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Abstract
This paper presents a comprehensive study that
investigates memorization in large language
models (LLMs) from multiple perspectives.
Experiments are conducted with the Pythia
and LLM-jp model suites, both of which of-
fer LLMs with over 10B parameters and full
access to their pre-training corpora. Our find-
ings include: (1) memorization is more likely
to occur with larger model sizes, longer prompt
lengths, and frequent texts, which aligns with
findings in previous studies; (2) memorization
is less likely to occur for texts not trained dur-
ing the latter stages of training, even if they
frequently appear in the training corpus; (3) the
standard methodology for judging memoriza-
tion can yield false positives, and texts that are
infrequent yet flagged as memorized typically
result from causes other than true memoriza-
tion1.

1 Introduction

Large language models (LLMs) have revolution-
ized the field of natural language processing by
demonstrating an impressive ability to generate co-
herent text, perform complex language understand-
ing tasks, and store a wealth of real-world knowl-
edge (Brown et al., 2020). The impact of LLMs is
spreading across society, and their uses are increas-
ingly explored in various applications (Kaddour
et al., 2023).

However, LLMs still have many concerns; mem-
orization is one of them. LLMs are known to mem-
orize portions of their training corpora (Carlini
et al., 2021). Memorization can cause crucial is-
sues, including unintentional reproduction of copy-
righted materials (Lee et al., 2023) and personal
information (Huang et al., 2022). Understanding
the extent and nature of memorization is essential
for developing secure and reliable LLMs.

*Equal contributions
1Our code is available at https://github.com/llm-jp/

memorization-analysis.
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Figure 1: Overview of the standard methodology for in-
vestigating memorization in LLMs quantitatively. Text
x in the training corpus is split into the prefix p and the
suffix s. Given p, the LLM f generates the continuation
f(p). If f(p) matches or closely resembles the suffix s,
s is considered memorized in the LLM.

This study comprehensively evaluates memo-
rization in LLMs, integrating multiple definitions
of memorization and key factors contributing to
memorization, which are discussed separately in
different literature.

We follow the standard methodology for quan-
titatively investigating memorization in LLMs, as
illustrated in Figure 1. In this methodology, an
LLM is given a prompt and generates the contin-
uation. Memorization is identified by checking if
the continuation replicates text from the training
corpus.

We explore two memorization types: verbatim
memorization (Carlini et al., 2021) and approxi-
mate memorization (Ippolito et al., 2023). Verba-
tim memorization refers to the exact reproduction
of text from the training corpus, while approx-
imate memorization allows for slight variations.
We examine these memorization types through the
size of model parameters (Tirumala et al., 2022;
Carlini et al., 2023; Ishihara, 2024), the length
of prompts (Carlini et al., 2023; Ishihara, 2024),
the duplication counts of text in the training cor-
pus (Carlini et al., 2023; Ishihara, 2024), and the
training step at which text is trained (Tirumala
et al., 2022; Jagielski et al., 2023).

https://github.com/llm-jp/memorization-analysis
https://github.com/llm-jp/memorization-analysis


585

We conduct experiments using fully open LLMs:
the Pythia model suite (Biderman et al., 2023) and
the LLM-jp v1.0 model suite (LLM-jp, 2024). The
Pythia model suite offers LLMs of various param-
eter sizes, from 14M to 12B parameters, trained
on an English corpus, whereas the LLM-jp v1.0
model suite has two LLMs with 1.3B and 13B pa-
rameters, primarily trained on a mix of English
and Japanese corpora. Both model suites are re-
leased with their pre-training corpora, allowing for
analysis of memorization.

Our key findings are three-fold:

• Memorization is more likely to occur with
larger model sizes, longer prompt lengths, and
frequent texts across different memorization
definitions and model suites.

• Memorization is less likely to occur for texts
not included in the latter stages of training,
even if they are frequent.

• The standard methodology for judging mem-
orization can yield false positives, and texts
that are infrequent yet flagged as memorized
typically result from other factors, such as
duplication of the prompt, rather than true
memorization.

2 Related Work

Once memorization in LLMs was first identified
by Carlini et al. (2021), it has been explored from
various perspectives.

A line of work studies methods to better extract
memorized texts from LLMs, making a research
subfield called training data extraction attack (Ishi-
hara, 2023). Most existing methods follow the
methodology proposed in Carlini et al. (2021) con-
sisting of two steps: candidate generation and
membership inference (Ishihara, 2023; Nasr et al.,
2023).

Another line of work investigates the causes
and mechanisms of memorization. Carlini et al.
(2023) found that verbatim memorization is more
likely to happen with larger model sizes, longer
prompt lengths, and frequent texts. Tirumala et al.
(2022) focused on analyzing the dynamics of mem-
orization and found that larger models memorize
their training corpora more quickly. Tirumala et al.
(2022) also investigated how language models for-
get memorized texts throughout training. A similar
analysis was conducted by Jagielski et al. (2023).

A further line of work aims to reduce memoriza-
tion to address security and privacy issues. Lee
et al. (2022) and Kandpal et al. (2022) showed
that deduplication of training corpora effectively
reduces memorization without hurting the perfor-
mance in downstream tasks. Ippolito et al. (2023)
proposed a decoding method named MEMFREE

decoding, which is guaranteed to eliminate verba-
tim memorization by preventing the generation of
n-grams present in the training corpus. Ippolito
et al. (2023) also showed that while MEMFREE de-
coding perfectly prevents verbatim memorization,
LLMs still generate texts that closely resemble
those in their training corpora. This phenomenon
is termed approximate memorization.

As for the LLMs to explore, most previous stud-
ies use monolingual LLMs trained on public En-
glish corpora, such as GPT-Neo (Black et al., 2022)
and Pythia (Biderman et al., 2023), with some
exceptions such as Ishihara (2024), who trains a
Japanese language model on an in-house, domain-
specific corpus.

Our study incorporates insights from previous
studies and presents a comprehensive analysis of
memorization. Besides, our analysis utilizes not
only a monolingual LLM primarily trained on an
English corpus but also a multilingual LLM trained
on a mix of English and Japanese corpora.

3 Methodology

This section describes our methodology to compre-
hensively investigate memorization in LLMs. Our
analysis integrates multiple definitions of memo-
rization and key factors contributing to memoriza-
tion, which are discussed separately in previous
studies.

3.1 Definitions of Memorization
We start by defining memorization. Figure 1 shows
the standard procedure for investigating memoriza-
tion in LLMs, to which we adhere.

Notation We investigate the memorization of an
auto-regressive language model f . Let x be a se-
quence of consecutive tokens with a length of ℓ in
the training corpus. We split x into the prefix p and
the suffix s, so x = [p ∥ s]. The prefix p is used to
prompt the model f to generate the continuation
f(p).

Verbatim memorization (Carlini et al., 2023)
The suffix s is considered verbatim memorized if
s is identical to f(p).
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Tokenizer Example Near-Duplicate Example JW

Pythia

**\n \n **New England** Aka
Hairy Duskywing \n Male, dorsal \n
**RECOGNITION** < 1.5 in. The
usual duskywing pattern of alternating
black and buff patches against

URGESS) 1870**\n \n **"New Eng-
land"** Aka Aspen Duskywing \n Male,
dorsal \n **RECOGNITION** < 1.5 in.
Small for a duskywing

0.613

LLM-jp v1.0

駐車場共用 「春日 食堂 イオン大

野城 店」の運営者様・オーナー様

は食べログ店舗準会員（無料）に

ご登録ください。ご登録はこちら

春日 食堂イオン大野城店 09 2-5

-1博多南駅から451m 「 黒田屋

春日店」の運営者様・オーナー様

は食べログ店舗準会員（無料）に

ご登録ください。ご登録はこちら

黒田屋 春日店 09

0.612

Table 1: Text pairs with weighted Jaccard indexes close to 0.6. Overlaps are highlighted in yellow.

Algorithm 1 Fast Near-duplicate Matching

Input: Suffix s, document d, and n of n-gram
Output: Whether d has a span near-duplicate to s

1: ℓs ← len(s)
2: ℓd ← len(d)
3: H ← HashSet(Ngram(s, n))
4: δ ← 0.6
5: for i = 0 to max(ℓd − ℓs, 0) do
6: if d[i : i+ n] ∈ H then
7: for j = max(i− ℓs + n, 0) to i do
8: t← d[j : j + ℓs]
9: if JW (s, t) ≥ δ then

10: return True
11: end if
12: end for
13: end if
14: end for
15: return False

Approximate memorization (Ippolito et al.,
2023) The suffix s is recognized as approxi-
mately memorized if the BLEU score (Papineni
et al., 2002) between s and f(p) exceeds a certain
threshold. Following Ippolito et al. (2023), we
adopt a threshold of 0.75 throughout the paper.

3.2 Factors to Explore

Previous studies identify several factors that con-
tribute to memorization. This study examines if
such factors remain consistent across different def-
initions of memorization and varying model suites.

Parameter size Previous studies suggest that
LLMs with larger parameter sizes memorize more
data (Carlini et al., 2021; Tirumala et al., 2022;

Carlini et al., 2023; Ishihara, 2024). To examine
this factor, we use model suites that provide LLMs
with different parameter sizes.

Context length It is suggested that memoriza-
tion is more likely to occur as the length of the
prompts increases (Carlini et al., 2023; Ishihara,
2024). We examine this factor by varying the
length of prefixes |p|.

Duplication Count The duplication count of text
in the training corpus is known to be an influen-
tial factor in memorization (Kandpal et al., 2022;
Carlini et al., 2023; Ishihara, 2024). We investi-
gate this factor by grouping suffixes s according to
their duplication counts, measured as the number
of documents containing s in the training corpus.

We explore two ways to count duplicates. First,
we count the number of documents in the training
corpus that contain the text identical to s, which
we refer to as the exact duplication count. Most
previous studies count duplication counts in this
manner (Carlini et al., 2023; Ishihara, 2024). In
addition, we count the number of documents con-
taining near-duplicate texts to s, which we refer
to as the near-duplication count. The method
for obtaining near-duplication counts is detailed in
Section 3.3.

Training step Tirumala et al. (2022) and Jagiel-
ski et al. (2023) analyze how training steps at which
text is trained affect its memorization. We explore
this factor by identifying the last training step at
which the suffix s is trained.

It is important to note that previous studies train
small models with approximately 100M parame-
ters to examine this factor (Tirumala et al., 2022;
Jagielski et al., 2023). Conversely, this study uses
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(a) Pythia 1.4B’s verbatim memorization for text with exact
duplication counts of 1 to 10.

(b) Pythia 1.4B’s verbatim memorization for text with exact
duplication counts of 11 to 100.

(c) Pythia 12B’s verbatim memorization for text with exact
duplication counts of 1 to 10.

(d) Pythia 12B’s verbatim memorization for text with exact
duplication counts of 11 to 100.

Figure 2: Verbatim memorization of the Pythia model suite. The x-axis represents the last-seen training steps
of suffixes s. The y-axis represents the lengths of prefixes p. The brightness shows the fraction of examples
recognized as verbatim memorization. Blank grids indicate that there were fewer than 10 examples, failing to
provide meaningful statistics.

LLMs with more than 10B parameters for the anal-
ysis, which are much closer to those used in practi-
cal scenarios.

3.3 Near-duplication Count

Aiming to investigate the memorization of truly
infrequent and unique text, we conduct an analysis
based on near-duplication counts. As Section 4.6
will demonstrate, some texts with small exact du-
plication counts are approximately memorized, but
they often have numerous near-duplicate counter-
parts in the training corpus. We disentangle such
text from genuinely infrequent text by counting
near-duplicate matches for an in-depth analysis of
memorization in infrequent text.

To this end, we count the number of documents
containing near-duplicate text for each suffix s. We
use the weighted Jaccard similarity to judge if a
text pair is near-duplicate. The weighted Jaccard

similarity is an extension of the Jaccard similarity
to consider the duplication of elements. We con-
sider a text as a multiset of tokens and apply the
weighted Jaccard similarity as follows:

JW (a, b) :=

∑
imin(ai, bi)∑
imax(ai, bi)

, (1)

where a and b are frequency vectors in which i-th
element corresponds to the frequency of the i-th
token in the vocabulary. We regard text pairs with a
weighted Jaccard similarity of 0.6 or higher as near-
duplicate. The threshold is determined based on a
qualitative inspection. Table 1 shows examples of
text pairs close to this threshold.

Due to the huge size of the training corpus,
computing similarities between all text spans and
all suffixes is infeasible. Therefore, we propose
a fast algorithm based on the Rabin-Karp algo-
rithm (Karp and Rabin, 1987). Algorithm 1 shows
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(a) Verbatim memorization in LLM-jp 1.3B for text with
exact duplication counts of 1 to 10.

(b) Verbatim memorization in LLM-jp 1.3B for text with
exact duplication counts of 11 to 100.

(c) Verbatim memorization in LLM-jp 13B for text with
exact duplication counts of 1 to 10.

(d) Verbatim memorization in LLM-jp 13B for text with
exact duplication counts of 11 to 100.

Figure 3: Verbatim memorization of the LLM-jp model suite.

the procedure. First, we set the length of text spans
to be the same as s. Besides, we filter out text
spans with no shared n-grams as s. This is a natural
constraint that holds for text pairs that appear to du-
plicate qualitatively, and the check can be quickly
done by making the hash set of the n-grams in s in
advance. In this study, we employ n = 10. For text
spans containing any of the n-grams in s, we calcu-
late the weighted Jaccard similarity and recognize
them as near-duplicate if the similarity exceeds the
threshold. A detailed analysis of this algorithm,
including a discussions on its computational cost,
can be found in Appendix A.

4 Experiments

We conducted experiments to investigate memo-
rization defined in Section 3.1 from the perspec-
tives discussed in Section 3.2.

4.1 Models
We used the Pythia and LLM-jp model suites. Both
model suites offer LLMs with varying parameters

and provide access to their pre-training corpora.

Pythia Pythia (Biderman et al., 2023) is a suite of
LLMs trained on a public English corpus, the Pile
dataset (Gao et al., 2020; Biderman et al., 2022),
containing 300B tokens. We used the Pythia mod-
els with 1.4B and 12B parameters in our experi-
ments.

LLM-jp LLM-jp v1.0 (LLM-jp, 2024) is a suite
of LLMs trained primarily on a mix of Japanese
and English corpora with 270B tokens in total.
As for the Japanese corpus, LLM-jp v1.0 uses
Japanese Wikipedia and the Japanese portion of the
multilingual C4 dataset (Raffel et al., 2020). As for
the English corpus, English Wikipedia and the Pile
dataset are used. We used the LLM-jp v1.0 models
with 1.3B and 13B parameters in our experiments.

4.2 Evaluation Data

For each model suite, we randomly sampled ap-
proximately 30,000 sequences of consecutive to-
kens of length 50 from the training corpus as suf-
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(a) Approximate memorization in Pythia 1.4B for text with
exact duplication counts of 1 to 10.

(b) Approximate memorization in Pythia 1.4B for text with
exact duplication counts of 11 to 100.

(c) Approximate memorization in Pythia 12B for text with
exact duplication counts of 1 to 10.

(d) Approximate memorization in Pythia 12B for text with
exact duplication counts of 11 to 100.

Figure 4: Approximate memorization of the Pythia model suite.

fixes s. We then extracted their preceding to-
kens as prefixes p so that the total length of the
concatenation of p and s (termed ℓ) equaled to
{100, 200, 500, 1000}. As for the lengths to ex-
plore, we followed Carlini et al. (2023).

4.3 Implementation Details

Exact duplication count To obtain exact dupli-
cation counts, we constructed a full-text search
index using ElasticSearch2. For each suffix s, we
issued a phrase match query to count the number
of documents containing s. To make a search index
for each corpus with approximately 300B tokens,
it took about 5 hours using an Ubuntu machine
equipped with 128 CPUs and 190GB of RAM.

Near-duplication count We implemented the al-
gorithm described in Section 3.3 in Rust. We con-
structed hash sets using the FxHash library3, a fast
hash implementation. We chose n = 10 to perform

2https://www.elastic.co/
3https://github.com/cbreeden/fxhash

n-gram-based filtering. It took about 1.5 days to
process each corpus using Ubuntu machines with
640 CPUs in total.

Training step To identify the last training step at
which each suffix s is seen, we reused the search in-
dex constructed to obtain exact duplication counts.
We issued a phrase match query for each s and
obtained the largest training step from the results.

Decoding Following Carlini et al. (2023), we
performed greedy decoding to generate continua-
tions from prefixes p with models f . We forced the
models to generate 50 tokens so that the lengths
of generated continuations equaled the length of
s, even if the models generated the EOS (end of
sequence) special token. We used an Ubuntu ma-
chine equipped with 2 NVIDIA A100 40GB GPUs
for this process. We used the Hugging Face trans-
formers (Wolf et al., 2020) library to run LLMs.
The total time required for generating continua-
tions for all prefixes was approximately 3 hours.

https://www.elastic.co/
https://github.com/cbreeden/fxhash


590

Model Approximately memorized text Near-duplicate counterpart in the corpus

Pythia 12B

dx21 < q ) {\n info = -
12;\n LAPACKE_xerbla( "LA-
PACKE_dorbdb_work", info );\n return
info;\n }\n if(

ldvt < ncols_vt ) {\n info = -
18;\n LAPACKE_xerbla( "LA-
PACKE_cgesvdx_work", info );\n return
info; }

LLM-jp 13B

バラ場合での査定か無料にて、お客様

の切手を査定するスタッフの顔写真

も。 越中島駅 切手買取り1シート

から、たった一枚で普通切手、お休み

が異なる場合がございます。どちらも

バラ場合での査定か無料にて、お客様

の切手を査定するスタッフの顔写真

も。 ささしまライブ駅 切手買取り

1シートから、たった一枚で普通切手

、お休みが異なる場合がございます。

どちらも

Table 2: Examples of approximately memorized texts and their near-duplicate counterparts in the training corpus.
Overlaps are highlighted in yellow.

(a) Approximate memorization in Pythia 12B for text with
no near-duplicate.

(b) Approximate memorization in LLM-jp 13B for text
with no near-duplicate.

Figure 5: Approximate memorization of the Pythia 12B and LLM-jp 13B models for text with no near-duplicate.
Note that the maximum memorization ratio in this figure is much lower than that in Figure 4, indicating that
memorization rarely occurs for texts having no near-duplicates.

4.4 Impact of Model Size, Context Length,
Training Step, and Exact Duplication
Count on Verbatim Memorization

Figures 2 and 3 show the ratio of verbatim mem-
orization of the Pythia and LLM-jp model suites,
respectively. Both model suites exhibit similar
tendencies. That is, memorization is more likely
to occur with larger model sizes, longer context
lengths, and larger duplication counts, which aligns
with the findings in Carlini et al. (2023). Besides,
memorization is less likely to occur for texts not
included in the final stages of training, even if they
are frequent.

4.5 Impact of Model Size, Context Length,
Training Step, and Exact Duplication
Count on Approximate Memorization

We performed the same analysis for approximate
memorization. Figure 4 shows the ratio of ap-
proximate memorization of the Pythia model suite.
Compared to verbatim memorization, the ratio of
approximate memorization is much larger. Specifi-
cally, we observed a maximum ratio of about 0.4
for verbatim memorization and about 0.6 for ap-
proximate memorization. However, we still found
the consistent contributions of model sizes, con-
text lengths, training steps, and exact duplication
counts to memorization. We confirmed the same
tendencies for the LLM-jp model suite.
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Type Model Prefix Suffix

Copy from prefix Pythia

[...] consider yourself a right-winger
and yet you’re quoting a Trotskyist
left-winger. Trotskyist who turned
neocon, just like so many (Kristol,
Perle, Wolfowitz in the USA but
there also are a lot [...] consider
yourself a

right-winger and yet you’re quot-
ing a Trotskyist left-winger. Trotsky-
ist who turned neocon, just like so
many (Kristol, Perle, Wolfowitz in
the USA but there also are a lot

Regular pattern LLM-jp

[...] 5 巻 –蒐集匣柴田昌弘『紅
い牙 ブルー・ソネット』 6 巻
– 蒐集匣柴田昌弘 『紅い牙 ブ
ルー

・ソネット』 7 巻 – 蒐集匣柴
田昌弘 『紅い牙 ブルー・ソ
ネット』 8 巻 – 蒐集匣柴田昌
弘 『紅い牙 ブルー・ソネッ
ト』

Table 3: Examples of approximate memorization occurred in texts with no near-duplicates. Overlaps are highlighted
in yellow. Red highlights show the parts that follow a regular pattern. The symbol "[...]" indicates omission.

Type Pythia 12B LLM-jp 13B

Copy from prefix 55% 60%
Regular pattern 45% 40%

Memorization
w/ near-duplicates 0% 20%
w/o near-duplicates 0% 0%

Table 4: The plausible reasons to be recognized as ap-
proximately memorized and their ratios for texts with-
out near-duplicates in the training corpus. The sum of
the ratios may not necessarily equal one because multi-
ple reasons can be combined in single examples.

4.6 Qualitative Analysis of Memorization in
Text with Low Exact Duplication Count

Texts with low exact duplication counts were rarely
memorized, but it does occur. What kind of texts
do LLMs memorize after seeing them only once?

One of the authors manually investigated the
characteristics of such texts and found that most of
them had numerous near-duplicate counterparts in
the training corpus. Table 2 shows typical exam-
ples found in the Pythia 12B model and LLM-jp
13B model, which were identified as approximately
memorized despite having no exact duplicates in
the training corpus. As shown in Table 2, typical
cases include texts like code snippets with different
variable names and real estate advertisements with
different city names. When taking near-duplicates
into account, these texts are considered frequent,
casting doubt on concluding that the LLMs memo-
rized them after a single exposure.

4.7 Approximate Memorization in Text
without Near-duplicates

On top of the analysis in Section 4.6, we conducted
an analysis based on the near-duplication count of
text to investigate if LLMs memorize unique texts
after a single exposure.

Figure 5 shows the approximate memorization
of the Pythia 12B and LLM-jp 13B models for texts
that had no near-duplicates in the training corpus.
The low maximum memorization ratio indicates
that memorization rarely occurs with such texts.
However, the presence of non-zero grids suggests
that texts without any near-duplicates in the train-
ing corpus can still be flagged as approximately
memorized.

We again conducted a manual investigation to
explore the characteristics of the memorized texts,
focusing on memorization that happened with pre-
fixes with a length of 950. One of the authors
manually examined 20 memorized examples for
each of the Pythia 12B and LLM-jp 13B models.

Table 4 shows the plausible reasons for being
flagged as approximately memorized and their ra-
tios, with Table 3 showing the examples. Most
of the memorized texts appeared to copy their
prompts or exploit the regularity in the prompts
to generate the continuation. In the examples from
LLM-jp 13B, there were texts that seemed mem-
orized by the model. However, we found that all
such texts had near-duplicates in the training cor-
pus. For instance, real estate advertisements with
very long place names were recognized as hav-
ing no near-duplicates by our algorithm based on
token-level overlaps, but there are many texts in
the training corpus following the same template.
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In both models, we found no texts that could be
attributed to genuine memorization from a single
data exposure.

5 Conclusion

This paper investigated the memorization of LLMs
from multiple perspectives and presented a compre-
hensive analysis. Our experiments confirmed that
findings in previous studies are consistent across
different memorization definitions and model se-
ries. Besides, our manual investigation suggested
that the standard methodology for judging memo-
rization can yield false positives, and texts that are
infrequent yet flagged as memorized mostly arise
from causes other than true memorization.

A crucial future work is to investigate memo-
rization in production-grade LLMs. Although the
LLMs used in our experiments represent the largest
fully open LLMs, they significantly underperform
when compared to production-grade LLMs, such
as GPT-4 (OpenAI, 2024). The memorization of
advanced models remains largely unexplored, yet
it is crucial for ensuring the security and reliability
of LLM applications, given their profound soci-
etal impact. We are in the process of developing
a fully open LLM with 172B parameters, which
will facilitate further exploration into memoriza-
tion dynamics in state-of-the-art models. We plan
to investigate whether our findings in this study
still hold true in the model.
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(a) Exact duplication count. (b) Near duplication count.

Figure 6: A histogram of duplication counts in the LLM-jp corpus.

A Details on the Fast Near-duplicate Matching Algorithm (Algorithm 1)

A.1 Computational Analysis
Let ℓs be the number of tokens in a suffix s and n be the number of n-gram. The computational complexity
to calculate the hash set H of the n-grams in s is O(nℓs), which is negligible. Calculating the weighted
Jaccard index JW between a suffix s and a text span t has a complexity of O(|s| + |t|). Given that
|s| = |t| = ℓs in our scenario, the complexity simplifies to O(ℓs).

Let ℓd denote the number of tokens in a document d and p denote the probability that a given n-gram
from the document d exists in the hash set H , i.e., d[i + n] ∈ H . Using a rolling hash reduces the
complexity of computing hash values for successive n-grams to O(1) after the initial calculation. Hence,
the total complexity of our algorithm when using a rolling hash is O(ℓd(1 + pℓdℓs)). If a standard
hash function with a complexity of O(n) per operation is used instead, the overall complexity becomes
O(ℓd(n+ pℓdℓs)). Given that p is typically low, the algorithm approaches linear time performance.

A.2 Choice of Hash Function
Though a rolling hash can compute the hash value of n-length tokens in O(1) time using the previous
hash value, it relies on computationally expensive operations (i.e., modulo). In contrast, the fxhash library
offers a very fast implementation of a standard hash, and the use of a standard hash is acceptable for small
values of n. Therefore, we used the fxhash library in our implementation. The code of our algorithm is
available at https://github.com/speed1313/fast-near-duplicate-matching.

A.3 Distribution of Duplication Counts
The distributions of duplication counts calculated on the LLM-jp and Pythia corpora are shown in
Figure 6 and 7, respectively. For each corpus, we randomly sampled approximately 30,000 sequences of
consecutive tokens of length 50 and then obtained their duplication counts.

B Models Memorize More as Duplication Counts and Prefix Lengths Scale

Figures 8, 9, 10, and 11 show the memorization of the LLM-jp and Pythia model suites, where the models
memorize more as duplication counts and prefix lengths scale.

https://github.com/speed1313/fast-near-duplicate-matching
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(a) Exact duplication count. (b) Near duplication count.

Figure 7: A histogram of duplication counts in the Pile.

(a) Exact duplication count vs. Verbatim memorization (b) Near-duplication count vs. Verbatim memorization

Figure 8: Memorization ratios in LLM-jp 1.3B.

(a) Exact duplication count vs. Verbatim memorization (b) Near-duplication count vs. Verbatim memorization

Figure 9: Memorization ratios in LLM-jp 13B.
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(a) Exact duplication count vs. Verbatim memorization (b) Near-duplication count vs. Verbatim memorization

Figure 10: Memorization ratios in Pythia 1.4B.

(a) Exact duplication count vs. Verbatim memorization (b) Near-duplication count vs. Verbatim memorization

Figure 11: Memorization ratios in Pythia 12B.
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