ laborious approach of consult-
ing documentation and encoding it has been shown
to work well for the isiZulu numbers, considering
the results of the final evaluation. The overall pro-
cess was hampered by a lack of recent and relevant
books describing the language’s grammar, which
required combining material from comprehensive
dated books, recent language learning books, our
isiZulu expertise, and iterations with intermediate
testing. The multiple iterations in algorithm devel-
opment were mainly due to incorporating changes
throughout time regarding orthography and noun
classification and subsequent refactoring of com-
ponents, specifically regarding phonological condi-
tioning rules.

Even though the grammar books used are dated,
they were still valuable sources of linguistic in-
formation to understand the main mechanism of
generating words from numbers. Specific issues
that surfaced during development were:

• Old textbooks use -t- instead of -th- hence they
use katatu instead of kathathu ‘four times’.
However, only -th- is used in modern isiZulu
hence an output of katatu will be deemed in-
correct.

• Grout (1893) uses adjectival concords for

261

marking agreement in set-of-items numbers
that are greater than 5. However, these are
judged to be invalid by two grammarians. This
is likely because Grout’s grammatical con-
struction is outdated.

5.1 Comparison to related work
We now turn to compare our algorithms to existing
work: Marais’s (2021a) recent grammar of isiZulu
focuses on a proof-of-concept question answering
system and possesses a small module for numbers,
covering a subset of those that can have agreement
markers for three nouns (i.e., imizuzu ‘minutes’,
amahora ‘hours’, and izinsuku ‘days’). The num-
bers are only generated to refer to a small number
of minutes, hours, or days in the context of a Q&A
about the weather. Also, while Schlünz et al.’s
(2017)’s coverage is broader than Marais’ work,
it is also limited to 100—far less than ours. We
thus have surpassed the state-of-the-art, since we
have created the first well documented and high
coverage algorithms.

For comparisons to other existing work, we con-
sidered relying on existing neural machine transla-
tion (MT) systems that support isiZulu (e.g., (Ny-
oni and Bassett, 2021; Sefara et al., 2021; Chigu-
vare and Cleghorn, 2021)). However, that is infea-
sible because the models are not controllable (i.e.,
one cannot specify that they want to generate num-
bers that belong to a specific category as opposed
to another); hence, they cannot generate text for
all the appropriate number categories listed in Fig-
ure 1. Moreover, developing a controllable model
from scratch is impractical at present because there
is no large parallel corpus for Indo-Arabic numeral
verbalisation in isiZulu. Re-purposing MT models
for numeral verbalisation, a task for which they
were not created, does not yield a sensible baseline.
We considered comparing our algorithms to auto-
matically translated English-to-isiZulu verbalisa-
tions. In such systems, one would have to generate
English verbalisations for each category and then
translate the output to isiZulu using an MT model.
We operationalised this by creating an ensemble
model that first verbalises numerals to English via
templates and then translates them into isiZulu via
SMaLL-100 (Mohammadshahi et al., 2022), how-
ever, none of the model’s output was judged, by
the first author, to be valid. The model ‘halluci-
nated’ nouns that are unrelated to the input numeral
(ikhaya ‘home’ from cardinal 2), there was invalid
repetition of verbalised number (‘elishumi elishumi

... ‘ten ten ten ...’ from cardinal 6,718), etc. The
approach is not sensible because it introduces com-
plications for which it is not easy to control and
outside the scope of our research. For instance, the
following choices make a difference to the qual-
ity of the output: choice of language to use as the
source, the length of the input text, what nouns are
present in the English input, etc.

Since large language models (LLMs) have
demonstrated remarkable performance in a vari-
ety of tasks, we considered comparing our algo-
rithms to LLMs, however, we deemed such a com-
parison to be out of scope since additional work
is required to establish which model(s) qualify as
suitable baselines and what configuration to use
when generating text. This is because it has been
demonstrated as part of IrokoBench (Adelani et al.,
2024), a benchmark on natural language inference,
mathematical reasoning, and knowledge-based QA
for 16 African languages, that while closed LLMs
(e.g., GPT-4o) tend to outperform most open LLMs,
this is not consistent across all tasks. In addition,
while there are cases where performance gains are
seen when prompts are authored in the language
to be generated instead of English, this is also not
consistent across tasks. As such, for the task under
consideration, additional work is still required to
establish the best model(s) and their optimal set-
tings/setup prior to comparing them to the proposed
algorithms.

5.2 Corpus creation exploiting the rules
Therefore, to demonstrate the utility of the algo-
rithms for data creation, we gathered the pluraliser
and its set of 218 nouns with noun classes and
their plurals (Byamugisha et al., 2016b), verb con-
jugation rules from (Keet and Khumalo, 2017b,a),
and the idea of the exercise generator of (Gilbert
and Keet, 2018) to generate a corpus for num-
bers that may be of use to augment data-driven
approaches. Specifically, there is the basic noun
phrase generation for all of the numbers 0-9,999
without agreement, and then with agreement for
each noun class. They can be paired with nouns,
such as ‘three books’, ‘three apples’ etc. to as-
sist machine/deep learning models to learn the
agreement co-occurrences. Third, phrases are con-
structed by stringing guaranteed to be semantically
acceptable combinations for three bags of words
using templates, partially thanks to the semantics
of the noun classes (e.g., noun class 1 contains only
humans and the roles they play). Three examples

262

NPselect noun from nc1 Vselect verb from: buys/reads/shelves/reviews/sells NPobject = books <generate cardinal num-
ber between 0 and 10000>
NPselect noun from nc1 Vbuys NPobject from nc6, 8, or 10 <generate cardinal number from 0 to 10000>
NPselect noun from nc1 Vselect verb from: buys/reads/shelves/reviews/sells NPobject = books <generate numerical ad-
verb from 0 to 10000>

Figure 3: Examples of the parameterised templates. Noun class 1 consists of nous that have humans as referents,
and for noun class 6, 8, and 10, it takes a subset concerning the objects and utensils.

Table 6: Number of sentences that include each category
of generated numbers in the corpus created from the
rules and bags of words.

Category Number of sentences
Cardinal 171,986

Set-of-items 149,133
Ordinal 193,088

Numerical adverbs 257,436
Total: 771,643

of such patterns are illustrated in Fig. 3. Likewise,
one can create other variants and generate a Carte-
sian product for subjects, verbs, and a number of
objects.

We implemented this in a re-deployable tool, the
IsiZulu Sentence Generator, which is a Java-based
tool designed to generate sentences in the isiZulu
language by combining verbs, nouns, and numbers,
calling ZuluNum2TextCMD.jar from the generic
implementation (see Footnote 5). The tool reads
data from a CSV file containing verb roots, nouns,
and noun classes, processes the data, and gener-
ates sentences based on those predefined templates.
The generated sentences are then written to CSV
files for further use. We generated a corpus with
7,533,595 tokens and the number of sentences gen-
erated with the small vocabulary, for each category
of numbers, are given in Table 6. The code and
corpus are available as supplementary material.7

The complete sentences with the written-out
numbers may then also be used to train text-to-
speech algorithms that then can be deployed in
the prospective banking-cum-financial literacy app
from the motivational use case and other ones,
such as the AwezaMed medical app (Marais et al.,
2020). One trivially can add more nouns, their
noun classes, and verbs in the lexicon sets used for
generation to create a larger corpus, or to generate
the corresponding sentences in another language to

7https://github.com/KEEN-Research/
IsiZuluSentenceGenerator/

generate a parallel corpus for training, if needed.

6 Conclusion

Based on collected rules for speaking and writing
numerals, algorithms for automating this transfor-
mation were designed and evaluated. The cate-
gories of numerals covered by the algorithms in-
clude ordinals, cardinals, collections, and numer-
ical adverbs and they include markers for agree-
ment with noun classes where applicable. The
evaluation of the final algorithms, after extending
coverage and phonological conditioning, by two
isiZulu grammarians showed that 6 of the 7 cate-
gories of numerals have 90%-100% valid output.
By combining extant open sourced rules with the
ones developed in this work, we created a corpus
of 771,643 sentences with a total of 7,533,595 to-
kens (1,086 unique) to facilitate data-driven NLP
approaches.

Future work includes extending the range of the
covered numbers beyond 0-9,999 and using the al-
gorithms to build a tool that can generate isiZulu
text from mathematics equations and determine
their impact on learning with a larger number of
people to assess the algorithms’ quality and utility.
In addition, we will also investigate the use of neu-
ral models as adaptable methods for verbalisation.

Acknowledgements

This work was financially supported in part
by the National Research Foundation (NRF)
of South Africa (Grant Numbers 120852 and
CPRR23040389063). We also acknowledge Ju-
nior Moraba for his contributions to Iteration 1 of
the development.

References
David Ifeoluwa Adelani, Jessica Ojo, Israel Abebe Az-

ime, Jian Yun Zhuang, Jesujoba O. Alabi, Xuanli He,
Millicent Ochieng, Sara Hooker, Andiswa Bukula,
En-Shiun Annie Lee, Chiamaka Chukwuneke, Happy
Buzaaba, Blessing Sibanda, Godson Kalipe, Jonathan

https://github.com/KEEN-Research/IsiZuluSentenceGenerator/
https://github.com/KEEN-Research/IsiZuluSentenceGenerator/

263

Mukiibi, Salomon Kabongo, Foutse Yuehgoh, Mma-
sibidi Setaka, Lolwethu Ndolela, Nkiruka Odu,
Rooweither Mabuya, Shamsuddeen Hassan Muham-
mad, Salomey Osei, Sokhar Samb, Tadesse Kebede
Guge, and Pontus Stenetorp. 2024. Irokobench: A
new benchmark for african languages in the age of
large language models. Preprint, arXiv:2406.03368.

Joan Byamugisha. 2019. Ontology verbalization in ag-
glutinating Bantu languages: a study of Runyankore
and its generalizability. Ph.D. thesis, Department of
Computer Science, University of Cape Town, South
Africa.

Joan Byamugisha, C. Maria Keet, and Brian DeRenzi.
2016a. Tense and aspect in Runyankore using a
context-free grammar. In Proceedings of the Ninth
International Natural Language Generation Confer-
ence, September 5-8, 2016, Edinburgh, UK, pages
84–88. Association for Computational Linguistics.

Joan Byamugisha, C. Maria Keet, and Langa Khumalo.
2016b. Pluralising nouns in isizulu and related lan-
guages. In Computational Linguistics and Intelli-
gent Text Processing - 17th International Conference,
CICLing 2016, Konya, Turkey, April 3-9, 2016, Re-
vised Selected Papers, Part I, volume 9623 of Lecture
Notes in Computer Science, pages 271–283. Springer.

Paddington Chiguvare and Christopher W Cleghorn.
2021. Improving transformer model translation for
low resource South African languages using BERT.
In 2021 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1–8.

Gilles-Maurice de Schryver. 2015. Oxford Bilin-
gual School Dictionary: isiZulu and English / Isic-
hazamazwi Sesikole Esinezilimi Ezimbili: IsiZulu
NesiNgisi, Esishicilelwe abakwa-Oxford. Second Edi-
tion. Oxford University Press Southern Africa.

Roald Eiselen and Martin J. Puttkammer. 2014. Devel-
oping text resources for ten south african languages.
In Proceedings of the Ninth International Conference
on Language Resources and Evaluation, LREC 2014,
Reykjavik, Iceland, May 26-31, 2014, pages 3698–
3703. European Language Resources Association
(ELRA).

Nikhil Gilbert and C. Maria Keet. 2018. Automating
question generation and marking of language learn-
ing exercises for isizulu. In Controlled Natural Lan-
guage - Proceedings of the Sixth International Work-
shop, CNL 2018, Maynooth, Co. Kildare, Ireland,
August 27-28, 2018, volume 304 of Frontiers in Ar-
tificial Intelligence and Applications, pages 31–40.
IOS Press.

D. Gkatzia, O. Lemon, and V. Rieser. 2016. Natural lan-
guage generation enhances human decision-making
with uncertain information. In Proceedings of Asso-
ciation for Computational Linguistics 2016, Vol 2:
Short Papers, pages 264–268. Association for Com-
putational Linguistics.

L. Grout. 1893. The IsiZulu: A Revised Edition of a
Grammar of the Zulu Language. K. Paul, Trench,
Trübner.

Robert K. Herbert and Richard Bailey. 2002. The Bantu
languages: sociohistorical perspectives, page 50–78.
Cambridge University Press.

F. Katamba. 2014. Bantu Nominal Morphology. In
Derek Nurse and Gérard Philippson, editors, The
Bantu Languages, chapter 7, pages 103–120. Rout-
ledge.

C. M. Keet and L. Khumalo. 2017a. Grammar rules for
the isizulu complex verb. Southern African Journal
of Language and Linguistics, 35(2):183–200.

C. M. Keet and L. Khumalo. 2017b. Toward a
knowledge-to-text controlled natural language of
isiZulu. Language Resources and Evaluation,
51(1):131–157.

C. M. Keet, M. Xakaza, and L. Khumalo. 2017. Ver-
balising OWL ontologies in isiZulu with Python. In
The Semantic Web: Extended Semantic Web Confer-
ence 2017 Satellite Events - Extended Semantic Web
Conference 2017 Satellite Events, Portorož, Slovenia,
May 28 - June 1, 2017, Revised Selected Papers, vol-
ume 10577 of Lecture Notes in Computer Science,
pages 59–64. Springer.

Z. Mahlaza. 2018. Grammars for generating isiXhosa
and isiZulu weather bulletin verbs. Msc. thesis, De-
partment of Computer Science, University of Cape
Town, South Africa.

Z. Mahlaza and C. M. Keet. 2020. OWLSIZ: An isiZulu
CNL for structured knowledge validation. In Pro-
ceedings of the 3rd International Workshop on Nat-
ural Language Generation from the Semantic Web
(WebNLG+), pages 15–25, Dublin, Ireland (Virtual).
ACL.

L. Marais. 2021a. Approximating a Zulu GF concrete
syntax with a neural network for natural language
understanding. In Proceedings of the Seventh In-
ternational Controlled Natural Language Workshop,
pages 29–38, Amsterdam, Netherlands. Association
for Computational Linguistics.

Laurette Marais. 2021b. Mburisano Covid-19 multi-
lingual corpus. Data retrieved from South African
Centre for Digital Language Resources, https://
hdl.handle.net/20.500.12185/536.

Laurette Marais, Johannes A. Louw, Jaco Badenhorst,
Karen Calteaux, Ilana Wilken, Nina van Niekerk,
and Glenn Stein. 2020. AwezaMed: A multilingual,
multimodal speech-to-speech translation application
for maternal health care. In IEEE 23rd International
Conference on Information Fusion, FUSION 2020,
Rustenburg, South Africa, July 6-9, 2020, pages 1–8.
IEEE.

https://arxiv.org/abs/2406.03368
https://arxiv.org/abs/2406.03368
https://arxiv.org/abs/2406.03368
https://doi.org/10.18653/v1/w16-6614
https://doi.org/10.18653/v1/w16-6614
https://doi.org/10.1007/978-3-319-75477-2_18
https://doi.org/10.1007/978-3-319-75477-2_18
https://doi.org/10.1109/SSCI50451.2021.9659923
https://doi.org/10.1109/SSCI50451.2021.9659923
http://www.lrec-conf.org/proceedings/lrec2014/summaries/1151.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/1151.html
https://doi.org/10.3233/978-1-61499-904-1-31
https://doi.org/10.3233/978-1-61499-904-1-31
https://doi.org/10.3233/978-1-61499-904-1-31
https://doi.org/10.18653/v1/p16-2043
https://doi.org/10.18653/v1/p16-2043
https://doi.org/10.18653/v1/p16-2043
https://doi.org/10.1007/s10579-016-9340-0
https://doi.org/10.1007/s10579-016-9340-0
https://doi.org/10.1007/s10579-016-9340-0
https://doi.org/10.1007/978-3-319-70407-4_12
https://doi.org/10.1007/978-3-319-70407-4_12
https://aclanthology.org/2020.webnlg-1.2
https://aclanthology.org/2020.webnlg-1.2
https://aclanthology.org/2021.cnl-1.4
https://aclanthology.org/2021.cnl-1.4
https://aclanthology.org/2021.cnl-1.4
https://hdl.handle.net/20.500.12185/536
https://hdl.handle.net/20.500.12185/536
https://doi.org/10.23919/FUSION45008.2020.9190240
https://doi.org/10.23919/FUSION45008.2020.9190240
https://doi.org/10.23919/FUSION45008.2020.9190240

264

Alireza Mohammadshahi, Vassilina Nikoulina, Alexan-
dre Berard, Caroline Brun, James Henderson, and
Laurent Besacier. 2022. Small-100: Introducing shal-
low multilingual machine translation model for low-
resource languages. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 8348–8359.
Association for Computational Linguistics.

Junior Moraba. 2021. Development of a finance based
IsiZulu NLG system that verbalises numbers in
contex. BSc(hons) project report, Department of
Computer Science, University of Cape Town, South
Africa.

S. Naidoo. 2005. Intrusive stop formation in Zulu: an
application of feature geometry theory. Ph.D. the-
sis, Department of African Languages, University of
Stellenbosch.

Nobuhle Ndimande-Hlongwa. 2010. Corpus planning,
with specific reference to the use of standard isiZulu
in media. Alternation, 17(1):207–224.

Evander Nyoni and Bruce A. Bassett. 2021. Low-
Resource Neural Machine Translation for Southern
African Languages. arXiv e-prints.

P. E. Raper. 2012. The Zulu language. Acta Academica,
2012(sup-2):22–31.

Georg I. Schlünz, Nkosikhona Dlamini, Alfred Tshoane,
and Stan Ramunyisi. 2017. Text normalisation in
text-to-speech synthesis for south african languages:
Native number expansion. In 2017 Pattern Recog-
nition Association of South Africa and Robotics and
Mechatronics (PRASA-RobMech), pages 230–235.

Tshephisho J. Sefara, Skhumbuzo G. Zwane, Nelisiwe
Gama, Hlawulani Sibisi, Phillemon N. Senoamadi,
and Vukosi Marivate. 2021. Transformer-based ma-
chine translation for low-resourced languages embed-
ded with language identification. In 2021 Conference
on Information Communications Technology and So-
ciety (ICTAS), pages 127–132.

S. Smith. 2020. Generating natural language isiZulu
text from mathematical expressions. Bachelor’s the-
sis, University of Cape Town.

P. A. Stuart. 1940. A Zulu grammar for beginners.
Shuter & Shooter.

C. van der Lee, B. Verduijn, E. Krahmer, and S. Wubben.
2018. Evaluating the text quality, human likeness and
tailoring component of PASS: A Dutch data-to-text
system for soccer. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
Santa Fe, New Mexico, USA, August 20-26, 2018,
pages 962–972. Association for Computational Lin-
guistics.

A. Wilkes and N. Nkosi. 2012. Complete Zulu Beginner
to Intermediate Book and Audio Course: Learn to
read, write, speak and understand a new language
with Teach Yourself. Hachette UK.

A Linguistic patterns

In this appendix, we list the identified patterns. In
the patterns below, the italics denote fixed string
segments, bold text denote special elements/slots
(variables) and subscripts a constraint on them.
Specifically, they indicate the position where the
concords and the stems that quantify the number of
10s/100s/1000s must be inserted. The adj. conc.
denotes that adjectival concord must be inserted,
poss.conc. the possessive concord, and stem for
each stem slot. Subscripts are used to distinguish
the numerical stems that can be used, which are
either for the number of 10s (i.e., stemcount10),
100s (i.e., stemcount100), 100s (i.e., stemcount1000)
or the remainder after removing multiples of 10,
100, and 1000 from the number to be verbalised
(i.e., stemnumber<10). The bsc. pref.nm denotes
the so-called basic prefix. It is formed by remov-
ing the augment and nasals from a noun class’s
prefix. For instance, you can form the basic prefix
from noun class 10’s prefix izin- by removing the
augment i- and nasal -n- to obtain -zi-. Blue text
highlights the possible prefixes that can precede
the stems inserted into the slots. Bold orange and
pink text highlight the multiple fixed segments that
can precede the -shumi ‘ten’, -khulu ‘hundred’, and
-nkulungwane ‘thousand’ stems.

Regular expression operators have their usual
meaning (“?”: zero or one; “∣”: or; brackets for
scope). We use dashes to indicate the separation
between morphemes8. The dashes are not included
in the final text and the combination of morphemes
to the left and right of dashes may activate phono-
logical conditioning rules.

1. Cardinal numbers:
(a) isi-stemnumber<10

(b) adj. conc.-(ayisi)?-stemnumber<10

(c) adj.conc-(yi∣ngama)-shumi
((ama∣ayisi)-stemcount10)? (na-
(stemnumber<10 ∣ noun))?

(d) adj.conc-(yi∣ngama)-khulu ((ama∣ayisi)-
stemcount100)? (na-(yi∣ngama)-shumi
((ama∣ayisi)-stemcount10)? (na-
(stemnumber<10 ∣ noun))?)?

(e) adj.conc-(yi∣yizi)-nkulungwane
((ezin∣ezim∣eziyi)-stemcount1000)?
(na-(yi∣ngama)-khulu ((ama∣ayisi)-
stemcount100)? (na-(yi∣ngama)-shumi

8We also use the term ’morpheme’ in reference to com-
bined morphemes (e.g., -ngama-), unless the result is a com-
plete word.

https://doi.org/10.18653/V1/2022.EMNLP-MAIN.571
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.571
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.571
https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/moraba_solomons.zip/
https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/moraba_solomons.zip/
https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/moraba_solomons.zip/
https://arxiv.org/abs/2104.00366
https://arxiv.org/abs/2104.00366
https://arxiv.org/abs/2104.00366
https://doi.org/10.1109/RoboMech.2017.8261153
https://doi.org/10.1109/RoboMech.2017.8261153
https://doi.org/10.1109/RoboMech.2017.8261153
https://doi.org/10.1109/ICTAS50802.2021.9394996
https://doi.org/10.1109/ICTAS50802.2021.9394996
https://doi.org/10.1109/ICTAS50802.2021.9394996
https://aclanthology.org/C18-1082/
https://aclanthology.org/C18-1082/
https://aclanthology.org/C18-1082/

265

((ama∣ayisi)-stemcount10)? (na-
(stemnumber<10 ∣ noun))?)?)?

(f) (i∣ama)-shumi ((ama∣ayisi)-
stemcount10)? (na-(stemnumber<10

∣ noun))?
(g) (i∣ama)-khulu ((ama∣ayisi)-

stemcount100)? (na-(i∣ama)-shumi
((ama∣ayisi)-stemcount10)? (na-
(stemnumber<10 ∣ noun))?)?

(h) (i∣izi)-nkulungwane ((ezin∣ezim∣eziyi)-
stemcount1000)? (na-(i∣ama)-khulu
((ama∣ayisi)-stemcount100)? (na-(i∣ama)-
shumi ((ama∣ayisi)-stemcount10)?
(na-(stemnumber<10 ∣ noun))?)?)?

2. Ordinal numbers:
(a) isi-stemnumber<10

(b) poss. conc.-stemnumber<10

(c) poss.conc-(i∣ma)-shumi ((ama∣ayisi)-
stemcount10)? (na-(stemnumber<10 ∣

noun))?
(d) poss.conc-(i∣ma)-khulu ((ama∣ayisi)-

stemcount100)? (na-(i∣ma)-shumi
((ama∣ayisi)-stemcount10)? (na-
(stemnumber<10 ∣ noun))?)?

(e) poss.conc-(i∣izi)-nkulungwane
((ezin∣ezim∣eziyi)-stemcount1000)? (na-
(i∣ma)-khulu ((ama∣ayisi)-stemcount100)?
(na-(i∣ma)-shumi ((ama∣ayisi)-
stemcount10)? (na-(stemnumber<10

∣ noun))?)?)?
(f) (i∣ama)-shumi ((ama∣ayisi)-

stemcount10)? (na-(stemnumber<10

∣ noun))?
(g) (i∣ama)-khulu

((ama∣ayisi)-stemcount100)? (na-(i∣ama)-
shumi ((ama∣ayisi)-stemcount10)? (na-
(stemnumber<10 ∣ noun))?)?

(h) (i∣izi)-nkulungwane ((ezin∣ezim∣eziyi)-
stemcount1000)? (na-(i∣ama)-khulu
((ama∣ayisi)-stemcount100)? (na-(i∣ama)-
shumi ((ama∣ayisi)-stemcount10)?
(na-(stemnumber<10 ∣ noun))?)?)?

3. Set-of-items numbers:
(a) poss. conc.-o-bsc. pref.nm-(yisi)?-

stemnumber<10

(b) isi-stemnumber<10

(c) adj.conc-(li∣ma)-shumi ((ama∣ayisi)-
stemcount10)? (na-(stemnumber<10 ∣

noun))?
(d) adj.conc-(li∣ma)-khulu ((ama∣ayisi)-

stemcount100)? (na-(li∣ma)-shumi
((ama∣ayisi)-stemcount10)? (na-

(stemnumber<10 ∣ noun))?)?
(e) adj.conc-y-(i∣yizi)-nkulungwane

((ezin∣ezim∣eziyi)-stemcount1000)?
(na-(li∣ma)-khulu ((ama∣ayisi)-
stemcount100)? (na-(li∣ma)-shumi
((ama∣ayisi)-stemcount10)? (na-
(stemnumber<10 ∣ noun))?)?)?

(f) (i∣ama)-shumi ((ama∣ayisi)-
stemcount10)? (na-(stemnumber<10

∣ noun))?
(g) (i∣ama)-khulu ((ama∣ayisi)-

stemcount100)? (na-(i∣ama)-shumi
((ama∣ayisi)-stemcount10)? (na-
(stemnumber<10 ∣ noun))?)?

(h) (i∣izi)-nkulungwane ((ezin∣ezim∣eziyi)-
stemcount1000)? (na-(i∣ama)-khulu
((ama∣ayisi)-stemcount100)? (na-(i∣ama)-
shumi ((ama∣ayisi)-stemcount10)?
(na-(stemnumber<10 ∣ noun))?)?)?

4. Adverbs:
(a) ka-(si)?-stemnumber<10

(b) kali-(shumi∣khulu)
(c) kayi-nkulungwane
(d) (kali∣kanga)-(i∣ama)-shumi ((ama∣ayisi)-

stemcount10)? (na-(stemnumber<10 ∣

noun))?
(e) (kali∣kanga)-(i∣ama)-khulu ((ama∣ayisi)-

stemcount100)? (na-(i∣ama)-shumi
((ama∣ayisi)-stemcount10)? (na-
(stemnumber<10 ∣ noun)))?

(f) kayi-(i∣izi)-nkulungwane
((ezin∣ezim∣eziyi)-stemcount1000)?
(na-(i∣ama)-khulu
((ama∣ayisi)-stemcount100)? (na-(i∣ama)-
shumi ((ama∣ayisi)-stemcount10)?
(na-(stemnumber<10 ∣ noun))?)?)?

B Pattern use rules

The conditions for when to select each pattern are
based on the range of the number:

1. Range: 0 < n < 10, Patterns: 1a, 1b, 2a,
2b, 3a, 3b, 4a, Comment: The patterns 1a,
2a, and 3b are used when the number must
not include an agreement marker and 1b, 2b,
and 3a are used when such a marker must
exist. 4a is used for numbers below ten and its
optional segment is only included for values
in the inclusive range [6-9].

2. Range: 10 ≤ n < 100, Patterns: 1c, 1f, 2c,
2f, 3c, 3f, 4b, 4d, Comment: The patterns 1f,
2f, 3f are used when there are no agreement

266

markers while 1c, 2c, 3c are used when such
markers exist. The adverb pattern 4b is used
when the number is 10 and 4d is used when
the number is greater than 10.

3. Range: 100 ≤ n < 1000, Patterns: 1d, 1g,
2d, 2g, 3d, 3g, 4b, 4e, Comment: The pat-
terns 1g, 2g, and 3g is used when there are
no agreement markers while 1d, 2d, and 3d
is used when such markers exist. The adverb
pattern 4b is used when the number is 100 and
4e is used when the number is greater than
100. 4e is used when there are multiple 100s
while 3e is used when there is a single 100.

4. Range: 1000 ≤ n < 10000, Patterns: 1e,
1h, 2e, 2h, 3e, 3h, 4c, 4f, Comment: The
patterns 1h, 2h, and 3h is used when there are
no agreement markers while 1e, 2e, and 3e
is used when such markers exist. The adverb
pattern 4c is used when the number is 1000
and 4f it used when the number is greater than
1000. 4f is used when there are multiple 1000s
while 4c is used when there is a single 1000.

We now turn to list the rules used to select one of
many optional segments that can be found in each
pattern:

1. The stems -shumi ‘ten’, -khulu ‘hundred’, and
-nkulungwane ‘thousand’ are preceded by Seg-
ment 1 and/or Segment 2 and values must
be chosen for both segments. For instance,
when forming the first word in Pattern 4f, we
must choose either -i- or -izi- and append it
to the leading kayi-. Linguistically, the lead-
ing prefix kayi- is formed by combining the
adverbial prefix ka- and copula -yi-. The
rules for selecting the appropriate prefix value
for every multiple of ten that has a unique
stem (i.e., 10, 100, and 1000) are listed in Ta-
ble 2. The value depends on the category of
the number and whether there is a single or
multiple of tens. To demonstrate how to use
the rules in Table 2, consider the verbalisa-
tion of the adverbial number 3333 in a sen-
tence where its subject is izincwadi ‘books’
— a noun from class 8: Ngithenge izincwadi
kayizinkulungwane ezinthathu namakhulu
amathathu namashumi amathathu nantathu.
‘I bought books three thousand three hundred
and thirty-three times’.
The adverb category does not have patterns
with agreement markers even though the num-
bers may be used in situations where they have
a noun as a subject. As can be seen in the pat-

terns, all such numbers begin with the adver-
bial prefix ka- and it is either followed by the
basic prefix for noun class 7 -si-, basic prefix
for noun class 5 -li-, the copula -yi-, or the
adverb prefix -nga-. The choice of which mor-
pheme to append to ka- depends on whether
the input is less than 10 (uses -si-), equal to
10/100 (uses -li-) or 1000 (uses -yi-), or is a
multiple of 10/100/1000 that has a remain-
der after removing the 10/100/1000s (10 and
100s uses -li- and -nga- while 1000 use -yi-
). In the 3333 case, since there are multiple
1000s in the number 3333 then pattern 4f is
chosen. The first two words in the isiZulu
sentence (i.e., Ngithenge izincwadi) mean ‘I
bought books’ so our explanation will not fo-
cus on them. For the number 3333, from left
to right, there is first the 3000-part and its first
morpheme for every input has the value kayi-
and it is formed by combining the ka- adver-
bial prefix with the copulative -yi-. To get the
value of the second morpheme of the word
we use Table 2 to select an appropriate mor-
pheme: the 1000 column, plural, adverb, so
the -izi- prefix is chosen. Then the prefix for
the word is formed by combining kayi-+-izi-
to obtain kayizi- instead of kayiizi- since the
second -i- is eliminated by phonological con-
ditioning rules. The first word is then formed
by combining the prefix kayizi- and stem -
nkulungwane to form the word kayizinkulung-
wane. The formation of second word in the
pattern, the three of those thousands to result
in ezinthathu, is explained in the next item.

2. The words that quantify the exact number of
10s, 100s, and 1000s are also preceded by pre-
fixes. To demonstrate, consider the formation
of the underlined word in amakhulu amabili
‘two hundred’ (formed using Pattern 1h). Gen-
erally, the prefix for these words is chosen ac-
cording to the rules specified in Table 3. Lin-
guistically, the difference between the ranges
2-5 and 6-9, shown in the table, is that the
2-5 range forms words by combining noun
class 6’s adjectival concord—the noun forms
of the input belong it—ama- with the stem
(i.e., -bili ‘two’, -thathu ‘three’, -ne ‘four’,
and -hlanu ‘five’ respectively) while the 6-9
range combines noun class 6’s augment a-,
the copula -yi-, and noun form of input (i.e.,
isithupa ‘six’, isikhombisa ‘seven’, isishiya-
galombili ‘eight’, and isishiyagalolunye ‘nine’

267

respectively). For the 1000s in Table 3, the
difference is partially determined by phono-
logical conditioning. Returning to the ver-
balisation output of amakhulu amabili ‘two
hundred’, for 2 of hundreds, ama- is selected
(3rd row). For the 3 of thousands of the previ-
ous 3333 example, it is ezin- (5th row), which
is then added to the number 3, -thathu to make
ezinthathu.

3. The segments that quantify the number of
10/100/1000s can be part of larger optional
segments (e.g., Pattern 4f’s first optional
segment ((ezin∣ezim∣eziyi)-stemcount1000)?).
These are only included if the input number
has multiple values of 10/100/1000 after re-
moving larger multiples of 10. The last op-
tional segment is only included if there a re-
mainder after removing all the multiples of
10, 100, and 1000 from the input. For in-
stance, when verbalising the cardinal number
321 using Pattern 1g, the last optional segment
((ama∣ayisi)-stemcount10)? is included since
there are two multiples of 10 in the number
(i.e., 20) after removing the three multiples
of 100 (i.e., 300). Similarly, the last optional
segment (na-(stemnumber<10 ∣ noun))? is in-
cluded since there is a remainder of 1 after
removing all the multiples of 10.

Table 2 lists the rules used to select the possi-
ble prefix values that are used in constructing the
strings that refer to special multiples of ten. Ta-
ble 3 lists rules for constructing the prefixes used
when forming the words for counting the number
of multiples of 10s.

C Pattern updates

The updates made to the patterns and rules for their
use after the evaluation are included in Table 7.

D Final algorithms

The algorithms rely on several helper func-
tions: getStem, getPrefix, getWord,
getWordCount, and getNoun. The getStem
function is responsible for retrieving the stem for
all supported numbers. The stems for all such
numbers are as follows: -nye (1), -bili (2), -thathu
(3), -ne (4), -hlanu (5), -thupha (6), -khombisa (7),
-shiyagalombili (8), -shiyagalolunye (9), -shumi
(10), -khulu (100), and -nkulungwane (1000).
The getPrefix and getWord functions work
together to encode the rules specified in Table 2

and concatenating the second segment to the
appropriate stem, the getWordCount function
constructs the word for counting the multiples
of 10/100/1000, and the getNoun function
is responsible for constructing a noun from a
number’s stem by either prefixing i- in the case of
10 or isi- otherwise.

We illustrate the algorithms by demonstrating
the verbalization of the cardinal number 22 (with
and without agreement markers). We begin by
demonstrating the verbalisation of the number
when there are no agreement markers. Algorithm 1
starts by initialising the string (line 2), it then re-
solves that nearest multiple of 10 is just 10 (lines
20-22) with a remainder of 2 (line 23) after sub-
tracting all the appropriate multiples 10. It then
determines that there are two multiples of 10 in the
input (line 24) and then constructs the initial value
of the verbalised string to take the form amashumi
(line 29). Since there are multiple 10s in 20 (line
31), it uses the getWordCount method to con-
struct the word amabili ‘two’ and that is appended
to current form of the final string (line 32). The
existing remainder (lines 34 and 35) is less than
six, so it resolves its stem -bili ‘two’ and appends it
to the conjunction na- (line 36). The combination
of na- and -bili activates phonological condition-
ing rules which introduce an -m- between the two
segments. This entire process then produces the
verbalised string amashumi amabili nambili ‘two
tens and two’, i.e., ‘twenty-two’.

To demonstrate the verbalisation of the cardinal
number 22 when it agrees with any noun in class
8, the final algorithm for such cases (i.e., Algo-
rithm 2) starts by initialising an empty string (line
2) and like Algorithm 1, it then resolves that near-
est multiple of 10 is just 10 (lines 16-18) with a
remainder of 2 after subtracting all the appropriate
multiples of 10 (line 19). Since the category of the
input number is cardinal, it retrieves the adjecti-
val concord ezi- to use as a prefix (line 22-23) and
appends it together with the segment -ngama-, re-
trieved using getPrefix using the rules defined in
Table 2, to the stem to form ezingamashumi (line
29). Since there are two 10s in 20, it then uses
getWordCount to form amabili ‘two’ (line 21).
After that, it then fetches the stem for the remainder
(line 35) and appends it to the conjunction na- to
form nambili since the remainder of 2 is less than
6. Finally, the algorithm then produces the text
ezingamashumi amabili nambili ‘twenty-two’. The
difference between the evaluated algorithm (i.e.,

268

Algorithm 1 Numbers with no agreement markers
1: verbalise (number, category):
2: s← ∅ ▷ Initialising the verbalised string
3: uss = [s1, s2, ..., sn] ▷ Numbers with unique stems (e.g., 1 = -nye, 2 = -bili)
4: if category = cardinal and number < 10 then ▷ Verbalise cardinals that are less than 10
5: s← isi +getStem(number) ▷ Attach isi- to stem
6: else if category = adverb and number ∈ uss then ▷ Verbalise adverbs with unique stems
7: if 0 < number < 6 then
8: s←ka+getStem(number) ▷ Attach ka- to stem
9: else if 5 < number < 10 then

10: s←kasi+getStem(number) ▷ Attach kasi- to stem
11: else if number = 10 or 100 then
12: s←kali+getStem(number) ▷ Attach kali- to stem
13: else if number = 1000 then
14: s←kayi+getStem(number) ▷ Attach kayi- to stem
15: end if
16: else
17: uts = [u1, u2, ..., um] ▷Multiples of 10 with unique stems (e.g., 10 = -shumi, 100 = khulu)
18: for ui ∈ uts do
19: if ui > number then ▷ First multiple of 10 with unique stem > current number
20: nearest = ui−1 ▷ Last multiple of 10 with unique stem < current number
21: remainder = number mod nearest ▷ Remainder after removing multiples of nearest 10s
22: nv = (number − remainder)/nearest ▷ Count of multiples of the nearest 10s
23: p = nv > 1 ▷ Determining whether there are ≥1 multiples of 10s
24: if category = adverb then ▷ Verbalising first word for the adverb
25: s← getPrefix(nearest, category, p) + getWord(nearest, p) ▷ Segments 1, 2 + stem
26: else
27: s← getWord(nearest, p) ▷ Attach Segment 2 + stem
28: end if
29: if p then ▷ Verbalise second word if there are multiple 10s
30: s← s +′ ′ + getWordCount(nv,nearest) ▷ Attach Table 3 prefix + stem
31: end if
32: if remainder > 0 then ▷ Verbalise last segment if there is a remainder
33: if remainder < 6 then
34: s← s +′ ′ + na + getStem(remainder) ▷ Attach na+stem for numbers <six
35: else if 5 < remainder < 10 then
36: s← s +′ ′ + na + getNoun(remainder) ▷ Attach na+noun for other numbers <10
37: else
38: s← s +′ ′ + na + verbalise(remainder, category) ▷ Recursively, verbalise ≥10
39: end if
40: end if
41: end if
42: end for
43: end if
44: Return s

269

Algorithm 2 Numbers with agreement markers
1: verbalise (number, category, nc):
2: s← ∅ ▷ Initialising the verbalised string
3: uss = [s1, s2, ..., sn] ▷ Numbers with unique stems (e.g., 1 = -nye, 2 = -bili)
4: if category = cardinal and number < 10 then
5: s← getAdjC(nc) + getStem(number) ▷ Attach adjectival concord for cardinals < 10
6: else if category = ordinal and number ∈ uss then
7: s← getPossC(nc) + getStem(number) ▷ Attach poss. concord for ordinals with unique stems
8: else if category = set-of -items and number < 10 then ▷ Using Pattern 3a
9: if 5 < number < 10 then

10: s← getPossC(nc)+o+getBasPrefnm(nc)+yisi+getStem(number) ▷ Include -yisi-
11: else
12: s← getPossC(nc)+o+getBasPrefnm(nc) + getStem(number) ▷ Do not include -yisi-
13: end if
14: else
15: uts = [u1, u2, ..., um] ▷Multiples of 10 with unique stems (e.g., 10 = -shumi, 100 = khulu)
16: for ui ∈ uts do
17: if ui > number then ▷ First multiple of 10 with unique stem > current number
18: nearest = ui−1 ▷ Last multiple of 10 with unique stem < current number
19: remainder = number mod nearest ▷ Remainder after removing multiples of nearest 10s
20: nv = (number − remainder)/nearest ▷ Count of multiples of the nearest 10s
21: p = nv > 1 ▷ Determining whether there are ≥1 multiples of 10s
22: if category = cardinal then
23: s← getAdjC(nc) ▷ Attach adjectival concord
24: else if category = ordinal then
25: s← getPossC(nc) ▷ Attach possessive concord
26: else if category = set-of -items then
27: s← getPossC(nc)+o+getBasPrefnm(nc) ▷ Attach poss. concord and basic prefix
28: end if
29: s← s + getPrefix(nearest, category, p) + getStem(nearest, p) ▷ Attach Segm. 2 + stem
30: if p then ▷ Verbalise second word if there are multiple 10s
31: s← s +′ ′ + getWordCount(nv,nearest) ▷ Attach Table 3 prefix + stem
32: end if
33: if remainder > 0 then
34: if remainder < 6 then
35: s← s +′ ′ + na + getStem(remainder) ▷ Attach na+stem for numbers <six
36: else if 5 < remainder < 10 then
37: s← s +′ ′ + na + getNoun(remainder) ▷ Attach na+noun for other numbers <10
38: else
39: s← s +′ ′ + na + verbalise(remainder, category) ▷ Recursively, verbalise nums. ≥10
40: end if
41: end if
42: end if
43: end for
44: end if
45: Return s

270

Table 7: List of updated patterns for set-of-items numbers.

Pattern identifier Pattern
Evaluated 3c adj.conc-(li∣ma)-shumi ((ama∣ayisi)-stemcount10)? (na-(stemnumber<10 ∣ noun))?
Corrected 3c poss.conc.-o-bsc.pref.nm-(yi∣ngama)-shumi ((ama∣ayisi)-stemcount10)? (na-

(stemnumber<10 ∣ noun))?
Evaluated 3d adj.conc-(li∣ma)-khulu ((ama∣ayisi)-stemcount100)? (na-(li∣ma)-shumi ((ama∣ayisi)-

stemcount10)? (na-(stemnumber<10 ∣ noun))?)?
Corrected 3d poss.conc.-o-bsc.pref.nm-(yi∣ngama)-khulu ((ama∣ayisi)-stemcount100)? (na-(li∣ma)-

shumi ((ama∣ayisi)-stemcount10)? (na-(stemnumber<10 ∣ noun))?)?
Evaluated 3e adj.conc-y-(i∣yizi)-nkulungwane ((ezin∣ezim∣eziyi)-stemcount1000)? (na-(li∣ma)-khulu

((ama∣ayisi)-stemcount100)? (na-(li∣ma)-shumi ((ama∣ayisi)-stemcount10)? (na-
(stemnumber<10 ∣ noun))?)?)?

Corrected 3e poss.conc.-o-bsc.pref.nm-(yi∣yizi)–nkulungwane ((ezin∣ezim∣eziyi)-stemcount1000)?
(na-(li∣ma)-khulu ((ama∣ayisi)-stemcount100)? (na-(li∣ma)-shumi ((ama∣ayisi)-
stemcount10)? (na-(stemnumber<10 ∣ noun))?)?)?

Algo 3 in Appendix E) and final algorithm pertains
to set-of-items numbers and will be discussed in
Section 5.

E Evaluated algorithm

The evaluated algorithm for verbalising numbers
when they agree with a noun is listed in Algo-

rithm 3.

271

Algorithm 3 Evaluated algorithm for verbalising numbers with agreement markers
1: verbalise (number, category, nc):
2: s← ∅ ▷ Initialising the verbalised string
3: uss = [s1, s2, ..., sn] ▷ Numbers with unique stems (e.g., 1 = -nye, 2 = -bili)
4: if category = cardinal and number < 10 then
5: s← getAdjC(nc) + getStem(number) ▷ Attach adjectival concord for cardinals < 10
6: else if category = ordinal and number ∈ uss then
7: s← getPossC(nc) + getStem(number) ▷ Attach poss. concord for ordinals with unique stems
8: else if category = set-of -items and number < 10 then ▷ Using Pattern 3a
9: if 5 < number < 10 then

10: s← getPossC(nc)+o+getBasPrefnm(nc)+yisi+getStem(number) ▷ Include -yisi-
11: else
12: s← getPossC(nc)+o+getBasPrefnm(nc) + getStem(number) ▷ Do not include -yisi-
13: end if
14: else
15: uts = [u1, u2, ..., um] ▷Multiples of 10 with unique stems (e.g., 10 = -shumi, 100 = khulu)
16: for ui ∈ uts do
17: if ui > number then ▷ First multiple of 10 with unique stem > current number
18: nearest = ui−1 ▷ Last multiple of 10 with unique stem < current number
19: remainder = number mod nearest ▷ Remainder after removing multiples of nearest 10s
20: nv = (number − remainder)/nearest ▷ Count of multiples of the nearest 10s
21: p = nv > 1 ▷ Determining whether there are ≥1 multiples of 10s
22: if category = cardinal or set-of -items then
23: s← getAdjC(nc) ▷ Attach adjectival concord
24: else if category = ordinal then
25: s← getPossC(nc) ▷ Attach possessive concord
26: end if
27: s← s + getPrefix(nearest, category, p) + getStem(nearest, p) ▷ Attach Segm. 2 + stem
28: if p then ▷ Verbalise second word if there are multiple 10s
29: s← s +′ ′ + getWordCount(nv,nearest) ▷ Attach Table 3 prefix + stem
30: end if
31: if remainder > 0 then
32: if remainder < 6 then
33: s← s +′ ′ + na + getStem(remainder) ▷ Attach na+stem for numbers <six
34: else if 5 < remainder < 10 then
35: s← s +′ ′ + na + getNoun(remainder) ▷ Attach na+noun for other numbers <10
36: else
37: s← s +′ ′ + na + verbalise(remainder, category) ▷ Recursively, verbalise nums. ≥10
38: end if
39: end if
40: end if
41: end for
42: end if
43: Return s

	Introduction
	Natural language generation and isiZulu
	Verbalising numbers
	Evaluation of the algorithms
	Materials and Methods
	Results

	Discussion
	Comparison to related work
	Corpus creation exploiting the rules

	Conclusion
	Linguistic patterns
	Pattern use rules
	Pattern updates
	Final algorithms
	Evaluated algorithm

