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Abstract
The aiXplain SDK1 is an open-source Python
toolkit which aims to simplify the wide and
complex ecosystem of AI resources. The
toolkit enables access to a wide selection of AI
assets, including datasets, models, and metrics,
from both academic and commercial sources,
which can be selected, executed and evaluated
in one place through different services in a
standardized format with consistent documenta-
tion provided. The study showcases the poten-
tial of the proposed toolkit with different code
examples and by using it on a user journey
where state-of-the-art Large Language Models
are fine-tuned on instruction prompt datasets,
outperforming their base versions.

1 Introduction

A software development kit (SDK) is a collection of
software development tools in one installable pack-
age (Wikipedia contributors, 2024). The popularity
of these toolkits in AI stems from their powerful
features, ease of use, and applications in diverse
fields including deep learning (Pedregosa et al.,
2011; Abadi et al., 2015; Paszke et al., 2019), com-
puter vision (Itseez, 2015), natural language pro-
cessing (Bird et al., 2009; Manning et al., 2014;
Qi et al., 2020), and beyond. This wide range of
options available, however, can make it difficult
to combine services from different SDKs into one
application, since the integration requires a deep
understanding of the usage, dependencies, and in-
tricacies of each technology.

To address this challenge, we introduce the aiX-
plain SDK, a unified platform providing seamless
access to a diverse collection of AI resources, in-
cluding datasets, models, and metrics. By inte-
grating both open-source and commercial options,

*These authors contributed equally to this work
1GitHub: https://github.com/aixplain/aiXplain

Demo: https://youtu.be/WZVuh99gJDg
Series: https://www.youtube.com/playlist?list=

PL4X2zpOPPGeq2lbzmfn04aCPNqimalhQJ

1 from aixplain.factories import (
2 ModelFactory
3 )
4 model = ModelFactory.get(
5 "60 ddefa08d38c51c5885e760"
6 )
7 response = model.run("Hello , World!")

Figure 1: Model Execution example on the SDK

this SDK abstracts complexities such as hosting
and billing, streamlining the research process. The
SDK’s flexibility that allows for effortless swap-
ping of components by just changing the asset id
enables faster prototyping. Furthermore, the stan-
dardization of metrics and datasets within the SDK
creates a level playing field for comparative anal-
ysis by mitigating the influence of disparate eval-
uation methodologies. Researchers can efficiently
discover, utilize, and assess these resources in a
standardized, well-documented environment.

The aiXplain SDK aims to help both Artificial
Intelligence users and developers. Figure 1 exem-
plifies how with a few lines of code users can em-
bed a Machine Learning model from the aiXplain
marketplace into their application. For develop-
ers, the proposed SDK covers the entire Machine
Learning development lifecycle, allowing them to
select/onboard data as well as to train, evaluate and
serve their models.

The SDK’s Python code is released under the
Apache-2.0 license and is publicly accessible on
GitHub1, where comprehensive documentation and
tutorials are also available. The getting started
guide*, along with the tutorial series1 is prepared
to help new users get familiar with the toolkit. A
Demo1 is also provided to see the capabilities of
SDK in action for a real world use-case. This setup
helps new users to get started quickly and facilitates
easy contributions from the entire community to
the project.

*https://github.com/aixplain/aiXplain/blob/
main/docs/development/developer_guide.md

https://github.com/aixplain/aiXplain
https://youtu.be/WZVuh99gJDg
https://www.youtube.com/playlist?list=PL4X2zpOPPGeq2lbzmfn04aCPNqimalhQJ
https://www.youtube.com/playlist?list=PL4X2zpOPPGeq2lbzmfn04aCPNqimalhQJ
https://github.com/aixplain/aiXplain/blob/main/docs/development/developer_guide.md
https://github.com/aixplain/aiXplain/blob/main/docs/development/developer_guide.md
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2 Modules

Figure 2 depicts the architecture of the proposed
SDK. The toolkit was designed to handle different
kinds of assets such as Corpora, Datasets, Models
and Metrics. In this section, we delve into each
of these core modules, detailing their functionali-
ties and highlighting how they converge to enhance
overall performance and streamline user interac-
tions within the system.

2.1 Corpus and Dataset

In the SDK toolkit, we differentiate data assets
between “corpora” and “datasets”. A corpus is de-
signed as a flexible, context-rich collection of data,
intended for general and exploratory data analysis
use cases. On the other hand, a dataset consists
of a compilation of data with specified inputs and
outputs focused on a specific ML task (e.g. Speech
Recognition, Machine Translation, Sentiment Anal-
ysis, etc). Datasets are tailored for specific research
questions or applications that require fine-tuning
or benchmarking an ML model. As an example of
usage, Figure 3 depicts how to list English Speech
Synthesis datasets available in the aiXplain market-
place using the SDK.

2.2 Model

The proposed SDK serves as a gateway to a cu-
rated selection of machine learning models from
diverse commercial suppliers and the AI commu-
nity at large, precisely matching users with the
models that align with their specific needs. This
is achieved through an organized catalog that clas-
sifies models based on functionality, input/output
type, and supplier among other criteria. . The plat-
form currently hosts a comprehensive collection
of over 40,000 models across 30+ AI applications,
with the repository expanding at a rapid pace. Fig-
ure 4 exemplifies how to list text generation models
in the aiXplain marketplace.

2.3 Metric

The SDK places a significant emphasis on the eval-
uation phase of AI models by providing a wide-
range of evaluation metrics. For Text Generation
tasks, it includes classical metrics such as BLEU
(Papineni et al., 2002) and WER (Woodard and Nel-
son) but also expands to encompass state-of-the-
art metrics trained with human evaluation scores
like Comet DA (Rei et al., 2020), and reference-
less ones such as Nisqa (Mittag et al., 2021). Our

toolkit supports 30+ metrics, covering a wide va-
riety of tasks and modalities. It includes built-in
metrics designed for evaluating the performance
of specific AI tasks like Machine Translation (e.g.,
TER (Snover et al., 2006), METEOR Banerjee and
Lavie, 2005), Speech Recognition (e.g., WIL, MER
(Morris et al., 2004)), and Speech Synthesis (e.g.,
PESQ (Rix et al., 2001), DNSMOS (Reddy et al.,
2021)). Figure 5 shows how to run the BLEU met-
ric.

3 Services

Inherent to the Machine Learning (ML) lifecycle,
it is crucial to consider the multifaceted roles and
needs of AI professionals who contribute to the
successful development, deployment, and mainte-
nance of ML models. As depicted in Figure 2, the
design of the proposed SDK centers on forging
a unified and collaborative ecosystem tailored for
the wide spectrum of AI professionals engaging
in the ML development lifecycle. In the follow-
ing subsections we explain in detail each of these
services.

3.1 Data Asset Onboard
Figure 7 depicts an example of use of the Dataset
Onboard service of the SDK, where a demo data-
to-text dataset is onboarded. A new data asset is
onboard in the aiXplain marketplace from a CSV
file where each column represents a data.

3.2 FineTune
The FineTune service aims to help Data Scientists
fine-tune a model for a specific task using a collec-
tion of focused datasets. Figure 8 depicts a tem-
plate for coding the process in the SDK. During the
training process, the user can check information
about the training procedure status (line 14), which
shares relevant metrics, such as train and evaluation
losses, epoch, and learning rate. Once the process
is done, the finetuned model is served for inference
as any other model, making easy the work of ML
Engineers.

3.3 Benchmark
The Benchmark service in our SDK toolkit sets a
new standard in evaluating AI models, providing
a seamless and in-depth analysis across various
tasks and domains. Designed with a strong empha-
sis on modularity and interoperability, it utilizes
our extensive array of existing modules - models,
datasets, and metrics.
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Figure 2: System Architecture of the proposed SDK

1 from aixplain.factories import (
2 DatasetFactory
3 )
4 from aixplain.enums import (
5 Function ,
6 Language
7 )
8 datasets = DatasetFactory.list(
9 function=Function.SPEECH_SYNTHESIS ,

10 source_languages=Language.ENGLISH
11 )

Figure 3: Listing English Speech Synthesis datasets on
the SDK

1 from aixplain.factories import (
2 ModelFactory
3 )
4 from aixplain.enums import (
5 Function ,
6 Language
7 )
8 models = ModelFactory.list(
9 function=Function.TEXT_GENERATION ,

10 )

Figure 4: Listing Text Generation models on the SDK

1 from aixplain.factories import (
2 MetricFactory
3 )
4 bleu_metric = MetricFactory.get(
5 "639874 ab506c987b1ae1acc6"
6 )
7 response = bleu_metric.run(
8 hypothesis =[
9 "sample hypothesis 1",

10 "sample hypothesis 2"
11 ],
12 reference =[
13 "sample reference 1",
14 "sample reference 2"
15 ]
16 )

Figure 5: Metric Execution example on the SDK

1 from aixplain.factories import (
2 BenchmarkFactory ,
3 DatasetFactory ,
4 MetricFactory ,
5 ModelFactory
6 )
7

8 datasets = DatasetFactory.list("...")
9 metrics = MetricFactory.list("...")

10 models = ModelFactory.list("...")
11

12 benchmark = BenchmarkFactory.create(
13 "benchmark_name",
14 dataset_list=datasets ,
15 model_list=models ,
16 metric_list=metrics
17 )
18 job = benchmark.start()
19 status = job.check_status ()
20 results = job.download_results_as_csv ()

Figure 6: Benchmark example on the SDK

This service goes beyond traditional leader-
boards by offering a nuanced analysis including
model performance, latency, and operational cost,
ensuring a holistic and in-depth comparison of mod-
els. Moreover, we incorporated a cutting-edge,
LLM-powered interpreter that offers users, regard-
less of their expertise level, lucid explanations of
their benchmarking outcomes, enhancing under-
standing and facilitating informed decision-making.
Additionally, it incorporates a bias analysis feature,
ensuring any detected biases are highlighted so that
they can be addressed, underscoring the commit-
ment to fairness and ethical AI development. Fig-
ure 6 depicts the template for setting a benchmark
job in the SDK.

4 User Journey

This section presents a complete user journey,
walking through all SDK’s modules and services,
demonstrating how to (1) Onboard train and test
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Model name Baseline Fine-tuned
Llama 2 7b 0.71 0.74
Mistral 7b 0.76 0.76
Solar 10.7b 0.53 0.72

Table 1: Evaluation of baseline and fine-tuned models
on PubMedQA dataset.

datasets, (2) Fine-tune LLMs on train datasets and
(3) Benchmark baseline and fine-tuned LLMs on
test datasets.

4.1 Onboarding datasets
We selected and onboarded into the aiXplain
platform the following well-known open-source
datasets:

PubMedQA (Jin et al., 2019) is a biomedi-
cal question-answering (yes/no/maybe) dataset col-
lected from PubMed abstracts. Alpaca (Taori et al.,
2023) consisting of 52k instruction-following data.
It was used to train our LLMs to follow instruc-
tions. Truthful QA (Lin et al., 2022) is a dataset
consisting of multiple choice questions. We used
it as an evaluation task with two defined scores:
MC1, in which the model must select a single an-
swer out of the choices, and MC2, the model can
select multiple correct answers.

4.2 Fine-tuning LLMs
For fine-tuning, we selected three baseline models
from the aiXplain marketplace:

Llama 2 7b (Touvron et al., 2023) from Meta,
Mistral 7b (Jiang et al., 2023) by Mistral AI and
Solar 10.7b (Kim et al., 2023) by Upstage AI.

We fine-tuned all three models on the Pub-
MedQA train set and the entire Alpaca dataset for
one epoch, using 1e-5 as the learning rate and gra-
dient checkpointing. We also utilized the LoRA
(Hu et al., 2021) method to save memory when
fine-tuning the LLMs.

4.3 Benchmarking
In our user journey, we conducted Benchmarks to
evaluate the performance of the above LLMs on
multiple choice tasks. We used accuracy as the
main metric and compared the generated loglikeli-
hoods of the possible choices.

For the models trained on the PubMedQA train
set, we evaluated them on the PubMedQA test
set, testing whether the models’ capabilities are
adequate for the biomedical domain. Secondly,
for the models trained on the Alpaca dataset, we
benchmarked them on the Truthful QA dataset,

Truthful MC1 Truthful MC2
Model name B Ft B Ft
Llama 2 7b 0.25 0.38 0.39 0.54
Mistral 7b 0.28 0.38 0.43 0.54
Solar 10.7b 0.58 0.44 0.72 0.61

Table 2: Evaluation of baseline and fine-tuned models
on Alpaca dataset. B refers to baseline models and Ft
to fine-tuned ones.

which measures the LLMs’ ability to follow gen-
eral knowledge instructions.

4.4 Results and Discussion
Table 1 shows the results for PubMedQA dataset.
For all LLMs, fine-tuned models outperformed
baseline ones. These results show that primarily So-
lar 10.7b benefits greatly from the training process,
with fine-tuned LLM improving 37% in accuracy
over the baseline.

Table 2 shows the results for models fine-tuned
on the Alpaca dataset. For Llama 2 7b and Mistral
7b, the training process dramatically improves the
model for the Truthful QA task, improving Llama
2 7b 39% for Truthful MC2 task. However, for
Solar 10.7b, fine-tuning does not enhance the per-
formance, which may be attributed to the already
excellent baseline model performance.

It is also worth pointing out that the develop-
ment time using the SDK is much less than other
options. We used less than 20 lines of code to con-
duct the whole user journey and did not need to set
up any other Python packages or hardware infras-
tructure. For example, considering the fine-tuning
LLM step, we used only 8 lines, as depicted in Fig-
ure 8, without the need to own any hardware. On
the other hand, HuggingFace’s Transformers uses
approximately 150 lines and requires the allocation
of more expensive GPUs.

5 Related Work

Scikit Learn (Pedregosa et al., 2011) is an exam-
ple of a traditional Machine Learning SDK. The
toolkit is known by its simplicity and accessibility
to apply traditional Machine Learning algorithms
for problems that involve structured data.

PyTorch (Paszke et al., 2019) and TensorFlow
(Abadi et al., 2015) are examples of more recent
SDKs used in the development of state-of-the-art
deep learning models. On top of them, other high-
level frameworks were proposed such as Hugging-
Face’s Transformers (Wolf et al., 2020) and Keras
(Chollet et al., 2015).
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Software development kits have also been pro-
posed for specific Machine Learning tasks such as
OpenCV (Itseez, 2015) for Computer Vision; and
NLTK (Bird et al., 2009), Stanford CoreNLP (Man-
ning et al., 2014) and Stanza (Qi et al., 2020) for
Natural Language Processing.

Popular cloud services also make their own
SDKs available to manipulate their services pro-
grammatically, including the AI ones. This is the
case for Google* and AWS* cloud services.

Within this wide and complex ecosystem, the
SDK aims to be a marketplace where the AI assets
and tools provided by other suppliers and SDK
could be found into a single, standardized and well-
documented access point.

6 Conclusion

This study demonstrates how complicated can be
the creation of an AI application combining as-
sets from the wide and complex range of software
toolkits in the field. To solve this problem, we
propose the aiXplain SDK which enables access
to AI corpora, datasets, models and metrics from
different commercial and community sources in
a standardized format. Through straightforward,
well-documented, and exemplified services, the
toolkit enables onboarding data assets as well as
finetuning, evaluating, serving, and using AI mod-
els. The toolkit’s potential is demonstrated in a
user journey where three state-of-the-art large lan-
guage models are fine-tuned on instruction prompt
question-answering datasets. After the fine-tuning
process, an evaluation is conducted in the proposed
SDK demonstrating how the trained models outper-
formed the base ones.

Finally, the toolkit is publicly available on
Github and released under an open-source license
(Apache-2.0) along with a demo, example note-
books and video tutorials. We hope the community
engages in its use and development, contributing
to its growth.
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1 import pandas as pd
2 from aixplain.factories import DatasetFactory
3 from aixplain.modules import MetaData
4 from aixplain.enums import Function , Language , License
5

6 df = pd.DataFrame ({
7 "data": [
8 "Joe_Biden president United_States",
9 "South_Africa capital Cape_Town"

10 ],
11 "en": [
12 "Joe Biden is the president of the United States.",
13 "The capital of South Africa is Cape Town."
14 ]
15 })
16 df.to_csv("dataset.csv")
17

18 data_meta = MetaData(
19 name="data",
20 dtype="text",
21 storage_type="text",
22 )
23

24 en_meta = MetaData(
25 name="en",
26 dtype="text",
27 storage_type="text",
28 languages =[ Language.English]
29 )
30

31 payload = DatasetFactory.create(
32 name="dataset_demo",
33 description="Data2Text Dataset",
34 license=License.MIT ,
35 function=Function.TEXT_GENERATION ,
36 content_path="dataset.csv",
37 input_schema =[ data_meta],
38 output_schema =[ en_meta]
39 )

Figure 7: Dataset Onboard example on the SDK

1 from aixplain.factories import DatasetFactory , ModelFactory , FinetuneFactory
2

3 dataset = DatasetFactory.get("...")
4 model = ModelFactory.get("...")
5 finetune = FinetuneFactory.create(
6 "finetuned_model",
7 [dataset],
8 model
9 )

10 finetuned_model = finetune.start()
11 finetuned_model.check_finetune_status ()

Figure 8: Model Fine-tuning example on the SDK
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