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Abstract

Commonsense knowledge is crucial to many
natural language processing tasks. Exist-
ing works usually incorporate graph knowl-
edge with conventional graph neural networks
(GNNs), resulting in a sequential pipeline that
compartmentalizes the encoding processes for
textual and graph-based knowledge. This com-
partmentalization does, however, not fully ex-
ploit the contextual interplay between these
two types of input knowledge. In this paper,
a novel context-aware graph-attention model
(Context-aware GAT) is proposed, designed
to effectively assimilate global features from
relevant knowledge graphs through a context-
enhanced knowledge aggregation mechanism.
Specifically, the proposed framework employs
an innovative approach to representation learn-
ing that harmonizes heterogeneous features by
amalgamating flattened graph knowledge with
text data. The hierarchical application of graph
knowledge aggregation within connected sub-
graphs, complemented by contextual informa-
tion, to bolster the generation of commonsense-
driven dialogues is analyzed. Empirical results
demonstrate that our framework outperforms
conventional GNN-based language models in
terms of performance. Both, automated and
human evaluations affirm the significant perfor-
mance enhancements achieved by our proposed
model over the concept flow baseline.

1 Introduction

Open-domain dialogue generation has gained con-
siderable traction in the field of natural language
generation (Roller et al., 2021; Tang et al., 2023b).
This task aims to develop chatbots with the capacity
to engage in conversations across a broad spectrum
of topics, thereby enabling a multitude of practical
applications, including virtual assistants and well-
being support systems (Abd Yusof et al., 2017;

*corresponding author.

Figure 1: Illustration of the proposed model with an
example. The retrieved facts are fed to the graph model,
then the model learns the representations of concepts
by aggregating the knowledge layer by layer. Finally,
responses are generated with these aggregated features.

Wang et al., 2021; Tang et al., 2023c; Yang et al.,
2024a). In recent years, there has been a surge of
interest in leveraging large language models for di-
alogue generation (Zhang et al., 2019; Adiwardana
et al., 2020; Roller et al., 2021; Tang et al., 2022b;
Huang et al., 2022). These models, in general,
exhibit an enhanced capacity to encapsulate knowl-
edge within their networks as their model sizes
increase. However, it is crucial to acknowledge a
series of studies that have underscored the limita-
tions of training on plain text corpora, where the
knowledge structure is not explicitly represented
during the learning process (Tang et al., 2022a;
Yang et al., 2024b). Consequently, a key research
question concerns how to better exploit and use
external knowledge to improve the quality of gen-
erated responses, which has received increasing
attention in recent research (Zhang et al., 2020; Yu
et al., 2022; Wu et al., 2022; Tang et al., 2023a).

The knowledge incorporated into chatbots can
be broadly divided into structured and unstruc-
tured forms. Prior work (Komeili et al., 2022;
Ghazvininejad et al., 2018; Lian et al., 2019) has
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achieved successful integration of unstructured
knowledge (such as free-text content from web
pages and knowledge statements) into the gener-
ated responses of chatbots. This typically involves
encoding the most appropriate retrieved facts to-
gether with the conversation context or encoding
multiple pieces of facts into a uniform representa-
tion before passing it to the decoder alongside the
conversation history. Structured knowledge, on the
other hand, usually takes the form of a graph. A
range of neural models (Zhou et al., 2018; Yang
et al., 2020; Lin et al., 2021) have been introduced
to incorporate features from the retrieved graph-
structured knowledge. For instance, the graph at-
tention mechanism (Lotfi et al., 2021; Tuan et al.,
2019; Zhou et al., 2018) has been widely used to
embed knowledge graph features, and has been
successful in aggregating sparse features into rich
representations. With regard to language models,
the rise of pre-trained models (Srivastava et al.,
2021; Dong et al., 2019; Tang et al., 2024) has also
substantially advanced the state-of-the-art (SOTA)
in open-domain dialogue generation.

However, existing dialogue systems still face a
number of challenges to effectively exploit com-
monsense knowledge (Xie et al., 2021). Since
graph-structured knowledge and natural utterances
have different representations, most prior work
(Tuan et al., 2019; Zhou et al., 2018; Zhang et al.,
2020) employed separate encoders to incorporate
and leverage these heterogeneous features by con-
catenating their respective numeric vectors. How-
ever, since the separate encoders do not share low-
dimensional representations, they may fail to fully
account for the semantics of context contributed
by given posts with additional external knowledge
facts. In addition, existing frameworks directly con-
duct graph-attention-based encoding on retrieved
facts from the knowledge base, which are isolated
in separate sub-graphs. This strategy does not cap-
ture dependencies between sub-graphs nor between
the graph knowledge and the context of the post,
in turn making it hard for neural networks to fully
capture the overall backgrounds from the inputs.

To address the aforementioned challenges, this
paper proposes a novel graph-based framework to
leverage knowledge contained in concept-related
facts. In contrast to employing separate encoders to
encode knowledge in the form of disparate knowl-
edge graphs and text, we first transform the graph-
structured representations into plain text, and lever-
age a pre-trained language model, UniLM (Dong

et al., 2019), to generate unified features for all
inputs. Subsequently, to overcome inadequacies
when capturing the context semantics provided
by the given posts and retrieved knowledge facts,
a novel, context-aware graph-based mechanism
(Context-aware GAT) is proposed to incorporate
the features from the post and the knowledge graph
in the same learning process during hierarchical
aggregation. The graph knowledge takes two steps
(layers) before being aggregated into a condensed
feature vector as the global features of given in-
puts. For each layer, the context embedding and
the factual embedding are concatenated, and then
graph attentions are computed for every sub-node.
Finally, all representations are aggregated into the
root node and fed to the decoder for response gen-
eration. This whole process is illustrated in Fig-
ure 1. We also note that our model can be easily
extended to incorporate multi-hop knowledge. Ex-
perimental results show that our extended model
can use multi-hop knowledge to further increase
the informativeness of generated responses, and
consequently yields considerable improvements
over other dialogue systems that use multi-hop
knowledge. The contributions of this work are
summarised three-fold:
• We propose a novel framework1, which is a suc-

cessful exploration that leverages a unified lan-
guage model for the heterogeneous inputs of
graph knowledge and text, exploiting structured
knowledge with context-aware subgraph aggre-
gation to generate informative responses.

• We conduct a range of experiments, and the ex-
tensive automatic and human evaluation results
demonstrate our model significantly outperforms
existing baselines to generate a more appropri-
ate and informative response with external graph
knowledge.

• With extensive experiments, we investigate the
advances and mechanisms of leveraging graph
knowledge with our Context-aware GAT model.
We also investigate the expansion of our model to
accommodate multi-hop knowledge, and validate
its effectiveness.

2 Related Work

Recently, much work has focused on augment-
ing dialogue systems with additional background
knowledge. Such works can be divided into dia-

1Our code and datasets are accessible at https://github.
com/StevenZHB/CADGE.

https://github.com/StevenZHB/CADGE
https://github.com/StevenZHB/CADGE
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logue systems augmented with unstructured knowl-
edge, and those augmented with structured knowl-
edge. With unstructured knowledge, (Komeili
et al., 2022) models web page information and
feeds it into a language model. (Ghazvininejad
et al., 2018) and (Lotfi et al., 2021) encode the
filtered factual statements with a specific encoder
and then pass them into the decoder along with
context. (Lian et al., 2019) use context to aggre-
gate knowledge statements and find that aggregated
knowledge gives better results than filtered knowl-
edge. Regarding structured knowledge, graph neu-
ral networks (Scarselli et al., 2009) are usually used
to embed graph information to input into a lan-
guage model. (Zhou et al., 2018) uses GRUs and
two graph attention modules to select appropriate
triples to incorporate into responses. In order to ex-
ploit the benefits of multi-hop knowledge, (Zhang
et al., 2020) adds an attention mechanism in a simi-
lar way to filter the appropriate knowledge. Finally,
(Tuan et al., 2019) proposes a model which selects
the output from a sequence-to-sequence model and
a multi-hop reasoning model at each time step.

Large language models such as UniLM (Dong
et al., 2019), GPT-2 (Radford et al., 2019), and
BART (Lewis et al., 2019) are widely used in open
domain dialogue generation systems (Zeng et al.,
2021). DialoGPT (Zhang et al., 2019) was pre-
trained on a dialogue dataset containing 147M con-
versations and is based on the autoregressive GPT-
2 model, using a maximum mutual information
(MMI) scoring function to address the low amount
of information in the generated text. (Adiwardana
et al., 2020) built a 2.6B-parameter Evolved Trans-
former architecture to model the relation between
context-response pairs. To generate more infor-
mative responses, (Bao et al., 2019, 2020) use la-
tent variables to model one-to-many relationships
in context-response pairs. Finally, (Roller et al.,
2021) use a retrieval model to retrieve candidate re-
sponses and then concatenates them to represent the
context before inputting them into the transformer
to generate the model. Please refer to Appendix A
for more details of related work.

3 Methodology

We formulate our task as follows: The given inputs
include a post X = {x1, x2, ..., xn} and a graph
knowledge base G = {τ1, τ2, ..., τk}, in which a
fact is represented in the form of a triplet {h, r, t}
where h, r, and t denote the head node, the relation,

Figure 2: Overview of the proposed model.

Figure 3: The Context-aware GAT firstly transforms
knowledge from facts into numeric vectors (in yellow).
Through feature forwarding, the root nodes of each
graph attentively read and aggregate all knowledge and
become higher-level representations (from yellow to
green, and then green to red).

and the tail node, respectively. The goal is to gen-
erate a response Y = {y1, y2, ..., ym} by modeling
the conditional probability distribution P (Y |X,G).
Figure 2 gives an overview of our framework. The
knowledge retrieval process is fundamentally im-
plemented by word matching (concepts in Concept-
Net are formatted in one-word) and rule filtering to
collect knowledge triples (for more details please
refer to (Zhou et al., 2018)).

3.1 Knowledge Representation

The 12-layer transformer blocks of UniLM (Dong
et al., 2019) are split into two 6-layer parts - the
encoder and decoder. When encoding the post’s
text, the language model of UniLM is informed of
the high-level narrative structure using a classifica-
tion label ([CLS]) to allow learning of the overall
representation from X as the context feature embc.
For each recognised entity enti in the post, rele-
vant facts are retrieved from the knowledge base
in the form of triples, and all retrieved facts can
be considered as sub-graphs gi = {τ1, τ2, ..., τNgi

}
in G. Each post usually results in several indepen-
dent sub-graphs Gsub = {g1, g2, ..., gNGsub

}. In
contrast to existing works that encode knowledge
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in the form of disparate knowledge graphs and text,
we propose to transform facts into text by directly
concatenating them into a string, where they are
then encoded with the embedding layer of UniLM:

Epost = LM([l[CLS]; {x1, ...}])) (1)

= {embc, emb1...} (2)

fe(h, r, t) = LMemb([h; r; t]) (3)

Eτ = fe(h, r, t) s.t.{h, r, t} ∈ gi (4)

Operator LM (abbr. of language model) denotes
the encoder of UniLM, whilst LMemb denotes the
embedding layer of UniLM, and l[CLS] denotes the
“[CLS]” label.

3.2 Context-aware GAT

The overview of the proposed Context-aware GAT
is as illustrated in Figure 3. The model learns the
global graph features via translations operating on
both the low-dimensional embeddings of the knowl-
edge facts and the context contained in embc. To
facilitate knowledge understanding and generation,
we leverage a graph attention mechanism to ag-
gregate knowledge representations layer by layer.
With two layers of feature forward processing, we
obtain the representation of the root node, rtGsub

,
as the aggregated feature for the whole graph, Gsub.
First Forward Layer. Our model firstly attends
to the representations of facts τ ∈ gi to compute
graph attention and then aggregates features to the
root node of each graph rtgi . The knowledge grad-
ually updates the representations of root nodes step
by step:

rtgit =

Ngi∑
j=1

agitjE
τ
tj (5)

agitj =
exp(βgi

tj )∑Ngi
j=1 exp(β

gi
tj )

(6)

βgi
j = W gi [Eτ

tj ; embc]T (7)

where t denotes the time step, lpad denotes the
padding label to help initialize the root representa-
tions, and W gi is a trainable parameter matrix.
Second Forward Layer. In analogy to the first
forward layer, our model attends to the root nodes
rtgi represented for each sub-graph to attentively
compute the final representation of the root node
rtGsub , which stands for the overall features of all

the retrieved sub-graphs:

rtGsub
t =

NGsub∑
i=1

aGsub
ti (rtgit ) (8)

aGsub
ti =

exp(βGsub
ti )∑NGsub

i=1 exp(βGsub
tj )

(9)

βGsub
i = WGsub [rtgit ; embc]

T (10)

3.3 Feature Aggregation and Decoding
After computing a representation for the root node,
features from the post and retrieved knowledge
are concatenated, and the decoder is employed to
predict tokens Y as the output response:

V = [rtGsub ;Epost] (11)

H = Decoder(V ) (12)

P (Y |X) = softmax(HW ) (13)

where V denotes the aggregated features fed to the
decoder, H denotes the hidden states of the decoder
used to predict the probability distribution of output
tokens P (Y |X), and W is a trainable parameter.

3.4 Loss Function
Auxiliary Entity Selection Task. To better sup-
port representation learning, the entity selection
task is introduced as an auxiliary task when train-
ing the proposed generative system. For each input
post, the datasets contain corresponding annota-
tions of knowledge triples Γ = {τ ′

1, ..., τ
′
NΓ

} from
the knowledge base. These annotations can be con-
sidered as the ground truth of the knowledge paired
with the post. The neural model is forced to select
the ground-truth triples from all retrieved knowl-
edge Gsub. As Figure 3 shows, each yellow node
represents a knowledge triplet τ , and each green
node represents the root node rtgi . All yellow and
green nodes have been labeled by checking if they
are annotated as the ground truth. For instance,
if τj ∈ Γ then the probability of τj denoted as
pes(τj |X) should be 1, and 0 otherwise. For the
sub-graph root node (the green node in Figure 3),
if τj ∈ gi is the truth, then pes(rt

gi |X) should be
1, and 0 otherwise. The probability distribution is
modelled as follows:

pes(τj |X) = softmax(Eτ
j W

pτ ) (14)

pes(rt
gi |X) = softmax((rtgi)W pgi ) (15)

where es denotes entity selection, and W denotes
the trainable parameters.
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Overall Loss Function. The loss function includes
parts of the text prediction task and entity selection
task, and is computed with cross entropy:

Llm = − 1

N

N∑
n=1

logP (Y |X) (16)

Lτ
es = −

N∑
n=1

Nτ∑
j=1

sτj log(pes(τj |X)) (17)

Lg
es = −

N∑
n=1

NGsub∑
i=1

sτg log(pes(rt
gi |X)) (18)

Loverall = Llm + λ1Lτ
es + λ2Lg

es (19)

where N denotes the total amount of test data. λ1

and λ2 denotes the scale factors. Lτ
es and Lg

es de-
note the loss of entity selections on the root nodes
for facts τ and gi, respectively. λ1 and λ2 are set
to 1 in the following experiments.

3.5 Expansion for Multi-hop Knowledge
We also consider extending our model to incor-
porate multi-hop knowledge, which might give a
further performance boost. Specifically, we extract
the two-hop knowledge for all one-hop entities and
use the same method to build a graph of two-hop
knowledge. As the aggregation of two-hop knowl-
edge needs to be related to one-hop knowledge,
we use the one-hop knowledge aggregation repre-
sentation rtGone

sub
in addition to the "[CLS]" label

when aggregating two-hop knowledge. After pass-
ing through two layers of GAT, the root node of the
two-hop knowledge graph (Gtwo

sub ), rtGtwo
sub

, which
is treated as the aggregated features of the two-
hop knowledge graph, is then concatenated with
rtGone

sub
and input to the Decoder. The attention in

the context-aware GAT for the two-hop knowledge
graph is as follows:

a
Gtwo

sub
ti =

exp(β
Gtwo

sub
ti )∑N

Gtwo
sub

i=1 exp(β
Gtwo

sub
tj )

(20)

β
Gtwo

sub
i = WGtwo

sub [rt
gtwo
i

t ; rtGone
sub

; embc]
T

(21)

a
gtwo
i

tj =
exp(β

gtwo
i

tj )∑N
gtwo
i

j=1 exp(β
gtwo
i

tj )

(22)

β
gtwo
i

j = W gtwo
i [Eτ

tj ; rtGone
sub

; embc]T (23)

The aggregated feature for the decoder is:

Vmul = [rtG
one
sub ; rtG

two
sub ;Epost] (24)

In the multi-hop scenario, Eq. 24 replaces Eq. 11.
Empirically, we found the amount of two-hop
knowledge is substantially larger than that of one-
hop knowledge, and hence introduces noise and
additional computational complexity. To address
these issues, we choose the top 100 two-hop knowl-
edge pieces that are most similar to the dialogue
context based on sentence-transformer scores for
our experiments.

4 Experimental Setup

4.1 Datasets and Baselines

Datasets. Experiments are conducted on open-
domain conversations extracted from Reddit (Zhou
et al., 2018). ConceptNet (Speer et al., 2016) is
used as the commonsense knowledge base, which
consists of 120, 850 triples, 21, 471 entities, and
44 relations. The knowledge base contains not
only world facts, but also common concepts. Each
single-round conversation pair is preserved if it
can be connected by at least one knowledge triple.
The dataset has 3, 384, 185/10, 000/20, 000 conver-
sations for training/evaluation/testing, respectively.
Baselines. We compare our model against five
competitive baselines used in this task. There are
some similar works, e.g. (Yu et al., 2022; Wu et al.,
2022), which use external resources of documents
or other kind of knowledge other than graph knowl-
edge. They cannot be considered as our baseline
models. Our research focuses on exploring a more
efficacious approach for the integration of heteroge-
neous features within a language model framework.
Consequently, large-scale language models, exem-
plified by ChatGPT 2, are neither employed as the
primary language model in our experiments nor
included within the baseline models under exami-
nation.
• Seq2seq (Sutskever et al., 2014): A widely used

encoder-decoder in conversational systems.
• MemNet (Ghazvininejad et al., 2018): A model

which uses MemNet to store knowledge triples.
• CopyNet (Zhu et al., 2017): A model which

copies concepts in knowledge triples to generate
responses.

• CCM (Zhou et al., 2018): The SOTA model
for one-hop knowledge-enhanced dialogue which
leverages two graph-attention mechanisms and

2ChatGPT, a recent language model release by https:
//chat.openai.com/, boasts a parameter count approxi-
mately 100 times greater than that of our base language model,
UniLM.

https://chat.openai.com/
https://chat.openai.com/
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CopyNet to model one-hop knowledge triples
and incorporate knowledge concepts into re-
sponses.

• ConceptFlow (Zhang et al., 2020): The SOTA
model for multi-hop knowledge-enhanced dia-
logue which has a similar method to CCM but
uses additional graph attention to model two-hop
knowledge triples.

4.2 Training Details and Parameters

UniLM-base-cased is used as the pre-trained lan-
guage model. It has 12 BERT-block layers featur-
ing 12 attention heads in each layer. The first six
layers of the model are considered to be an encoder
and the last six layers a decoder. The word embed-
ding size is 768. The conversations and knowledge
triples share the same BERT embedding layer, with
a maximum length of 512. The hidden representa-
tion of the sixth layer is used to facilitate the 2-layer
knowledge aggregation model. An Adam optimizer
is used with a batch size of 36. The learning rate
is 5e−5. The model was trained on a Tesla V100
machine for approximately 7 days, and 20 epochs.

4.3 Evaluation Protocol

Automatic Evaluation Metrics. We follow (Zhou
et al., 2018) and (Galley et al., 2018) in adopting
the metrics of perplexity (PPL) (Serban et al., 2016)
and Entity Score (ES), and follow (Galley et al.,
2018) in adopting BLEU (Papineni et al., 2002),
NIST (Doddington, 2002), METEOR (Lavie and
Agarwal, 2007), Dist, and Ent (Zhang et al., 2018),
where the Entity Score measures the average num-
ber of entities per response and others measure
the quality of generated responses. BLEU, NIST,
and METEOR are calculated between generated
responses and golden responses, whilst Dist and
Ent are calculated within generated responses.
Human Evaluation. Pair-wise comparisons are
conducted with the most competitive baseline and
the ablation model by five evaluators giving their
preference of response on 100 randomly collected
samples, regarding two aspects: the appropriate-
ness (whether the response is appropriate in the
context) and informativeness (whether the response
contains new information).

5 Experimental Results

5.1 Automatic Evaluation

Referenced Metrics. The experimental results
shown in Table 1 comprehensively measure the

quality of the generated responses. It can be ob-
served that our CADGE model (which uses one-
hop knowledge) outperforms most of the baselines.
For instance, it outperforms CCM, one of the SOTA
models using one-hop knowledge, on all metrics,
obtaining at least twice the scores of the CCM (for
BLEU-4, the difference is even almost four times).
When compared to ConceptFlow, a SOTA model
that exploits multi-hop knowledge, CADGE is still
able to perform better (on over half of the metrics)
or give comparable performance.

Given that the baselines contain the most repre-
sentative framework for encoding heterogeneous
features with separate encoders (i.e. CCM), the
results clearly show the effectiveness of our knowl-
edge aggregation mechanism, which better cap-
tures the heterogeneous features from the posts
and knowledge facts with unified feature encoding
and knowledge aggregation, and hence improves
the quality of the generated responses. The abla-
tion experiments further demonstrate the advances
of the knowledge aggregation mechanism. Our
context-aware GAT largely contributes to the im-
provement in performance, which can be observed
in the comparison with - w/o ca-gat. Additionally,
we also tried to allow neural networks to under-
stand the semantics by directly coagulating the fea-
tures of flattened triples - w/o aggregation, where
the performance drops significantly, indicating the
layer forward aggregation process is a key factor to
the understanding of semantics contained in graph
knowledge. By incorporating the enhanced two-
hop knowledge, CADGE achieves universal perfor-
mance gains on all metrics, further demonstrating
the usefulness of incorporating multi-hot knowl-
edge.
Unreferenced Metrics. We also examine the qual-
ity of the generated responses with unreferenced
metrics that measure diversity and informativeness
(entity score). As the results show in Table 2, both
language diversity and informativeness are substan-
tially improved with our proposed knowledge ag-
gregation framework. For example, the diversity
score of our model is on par with that of the SOTA
model (ConceptFlow). When two-hop knowledge
is incorporated, the scores of CADGE are almost
double that of ConceptFlow, which also uses multi-
hop knowledge.

These strong results demonstrate our model of-
fers a substantial improvement over existing ap-
proaches when considering the language quality
and relevance of generated responses, and matches
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 NIST-1 NIST-2 NIST-3 NIST-4 METEOR
Seq2Seq 0.1702 0.0579 0.0226 0.0098 1.0230 1.0963 1.1056 1.1069 0.0611
MemNet 0.1741 0.0604 0.0246 0.0112 1.0975 1.1847 1.1960 1.1977 0.0632
CopyNet 0.1589 0.0549 0.0226 0.0106 0.9899 1.0664 1.0770 1.0788 0.0610
CCM 0.1413 0.0484 0.0192 0.0084 0.8362 0.9000 0.9082 0.9095 0.0630
ConceptFlow 0.2451 0.1047 0.0493 0.0246 1.6137 1.7956 1.8265 1.8329 0.0942

CADGE 0.2078 0.0967 0.0551 0.0326 1.5566 1.8113 1.8609 1.8683 0.0893
- w/o es-loss 0.2024 0.0937 0.0525 0.0315 1.5114 1.7421 1.7826 1.7878 0.0895
- w/o aggregation 0.1941 0.0920 0.0528 0.0322 1.4672 1.6994 1.7421 1.7477 0.0861
- w/o ca-gat 0.2019 0.0730 0.0305 0.0138 1.3562 1.4919 1.5082 1.5101 0.0796

- w/ two hops 0.2197 0.1011 0.0558 0.0328 1.6689 1.9171 1.9606 1.9661 0.1053

Table 1: Automatic evaluation on popular reference-based metrics used in the task of open domain dialogue.
The best performing model is highlighted in bold, and the second best is underlined. - w/o es-loss denotes the
ablated model without the auxiliary entity selection task; - w/o aggregation denotes the model without the feature
aggregation process (which is implemented by directly mean pooling the features of flattened triples without our
two layer forward aggregation process); - w/o ca-gat denotes the model without our proposed context-aware GAT
introduced in subsection 3.2; - w/ two hops denotes the model expanded by two-hop knowledge introduced in
subsection 3.5.

Model Dist-1 Dist-2 Ent-4
Seq2Seq 0.0123 0.0525 7.665
MemNet 0.0211 0.0931 8.418
CopyNet 0.0223 0.0988 8.422
CCM 0.0146 0.0643 7.847

Conceptflow 0.0223 0.1228 10.270
CADGE 0.0288 0.1136 10.141
- w/d es-loss 0.0326 0.1242 9.445
- w/o aggregation 0.0340 0.1234 8.968
- w/d ca-gat 0.0189 0.0755 9.599

- w/ two hops 0.0461 0.2702 11.626

Table 2: Automatic evaluation on unreferenced metrics.

better with the golden reference responses. When
generating responses only with the UniLM model,
performance on all metrics drops substantially,
further demonstrating that the proposed Context-
aware GAT contributes immensely to generating
informative and high-quality responses via effec-
tive aggregation of knowledge triples. Both the
referenced and unreferenced metrics indicate that
with the improvement in heterogeneous feature cap-
turing and global feature aggregation, CADGE can
better exploit background knowledge to generate
more high-quality and human-like responses.

5.2 Analysis of the Knowledge Aggregation
Mechanism

Perplexity and Entity Score. Based on the fre-
quency of words in the posts, we divide the test set
into four sections (high, middle, low, and OOV) in
order to evaluate the performance and robustness
of each model when faced with frequently seen di-
alogues as well as uncommon dialogues. For a fair
comparison, we limit the retrieved knowledge to

Figure 4: The learned attention probability density
curves on knowledge facts.

one-hop as not every baseline is able to incorporate
multi-hop knowledge (e.g., CCM). As shown in Ta-
ble 3, our model achieves the lowest perplexity and
the highest entity scores for all frequency groups.
The lowest perplexity indicates that the proposed
model achieves the best predictive performance of
the language model and generates a more fluent
response than other baselines, while the best en-
tity scores indicate that the proposed model better
exploits graph features to select appropriate enti-
ties contained in the post. For the ablation study,
we compare CADGE to the base model UniLM,3

which is a pre-trained language model without the
Context-aware GAT. The substantial performance
gain of CADGE over UniLM demonstrates the im-
portance of leveraging global features obtained by
graph knowledge to improve both the model’s un-
derstanding and generation ability.
Attention Distribution on Knowledge. In order to
test whether our model has learned to place more at-

3The ablated model - w/o ca-gat is regarded as the base
model UniLM, which works without graph knowledge.
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Model Overall High Freq. Medium Freq. Low Freq. OOV
PPL↓ ES↑ PPL↓ ES↑ PPL↓ ES↑ PPL↓ ES↑ PPL↓ ES↑

Seq2Se 47.02 0.72 42.41 0.71 47.25 0.74 48.61 0.72 49.96 0.67
MemNet 46.85 0.76 41.93 0.76 47.32 0.79 48.86 0.76 49.52 0.71
CopyNet 40.27 0.96 36.26 0.91 40.99 0.97 42.09 0.96 42.24 0.96
CCM 39.18 1.18 35.36 1.16 39.64 1.19 40.67 1.20 40.87 1.16

CADGE 33.99 1.39 31.50 1.49 34.39 1.43 34.67 1.35 35.56 1.29
- w/o es-loss 34.73 1.28 32.31 1.36 35.18 1.33 35.41 1.24 35.19 1.19
- w/o aggregation 34.71 1.35 32.25 1.42 35.16 1.39 35.36 1.31 35.62 1.27
- w/o ca-gat 36.51 1.03 33.82 1.10 37.02 1.06 37.23 1.01 38.12 0.95

Table 3: Automatic evaluation on the metrics of perplexity (↓) and entity score (↑). The experiment is set up with
one-hop knowledge. Therefore ConceptFlow, which needs two-hop knowledge, is excluded in this experiment. The
test set (Overall) is categorised into 4 sub-datasets with different frequencies (Freq. and OOV (out of vocabulary))
of the entities included in the posts. The overall PPL and ES of ConceptFlow are 36.51 and 1.03, respectively. The
overall PPL and ES of Cadge - w/ two hops are 29.90 and 1.68, respectively. Since ConceptFlow did not evaluate
frequency grouped test data on two-hop data, we only compare models with one-hop data here.

Figure 5: A box plot to analyse attention scores learned
by context-aware GAT to aggregate features from one-
hop and two-hop knowledge. Overall: average attention
of all knowledge; Golden: average attention of golden
knowledge; Output: average attention of knowledge in
generated responses.

tention on golden knowledge facts for dialogue gen-
eration, we draw probability density curves to com-
pare the attention distribution of golden knowledge
(i.e. retrieved knowledge facts that appear in refer-
ence responses) and overall knowledge (knowledge
facts retrieved from posts). Figure 4 illustrates the
result with one-hop knowledge aggregation, and
Figure 4 with two-hop. It can be observed that
Context-aware GAT is able to learn to select more
related knowledge facts for dialogue generation, as
demonstrated by the curves showing that golden
knowledge facts have a higher probability of having
higher attention scores. In other words, our graph
model is able to obtain an aggregated representa-
tion that places more focus on relevant knowledge
for response generation.

Statistics for Attention Scores. To better analyse
the statistics of the learned attention scores during
the knowledge aggregation in our model, we fur-
ther draw a box plot to compare the attention scores
of different knowledge facts, with the results shown
in Figure 5. According to the attention scores dis-
tribution, the knowledge facts in the output have
higher attention than other retrieved knowledge,
meaning the model has more confidence to select
related knowledge to generate responses.4 With
respect to the attention on the golden knowledge
facts, they are substantially different from other
retrieved knowledge, which demonstrates that with
the knowledge aggregation process, our framework
learned the correct features to represent knowledge
facts, leading to more appropriate selections over
retrieved knowledge facts.

5.3 Human Evaluation

We also conducted human evaluation to further
consolidate our model performance. The results
are presented in Table 4, which, in accordance
with the previously presented automatic metrics,
demonstrates that our model outperforms the SOTA
baselines on both appropriateness and informative-
ness, and proves the effectiveness of the proposed
Context-Aware GAT. Under the condition of ei-
ther one-hop knowledge or two-hop knowledge,
CADGE achieves significant improvements in pro-
ducing more informative and appropriate responses,
owing to the proposed context-aware knowledge
aggregation framework.

4If the generated knowledge facts have the same distribu-
tion as the overall, this means that the model is confused when
selecting relevant knowledge facts.
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Choice % CADGEone_hop vs CCM CADGEone_hop vs - w/o ca-gat CADGEtwo_hops vs ConceptFlow
CADGEone_hop CCM Kappa CADGEone_hop - w/o ca-gat Kappa CADGEtwo_hops Conceptflow Kappa

App. 66.0 34.0 0.367 58.1 41.9 0.323 64.7 35.3 0.321
Inf. 63.3 36.7 0.278 60.1 39.9 0.318 64.9 35.1 0.304

Table 4: Human Evaluation w.r.t. appropriateness and informativeness. The score is the percentage that the
proposed model wins against its competitor. Kappa denotes Fleiss’ Kappa (Fleiss, 1971), which indicates all of our
evaluation annotations reach a fair agreement. The proposed model is significantly better (sign test, p < 0.005).

Figure 6: Visualization of the knowledge aggregation process with an example.

5.4 Knowledge Aggregation Process.

In Figure 6, we illustrate an example of the knowl-
edge aggregation process of our framework, where
the left subgraph represents the one-hop knowl-
edge aggregation (i.e. yellow nodes) and the right
subgraph represents the additional knowledge ag-
gregation attending to the second-hop knowledge
(i.e. blue nodes). As mentioned in §3, CADGE
aggregates features layer by layer. For one-hop
CADGE, the aggregated representation (the red
node) of all retrieved knowledge facts is concate-
nated with the context features of the post, and
fed into the neural decoder to generate responses.
When incorporating two-hop knowledge, CADGE
exploits a similar mechanism, and we obtain an
additional knowledge representation (the purple
node) for response generation. It can be seen from
the example that when CADGE only uses one-hop
knowledge, it selects “nice” from the graph which
is subsequently used to generate a response. When
two-hop knowledge is available, CADGE selects
“beer” from the one-hop graph and “drink” from
the two-hop graph, improving informativeness and
making the response more interesting. We also
provide a detailed qualitative analysis of sample re-
sponses from the one-hop and two-hop knowledge

experiments in Appendix B.

6 Conclusion

In this paper, we proposed a novel knowledge ag-
gregation framework for the knowledge graph en-
hanced dialogue generation task. This framework
implements a Context-aware GAT which applies
representation learning of the heterogeneous fea-
tures from graph knowledge text, and the neural
networks effectively learn to incorporate globally
aggregated features to enhance response generation
with rich representations. Extensive experiments
are conducted to demonstrate that our framework
outperforms SOTA baselines on both automatic and
human evaluation, as the proposed Context-Aware
GAT largely improved the semantic understanding
of both graph and text knowledge to enhance the
appropriateness and informativeness of generated
responses. The expansion of Context-Aware GAT
to two-hop knowledge also indicates the robustness
and effectiveness of our framework in increasing
the amount of grounded graph knowledge in re-
sponses. We hope that our proposed framework can
benefit research in all text generation tasks where
knowledge graphs are incorporated, and transfer-
able research will be continued in further work.
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A Related Work

Knowledge Enhanced Dialogue Generation. Re-
cently, much work has focused on augmenting dia-
logue systems with additional background knowl-
edge. Such works can be divided into dialogue sys-
tems augmented with unstructured knowledge, and

#1 Post
So if op has ever taken a road trip he was at more of a risk
than the surgery he’s
gonna have :d

CADGEone_hop
I’m not saying it’s safe, but it’s not like he’s going to
be in a car accident.

CCM I’m not sure if he ’s a surgeon or not .

- w/o ca-gat I’m not saying he’s not going to be taking a road trip.

#2 Post Because i haven’t heard it on the radio enough.

CADGEone_hop I’ve heard it on radio. it’s a pretty good song

CCM
I’m not sure if it’s a radio station or not.
i ’m not sure if it ’s a radio station or not.

- w/o ca-gat I’ve heard it on the radio.

#3 Post We will have to agree or disagree mate!

CADGEone_hop I’m not disagreeing, i’m just saying that it’s not a valid argument.

CCM
I’m not saying it ’s a bad argument ,
but i don’t think it ’s a good idea to be a fan of
the game.

- w/o ca-gat I’m not your mate, pal.

#4 Post What do you mean by the auto dude?

CADGEone_hop I mean the guy who’s in the car.

CCM
I’m not sure . i ’m not sure if i ’m wrong . i ’m just saying that
the guy is a guy who doesn’t know what
he ’s talking about .

- w/o ca-gat Auto man.

Table 5: Sample responses from the one-hop knowledge
experiments, comparing CADGE with the SOTA CCM,
and its ablation model UniLM. Tokens in red are entities
in knowledge triples.

those augmented with structured knowledge. With
unstructured knowledge, (Komeili et al., 2022)
models web page information and feeds it into a
language model. (Ghazvininejad et al., 2018) and
(Lotfi et al., 2021) encode the filtered factual state-
ments with a specific encoder and then pass them
into the decoder along with context. (Lian et al.,
2019) use context to aggregate knowledge state-
ments and find that aggregated knowledge gives
better results than filtered knowledge. Regard-
ing structured knowledge, graph neural networks
(Scarselli et al., 2009) are usually used to embed
graph information to input into a language model.
(Zhou et al., 2018) uses GRUs and two graph atten-
tion modules to select appropriate triples to incor-
porate into responses. In order to exploit the ben-
efits of multi-hop knowledge, (Zhang et al., 2020)
adds an attention mechanism in a similar way to
filter the appropriate knowledge. Finally, (Tuan
et al., 2019) proposes a model which selects the
output from a sequence-to-sequence model and a
multi-hop reasoning model at each time step.

B Case Study

Several post-response pairs are presented to com-
pare generated responses by the proposed CADGE,
the ablated model UniLM, and the SOTA models
of CCM and ConceptFlow, in different external
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#1 Post My brain must not like music, i’ve never gotten
chills from a song.

CADGEtwo_hop
I don’t really listen to music at all but i have found some
songs that you may enjoy like.

ConceptFlow The whole album is a great song.

CADGEone_hop
I don’t even listen to music, I don’t love
music and i have no idea how to get chills from something .

#2 Post The rest of the series will be released for free as well.

CADGEtwo_hop
I don’t know about the rest of the collection, i only really read
the second book .

ConceptFlow The whole album is a great song.

CADGEone_hop I don’t really care if it’s on sale, i can just play it on steam.

#3 Post Check out the brewery down their, best tour ive
ever been in for breweries

CADGEtwo_hop
I like drink beer, i’d definitely be interested to visit their
brewery if they have really solid beer.

ConceptFlow I’ve been to the brewery. it’s a blast to see.

CADGEone_hop i’ve been there a few times and it’s a nice place to go.

#4 Post I’m thoroughly disappointed that i don’t have work -
appropriate white clothing for today.

CADGEtwo_hop I just go through some tweet to find a better outfit to wear.

ConceptFlow I’ll have to check out my new white shirts for the next day

CADGEone_hop You have to wear a white shirt to work for a few days a week.

Table 6: Sample responses from the two-hop knowledge
experiments, comparing CADGEtwo_hop with the SOTA
model ConceptFlow, and its one-hop ablation model
CADGEone_hop. Tokens in red are entities belonging to
the one hop knowledge, while tokens in blue belong to
the second hop.

knowledge settings (one-hop or two-hop). Table 5
presents comparisons based on one-hop knowledge.
Considering the ablation of external knowledge, it
can be observed that without the representations for
the knowledge facts, the UniLM model struggled
to understand the context semantics and provide in-
formative responses. For example, in the first post,
the one-hop CADGE understands that the focus of
the post is on "risk", while UniLM considers it to
be on "road trip". In the third post, the one-hop
CADGE understands that the focus of the post is
on "agree", while UniLM considers it to be "mate".

When we consider the effectiveness of knowl-
edge fact exploitation, the difference can be ob-
served in generated responses between the one-hop
CADGE and the CCM model. Responses from
CADGE appear to be more logical and fluent than
CCM. For instance, in the fourth post, the one-hop
CADGE understands the phrase "auto dude" and
gives an accurate explanation, instead of saying
"not sure" as CCM does. The same phenomenon
also appears in the first and second posts, which
demonstrates that with the proposed knowledge
aggregation framework, CADGE is more able to
understand knowledge facts, and provide more in-
formative and appropriate answers with this knowl-
edge.

In regards to the expansion on two-hop knowl-
edge, our context GAT sustains the effectiveness
and efficiency of knowledge representation learn-
ing. The additional comparisons are compared
among CADGEone_hop, CADGEtwo_hop, and Con-
ceptFlow in Table 6. It can be observed that when
the knowledge amount increases, CADGEtwo_hop
is better able to consider background knowledge
when generating responses. For example, in the
second and third post, CADGEtwo_hop considers
more retrieved knowledge facts to generate a re-
sponse which results in responses with better qual-
ity, and that are more informative. In addition, the
extra knowledge also gives more context semantics
leading to better understanding of the dialogues.
For instance, in all of the aforementioned cases,
compared to one-hop CADGE and ConceptFlow,
the two-hop CADGE chooses more informative
concepts from all available knowledge, making the
generated responses more interesting.
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