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Abstract

Previous studies have highlighted the advan-
tages of pipeline neural architectures over end-
to-end models, particularly in reducing text
hallucination. In this study, we extend prior
research by integrating pretrained language
models (PLMs) into a pipeline framework, us-
ing both fine-tuning and prompting methods.
Our findings show that fine-tuned PLMs con-
sistently generate high quality text, especially
within end-to-end architectures and at interme-
diate stages of the pipeline across various do-
mains. These models also outperform prompt-
based ones on automatic evaluation metrics
but lag in human evaluations. Compared to
the standard five-stage pipeline architecture, a
streamlined three-stage pipeline, which only in-
clude ordering, structuring, and surface realiza-
tion, achieves superior performance in fluency
and semantic adequacy according to the human
evaluation.

1 Introduction

Advancements in data-to-text natural language
generation (NLG) have evolved from seq2seq
models (Hochreiter and Schmidhuber, 1997; Cho
et al., 2014) and vanilla encoder-decoder models
(Vaswani et al., 2017) towards pretrained language
models (PLMs) (Raffel et al., 2020; Lewis et al.,
2019; Radford et al., 2019) . Initially, PLMs were
fine-tuned on specific datasets to perform text gen-
eration tasks. Recently, these models are prompted
with textual instructions, with or without examples,
to guide text generation (zero-shot and few-shot
learning). Although PLMs excel in several natural
language processing tasks, they face challenges in
generating text from complex structured data due
to the intricate demands of accuracy and structure
(Kasner and Dušek, 2024). Despite these chal-
lenges, PLMs demonstrate superior performance in
generating high-quality text under fine-tuned, few-
shot, or zero-shot learning scenarios, leveraging
extensive pre-training on general knowledge.

Figure 1: A sample of the input triples and the expected
output.

In a previous study, Ferreira et al. (2019) com-
pared traditional 5-stage pipeline approaches to
end-to-end neural methods, utilizing systems such
as GRU (Cho et al., 2014) and the BERT trans-
former (Vaswani et al., 2017). The pipeline ap-
proach, despite lacking pretraining or fine-tuning,
outperformed the end-to-end method in automatic
and human evaluations, especially in domains not
seen in the training phase.

Building on Ferreira et al. (2019), this study in-
tegrates PLMs and large language models (LLMs)
into the pipeline architecture to compare their ef-
fectiveness against the baseline. We assess the
generalization capabilities of pipeline neural archi-
tectures and end-to-end systems under fine-tuned
and few-shot settings, also proposing a simplified 3-
stage pipeline architecture. Automatic evaluations
and human assessments of the results highlight a
preference for end2end architecture and the poten-
tial for optimized pipeline designs. The code and
results are publicly available1.

2 Related Work

End-to-End (E2E) architectures, while simplifying
generation processes, face limitations due to the
lack of intermediate steps, which can hinder control
over semantic fidelity (Kasner and Dušek, 2020;
Ferreira et al., 2019). Researchers have increas-
ingly adopted pipeline architectures for data-to-text
tasks, leveraging diverse deep neural network mod-

1
https://github.com/NonsoCynthia/PipeD2T

https://github.com/NonsoCynthia/PipeD2T
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Figure 2: Experimental Setup.

els (Moryossef et al., 2019; Ferreira et al., 2019;
Kasner and Dusek, 2022).

The data-to-text generation pipeline, originally
delineated by (Reiter and Dale, 1997) and refined
by (Ferreira et al., 2019) with deep neural models,
involves several stages: content selection/ordering,
content aggregation/structuring, lexicalization, Ref-
erence Expression Generation (REG), and surface
realization (SR), details of which is explained in
the Appendix A and broader in the study. This com-
prehensive approach integrates neural techniques
to convert structured data into readable text, with
linguistic rules for the surface realizer. Unlike this
architecture, some studies use simplified pipeline
neural architectures with fewer stages, focusing
on content selection, structuring, and textual re-
alization. For example, Moryossef et al. (2019);
Zhao et al. (2020) divides text generation into plan-
ning and realization stages, using ordered trees or
relational graph convolutional networks (R-GCN)
(Zhao et al., 2020) to guide the neural generation
system, providing explicit control over the output.

Recent research has utilized PLMs like T5 (Raf-
fel et al., 2020) and BART (Lewis et al., 2019)
for both pipeline and end-to-end data-to-text gen-
eration, achieving more fluent text than human
references (Ribeiro et al., 2020). This is evident
from the top competitor (Guo et al., 2020) in the
WebNLG’20 (Castro Ferreira et al., 2020) compe-
tition. Studies have also shown that these PLMs
when fine-tuned outperform generative LLMs like
GPT-3.5 (Ye et al., 2023) in prompt-based scenar-
ios, reducing hallucinations and over-generation
issues (Yuan and Färber, 2023; Axelsson and
Skantze, 2023), which are pivotal areas of investi-
gation in our current study. By integrating PLMs
into both traditional and simplified pipeline archi-
tectures, our research seeks to quantify their impact
on the fidelity and fluency of generated text, partic-
ularly under fine-tuned and few-shot conditions.

3 Methodology

3.1 Data

We utilize the enhanced WebNLG’17 English
dataset (Castro Ferreira et al., 2018), a derivative of
the WebNLG corpus (Gardent et al., 2017), which
includes 25,298 texts describing 9,674 sets of up
to 7 RDF triples across 15 domains. Five of these
domains are exclusive to the test set, making them
unseen during training, while the remaining 10 do-
mains are seen. These domain distinctions pose
challenges for model generalization and domain
adaptation. For the intermediate stages of our
pipeline, we utilized a specially curated dataset
that includes specific inputs and expected outputs
for each stage. However, the outputs from the Sur-
face Realization (SR) stage are evaluated against
the gold standard provided by the WebNLG’17 test
set.

3.2 Models

To evaluate the performance and suitability of end-
to-end and pipeline architectures, we employed
fine-tuned models such as GPT-2-large (Radford
et al., 2019), BART-large (Lewis et al., 2019), Flan-
T5-large (Chung et al., 2022), as well as instruction-
based models like GPT-3.5 and GPT-4 Turbo (Ye
et al., 2023; Achiam et al., 2023) OpenAI models,
Cohere Command Text v14 (Üstün et al., 2024),
and Mistral-7B-Instruct-v0.1 (Jiang et al., 2023).
The Cohere and OpenAI models were accessed
through the aiXplain platform (Sharma et al., 2024).
We set learning rates to 3e-5 for BART, 5e-5 for
GPT-2, and 1e-5 for the Flan-T5 model.

3.3 Pipeline Architecture

We implemented two experimental setups for the
pipeline architecture. The first setup is a 5-stage
neural pipeline architecture consisting of order-
ing, structuring, lexicalization, REG, and surface
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Ordering Structuring REG Lexicalization

Domains All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen
Metrics Bleu Meteor Comet Bleu Meteor Comet Bleu Meteor Comet

Baseline 0.34 0.56 0.09 0.36 0.59 0.12 0.39 0.70 0.07 38.12 0.55 0.75 48.14 0.6 0.76 24.15 0.49 0.71
Flan-t5 0.57 0.65 0.48 0.53 0.67 0.39 0.58 0.72 0.45 45.37 0.60 0.76 45.72 0.62 0.77 44.33 0.58 0.75
bart 0.49 0.60 0.36 0.58 0.61 0.54 0.56 0.66 0.46 19.87 0.39 0.64 20.16 0.40 0.64 19.45 0.39 0.63
gpt2 0.37 0.57 0.15 0.40 0.63 0.16 0.43 0.69 0.17 40.37 0.57 0.75 43.87 0.59 0.76 36.04 0.54 0.73

gpt4 0.37 0.33 0.43 0.46 0.48 0.43 – – – 38.28 0.53 0.74 37.92 0.53 0.74 38.70 0.53 0.74
gpt-3.5 0.39 0.32 0.47 0.48 0.50 0.47 0.48 0.48 0.47 29.58 0.46 0.69 31.23 0.47 0.70 27.63 0.45 0.68
Mistral7b 0.28 0.24 0.33 0.28 0.29 0.28 0.00 0.00 0.00 18.43 0.36 0.55 14.16 0.33 0.51 23.21 0.39 0.59
Cohere 0.24 0.23 0.26 0.16 0.18 0.14 0.30 0.30 0.30 3.56 0.14 0.33 4.26 0.13 0.33 2.70 0.14 0.33

End2end SR
Domains All Seen Unseen All Seen Unseen
Metrics Bleu Meteor Comet Bleu Meteor Comet Bleu Meteor Comet Bleu Meteor Comet Bleu Meteor Comet Bleu Meteor Comet

Baseline 31.88 0.45 0.61 50.79 0.39 0.76 5.88 0.09 0.45 51.68 0.32 0.67 56.35 0.41 0.77 38.39 0.21 0.56
Flan-t5 51.55 0.32 0.81 53.05 0.33 0.81 49.71 0.30 0.80 40.58 0.28 0.69 46.61 0.30 0.71 33.13 0.26 0.67
bart 41.41 0.31 0.79 49.85 0.32 0.81 31.25 0.30 0.76 18.69 0.26 0.51 23.43 0.27 0.54 12.61 0.24 0.49
gpt2 38.03 0.31 0.75 49.19 0.32 0.80 22.96 0.29 0.70 21.37 0.21 0.53 31.85 0.26 0.61 7.84 0.15 0.44

gpt4 41.43 0.32 0.80 40.50 0.32 0.80 42.55 0.32 0.80 10.73 0.23 0.50 11.85 0.23 0.50 9.30 0.22 0.49
gpt-3.5 39.95 0.32 0.80 39.16 0.32 0.80 40.90 0.31 0.80 21.69 0.30 0.60 21.68 0.31 0.59 21.69 0.29 0.62
Mistral7b 34.33 0.32 0.78 33.61 0.33 0.78 35.07 0.31 0.78 7.59 0.39 0.56 7.50 0.37 0.57 7.72 0.40 0.55
Cohere 40.40 0.30 0.79 39.00 0.31 0.79 42.08 0.30 0.79 21.63 0.28 0.64 21.29 0.28 0.64 22.04 0.27 0.65

Table 1: Results from the individual stages of the 5-stage pipeline and the end-to-end data-to-text systems. Bold and underlined
results denote the best and the second best ones respectively.

Domains All Seen Unseen
Metrics Bleu Meteor Comet Bleu Meteor Comet Bleu Meteor Comet

gpt4 40.17 0.31 0.79 39.17 0.32 0.80 41.39 0.30 0.78
gpt-3.5 39.37 0.32 0.79 38.46 0.33 0.80 40.25 0.31 0.79
mistral7b 28.09 0.29 0.71 29.52 0.30 0.74 26.15 0.27 0.69

Table 2: Surface realization results of the 3-stage pipeline
architecture (Struct2SR).

realization. We fine-tuned the PLMs on task-
specific gold datasets and used five-shot examples
to prompt the instruction-based LLMs for each task.
In the ordering and structuring stages, predicates
served as pointers and were mapped to their re-
spective triples after generation. The output from
the lexicalization stage was mapped to the corre-
sponding entities from the structuring stage. The
REG stage results were then passed to the surface
realizer, which uses hand-crafted rules to produce
the final output. The results for the intermediate
stages are sourced from a gold standard test set,
ensuring both input and expected output accuracy.
In our pipeline approach, each stage methodically
processes its input and passes the resulting output
to the subsequent stage, culminating in the surface
realization (SR) stage. However, comprehensive
evaluations are concentrated at this final SR stage,
providing a measure of the overall performance
based on the integrated outputs from all preceding
stages.

Due to the high performance of state-of-the-art
neural models, some proposed pipeline approaches
decrease the number of stages, simplifying the gen-
eration process (Guo et al., 2020). In this direction,
our second setup is a streamlined 3-stage pipeline

architecture consisting of ordering, structuring, and
surface realization. Here, the outputs from the
structuring stage in the 5-stage setup are directly
fed into the surface realization models, such as
GPT-3.5, GPT-4 Turbo, and Mistral7b. This con-
figuration uses five-shot examples to facilitate the
generation of the final text, focusing on optimizing
the pipeline’s efficiency and minimizing error ac-
cumulation through reduced complexity. Detailed
representations of these setups and examples of
the prompts used are available in Appendix A for
further reference.

3.4 End2End Surface Realizer
In this approach, we fine-tuned Flan-T5, BART,
and GPT-2 on our end-to-end dataset. For GPT-4
Turbo, GPT-3.5, Cohere, and Mistral7b, we used
prompt engineering with tailored instructions and
5-shot examples of end-to-end data to achieve the
desired data-to-text generation.

3.5 Metrics
The performance of the models across various
pipeline stages, including discourse ordering, struc-
turing, and referring expression generation, was
assessed using accuracy. This evaluation method
compared the models’ predictions against a sin-
gle gold-standard reference due to the multiple
verbalizations of triples in the input stages. For
the remaining pipeline stages—lexicalization and
surface realization—as well as the outputs of the
end-to-end experiment, evaluation was conducted
using Meteor (Banerjee and Lavie, 2005) and Bleu
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(Papineni et al., 2002). Additionally, we included
the Comet neural metric (Rei et al., 2020), known
for its strong correlation with human judgments.

4 Results

Table 1 presents the performance outcomes for
each stage of the 5-stage pipeline, as well as for
the end-to-end architecture. The baseline results
are based on the transformer model from Ferreira
et al. (2019), evaluated across both the individ-
ual pipeline stages and the end-to-end architecture.
To ensure clarity, we initially focus on compar-
ing the performance of the fine-tuned models Flan-
T5, GPT2, and BART across these stages. Subse-
quently, we compare the performance of prompt-
based models GPT-3.5, GPT4-turbo, Cohere and
Mistral7b. Finally, we draw a general conclusion
regarding the overall performance of the models
across the pipeline stages.

Fine-tuned models Across all domains, Flan-T5
surpasses both BART and GPT-2, except for the
structuring stage where BART excels. In the seen
category, Flan-T5 maintains its superiority across
all pipeline stages compared to GPT-2 and BART.
Notably, GPT-2 closely competes with BART, par-
ticularly in the ordering stage where BART outper-
forms. In the unseen domain (referenced in Table
1), Flan-T5 and BART regularly outperform GPT-2
across various stages, including ordering, structur-
ing, and referring expression generation (REG).
However, in the lexicalization stage, GPT-2 out-
shines BART in this domain.

In the surface realization stage of the pipeline
architecture, the baseline model seemed to perform
best followed by the Flan-T5 model. All other
model seemed to perform poorly. But in general
the fine-tuned models performed best.

Prompt-based LLMs Due to the substantial
costs linked to proprietary models like GPT-4
Turbo, we limited their application to specific
stages of the pipeline and for end-to-end data-to-
text generation. To control expenses, we refrained
from generating referring expressions for evalua-
tion from the gold standard inputs due to the exten-
sive dataset involved. Nonetheless, we did produce
results for the Referring Expression Generation
(REG) stage within the pipeline, where the inputs
were directly sourced from the mapped lexicaliza-
tion outputs of the pipeline itself. The results of
these models in Table 1 indicate that the perfor-

mance of the Cohere model across several pipeline
stages was notably inferior, followed by the re-
sults of the Mistral7b model. However, GPT-3.5
was seen to perform better than GPT4-turbo in the
ordering and structuring stage but an exception
is observed in the seen category of the ordering
stage and in all categories of the lexicalization stage
where it trailed behind GPT4-turbo.

Fine-tuned vs. Prompt-based models Overall,
in comparing fine-tuned and instruction-based mod-
els in Table 1, we noticed better performance in
the fine-tuned models compared to the prompt-
based model. Furthermore, it’s worth highlighting
that GPT-3.5 exhibited exceptional performance in
the REG unseen domain category, a noteworthy
achievement for models of its kind.

End2End Architecture The Flan-T5 model out-
performed other models, including the baseline
in the end-to-end architecture, achieving the high-
est scores in both Bleu and Comet for the all and
unseen domains. However, the baseline model
delivered superior results in the Meteor category.
Among the fine-tuned models, GPT-2 ranked the
lowest, followed by the BART model, with Flan-T5
leading. While comparing prompt-based models in
the collective domains, the GPT-4 model excelled
in Bleu, Meteor, and Comet metrics, followed by
the Cohere model, GPT-3.5, and finally Mistral7B.

Pipeline vs. End2End We evaluated the results
of the surface realization stage in both the 5-stage
and 3-stage pipeline architectures, as well as the
End-to-End architecture as shown in Table 1 and 2.
The End-to-End method uniformly outperformed
the pipeline setups, except in the baseline, where
it emerged as the overall best in both the all and
seen domains across the models and architectures.
However, the performance gap between the End-
to-End and the 3-stage pipeline was smaller than
the gap between the End-to-End and the 5-stage
pipeline when using GPT-3.5 and GPT-4 as bench-
marks. This suggests that while the End-to-End ap-
proach generally yields superior results, the more
pronounced performance decline in the 5-stage
pipeline may be due to error cascading, indicat-
ing that reducing the number of pipeline stages
could lead to better text generation.

Human Evaluation Two of our authors served
as human evaluators for four top models: Flan-T5
end-to-end, GPT-4 end-to-end, Flan-T5 surface re-
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Domains Fluency Semantic Adequacy Omission Addition Incorrect Number Incorrect Entity Average

flan-t5-sr 6.30C 6.19C 0.48 0.73 0.91 0.62 0.68
flan-t5-end2end 6.68B 6.86B 0.86 0.98 1.00 0.83 0.92
gpt4-struct2SR 6.83A 6.85AB 0.93 0.98 0.99 0.95 0.96
gpt4-end2end 6.82A 6.94AB 0.97 0.98 1.00 0.96 0.98

Table 3: Results of the human evaluation and semantic Accuracy evaluation using GPT-4o. Ranking was determined by
pair-wise Mann-Whitney statistical tests with p < 0.05.

alization (flan-t5-sr) stage result, and the GPT-4
Struct2SR result, using 100 balanced samples. The
evaluators were not informed about which mod-
els generated the samples to ensure an impartial
assessment. For proper comparison, they rated flu-
ency and semantic adequacy on a 1-7 Likert scale
just as in Ferreira et al. (2019). Semantic errors
such as omissions, additions, and incorrect num-
bers and entities were identified using GPT-4o2 on
120 samples each. Results are presented in Table 3.

GPT-4 Struct2SR achieved the highest fluency
rating, while GPT-4 end-to-end scored highest in
semantic adequacy. The Flan-T5-SR model had
the most semantic errors and the lowest semantic
accuracy, while GPT-4 end-to-end had the lowest
errors.

The Mann-Whitney test (Mann and Whitney,
1947) showed significant differences in fluency and
semantics between most model pairs, except be-
tween some GPT-4’s and Flan-T5 end2end compar-
isons. Overall, GPT-4 models performed better or
comparably to the Flan-T5 end-to-end model, with
the Flan-T5-SR model the least performing.

5 Conclusion

This study demonstrates that PLMs tend to out-
perform the baseline, particularly in unseen do-
mains. The baseline in this case is a vanilla trans-
former model that was trained from scratch on
the dataset. It also corroborates existing research
which shows that fine-tuned models generally out-
perform prompt-based models in zero-shot scenar-
ios and exhibit comparable trends in few-shot learn-
ing (Yuan and Färber, 2023; Axelsson and Skantze,
2023). However, prompt-based models exhibited
fewer errors in numbers and entities, as well as
fewer additions and omissions compared to the
fine-tuned models. This confirms previous research
on fine-tuned models in pipeline architecture gen-
erating imaginary numbers (Cunha et al., 2024).
Moreover, the performance of prompt-based mod-
els does not decrease in unseen domains, as shown

2
https://platform.openai.com/docs/models/

gpt-4o

in previous studies and for fine-tuned models.
In the comparison between pipeline and end-to-

end approaches, our study shows that end-to-end ar-
chitecture yielded the best results in both automatic
and human evaluations. In the comparison between
pipeline approaches, our analysis indicates that a
pipeline architecture with fewer stages produces
better outcomes than a full-stage pipeline.

In a combination between model designs, we
speculate that fine-tuned models under a 3-stage ar-
chitecture could outperform prompt-based models.
Additionally, using fine-tuned models for ordering
and structuring, and a prompt-based model for sur-
face realization (i.e., model hybridization) could
yield better results. This is intended to be explored
as future work.

Limitations

Prompt engineering is inherently subjective, and
the prompts used in this experiment may not be the
optimal choices. Additionally, models like GPT-
3.5 and GPT-4 are not open source and can produce
varying responses to the same prompt, which af-
fects the reproducibility of the evaluation scores.

Ethic Statement

Two members of our research group conducted the
evaluations, so ethical approval for human subjects
was not required. The publicly accessible data
used in this research contains no sensitive informa-
tion, ensuring compliance with the EU’s GDPR.
Additionally, since large language models (LLMs)
can produce factually incorrect information and we
lack access to their training data, we cannot con-
trol inherent biases or guarantee the accuracy and
impartiality of the generated text.
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A Appendix

A.1 Pipeline Neural Architecture Modules

Ordering The ordering stage organizes informa-
tion derived from randomly generated triples in the
dataset. Drawing from methods described in pre-
vious study, the linearized triples are processed
through the model to generate sequences using
predicates. This ensures a logical sequence of in-
formation, with predicates crucially arranging the
triples. The resulting ordered predicates are then
re-associated with their corresponding objects and
subjects, ensuring a seamless information flow. An
example of this process is illustrated in Figure 3,
where input triples (shown in Figure 1) are inputted
into the neural model to determine the ordering
based on predicates. These ordered triples are then
used by the mapping modules to prepare inputs for
the next pipeline stage.

Structuring In the structuring stage, the text is
organized into paragraphs that may consist of sin-
gle or multiple sentences, each carrying sequential
information. This stage crafts sentence realization
from the content of the ordered triples, with predi-
cates guiding the structuring process. The outputs
are mapped to their respective subjects and objects
to enhance text coherence and readability, as illus-
trated in Figure 3.

Lexicalization The provided text, as shown in
Figure 3, represents the output of this process, fea-
turing structured information denoted by placehold-
ers like ENTITY-1, ENTITY-2, etc., representing
entities such as proper nouns, dates, places, and
numbers. Each line describes an action or attribute
associated with these entities, including details like
the determiner (DT) and verb phrase (VP) such as
the aspect, tense, voice, person, and number. The
mapping process then reverts these entity represen-
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tations to their original forms for further process-
ing.

Referring Expression Generation REG ensures
consistent and clear references to entities within the
text by using appropriate nouns and pronouns like
“country”, “he”, “she”, “her”, and “it” instead of re-
peatedly mentioning proper nouns. This technique
enhances readability and coherence. The REG out-
put in Figure 3 illustrates this process, contributing
to a smoother narrative flow.

Surface Realization The surface realization
stage is the culmination of the pipeline, where the
ordered, structured, and lexically enhanced text,
along with suitable referring expressions, is final-
ized. Displayed in Figure 3, this stage applies hand-
crafted rules to adjust verb phrases and refine the
text, ensuring grammatical accuracy, coherence,
and stylistic integrity. This final step effectively
transforms structured data representations into pol-
ished, comprehensible natural language text, ready
for presentation.

A.2 Data Processing
Preprocessing: To enhance clarity and prevent
misinterpretations in the fine-tuned models, we
substituted the ‘<’ and ‘>’ tags with ‘[’ and ‘]’,
respectively. This change was made after observ-
ing that the original tags often led the models to
generate hallucinated content.
Post processing: We implemented a thorough
cleaning process using Python’s regular expres-
sion package, applying specific patterns to filter
out over-generations in our results.
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Figure 3: 5 Stage Pipeline Neural Architecture Outputs

Figure 4: A GPT-(3.5 & 4) prompt for end2end surface realization.
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Figure 5: A GPT-(3.5 & 4) 3-stage pipeline prompt for the final surface realization stage.


