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Abstract

In this paper, we investigate how different se-
mantic, or content-related, errors made by dif-
ferent types of data-to-text systems differ in
terms of number and type. In total, we exam-
ine 15 systems: three rule-based and 12 neural
systems including two large language models
without training or fine-tuning. All systems
were tested on the English WebNLG dataset
version 3.0. We use a semantic error taxonomy
and the brat annotation tool to obtain word-
span error annotations on a sample of system
outputs. The annotations enable us to establish
how many semantic errors different (types of)
systems make and what specific types of errors
they make, and thus to get an overall under-
standing of semantic strengths and weaknesses
among various types of NLG systems. Among
our main findings, we observe that symbolic
(rule and template-based) systems make fewer
semantic errors overall, non-LLM neural sys-
tems have better fluency and data coverage, but
make more semantic errors, while LLM-based
systems require improvement particularly in
addressing superfluous.

1 Introduction

Human evaluation remains the gold standard to
determine the quality of texts generated by Natu-
ral Language Generation (NLG) systems (van Mil-
tenburg et al., 2023a). One aspect of human evalu-
ation is error analysis, where researchers identify
and categorise errors in system outputs. Ideally, it
is achieved by manually annotating output text in a
multiple-annotators setting (van Miltenburg et al.,
2023b). Although labour intensive, error analysis
can provide a healthy dose of skepticism and help
to ensure systems have the functionality intended
(Raji et al., 2022).

Semantic errors, including missing, added or re-
peated content, are common in current language
generation outputs, particularly for neural meth-
ods (Kasner and Dušek, 2024). Documenting and

analysing these errors in different types of systems
helps in understanding specific faults within system
output that we can look to address with improved
models in a way that per-system scores do not.

In the work reported in this paper, we start by ob-
taining word-span error annotations of semantic er-
rors in a variety of data-to-text system input/output
pairs. We then analyse the annotations to determine
how many semantic errors different (types of) sys-
tems make, and what specific types of errors they
make, and thus to get an overall understanding of
semantic strengths and weaknesses among various
types of NLG systems. Our specific contributions
are as follows:

1. A comprehensive text annotation experiment
yielding word span annotations of semantic
errors made by a range of different data-to-
text systems.

2. The resulting dataset of system outputs with
manually annotated semantic errors, provid-
ing a basis for valuable insights regarding se-
mantic errors made by different systems.

3. In-depth analysis of the annotated data to iden-
tify patterns and correlations between differ-
ent types of errors.

4. The resulting insights into how NLG system
type, input length and new vs. seen inputs
relate to specific semantic error types.

The paper is organised as follows. Section 2
presents related work. Section 3 describes the ex-
perimental design in detail. Section 4 outlines the
overall experiment set-up. Section 5 presents re-
sults and analysis. Section 6 offers a discussion.
Section 7 concludes with a summary and future
directions. The appendices include the participant
recruitment email, feedback from pilot participants,
annotation steps, and additional results tables and
analyses. Data and resources are on GitHub.1

1RHuidrom96/Differences-in-Semantic-Errors-. . .

https://github.com/RHuidrom96/Differences-in-Semantic-Errors-Made-by-Different-Types-of-Data-to-text-Systems/
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Figure 1: Data Selection and Allocation workflow.

2 Related Work

Many human evaluations of data-to-text systems
only score or label outputs at the sentence or para-
graph level. If this is all that is known about output
quality, finer errors and nuances often go unde-
tected and therefore unaddressed. Reporting word-
span level semantic errors found in NLG system
outputs is necessary for in-depth error analysis and
understanding of the factors contributing to such
errors, so that solutions can be tailored to specific
error types.

Dušek and Kasner (2020) propose to measure
semantic accuracy of data-to-text generation using
a neural model pre-trained for natural language
inference (NLI). Human annotators used a three-
point Likert scale to compare their results to the
crowd-sourced human ratings (Shimorina et al.,
2018). González-Corbelle et al. (2022) propose
an omission and hallucination detector for texts
generated by neural data-to-text systems in the me-
teorology domain, and performed expert analysis
with the aim of classifying these errors by sever-
ity, taking domain knowledge into account. Li
et al. (2023) introduce the Hallucination Evaluation
benchmark (HaluEval) to assess hallucination er-
rors in LLMs using human-annotated samples, aim-
ing to improve the models’ accuracy in recognis-
ing hallucinations. Human annotators used yes/no
labels to annotate whether ChatGPT responses con-
tained hallucinated content.

Thomson et al. report different error types in
NLG system outputs (Thomson and Reiter, 2020;
Thomson et al., 2023). The Shared Task on Evaluat-
ing Accuracy (Thomson and Reiter, 2021) focuses
on both manual and automatic techniques to evalu-
ate the factual accuracy of texts generated by neural
NLG systems. Popovic et al. report error analyses
by taking word span into account to evaluate inter-

annotator agreement in MT outputs (Popović, 2021;
Popović and Belz, 2022). Kasner and Dusek (2024)
focus on detecting semantic errors in model out-
puts by comparing the generated text to the input
data. Errors are annotated at word-level, with every
word in the output text being considered a potential
source of error. This is the most comparable work
to ours, although they do not annotate the input
since they do not address omission. To the best
of our knowledge, none of the other publications
report performing word span annotations of seman-
tic errors in input and system output pairs from
different data-to-text systems.

3 Experiment Design

3.1 Types of systems
We evaluate a total of 15 data-to-text systems, com-
prising three rule-based systems and 12 neural
systems, of which two are large language mod-
els (LLMs) without any training or fine-tuning. 13
systems are from the WebNLG 2020 Shared Task
and the other two systems are from Lorandi and
Belz (2024). The 13 systems from WebNLG were
those that performed best in the shared task based
on multiple criteria used in their human evaluation
analysis.

Table 1 provides an overview of the 13 systems
in terms of their WebNLG categorisation (first col-
umn), the name of the participating WebNLG’20
team (where applicable), and the name of the
model used by the submitted systems as per the
WebNLG’20 system description reports. We more-
over colour-code system names by broad system
type in orange (rule or template-based), blue (neu-
ral non-LLM) and pink (LLM), using inclusive
color palettes.2 This colour scheme will be fol-

2https://www.nceas.ucsb.edu/sites/default/
files/2022-06/ColorblindSafeColorSchemes.pdf

https://www.nceas.ucsb.edu/sites/default/files/2022-06/Colorblind Safe Color Schemes.pdf
https://www.nceas.ucsb.edu/sites/default/files/2022-06/Colorblind Safe Color Schemes.pdf
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Categorisation Participating Team (model
type)

Monolingual,
mono-task,
template-based

1RALI (Template-based),
2DANGNT-SGU
(Template-based)

Baseline 3Baseline-Forge2020
(Rule-based)

Monolingual,
mono-task, neural

4TGen (T5), 5NILC (BART),
6NUIG-DSI (T5)

Mono-task, bilingual
approaches

7cuni-ufal (mBART),
8Huawei Noah’s Ark Lab
(multilingual
transformer-based seq2seq
model), 9OSU Neural NLG
(T5), 10FBConvAI (BART)

Bidirectional,
monolingual
approaches

11Amazon AI (T5),
12CycleGT (T5)

Bidirectional, bilingual
approaches

13bt5 (T5)

Large language models,
no training or
fine-tuning

14GPT 3.5,
15Llama-chat-270B

Table 1: Color-coded (rule-based, non-LLM neural and
large language models (LLM)) summary of the partic-
ipating teams’ systems categorisation, taken verbatim
from WebNLG 2020 results report.

lowed throughout the paper.

3.2 Data selection and allocation

We randomly selected 450 input-output pairs by
stratified sampling based on the number of triples
in the input and WebNLG category.3 We allo-
cate these samples to each evaluator using repeated
Latin squares which has the effect that each evalua-
tor annotated a different set of 30 input and system
output pairs, and 4 each evaluator assessed two
system outputs from each system, given that we
used two Latin squares where the size of each Latin
square is the number of evaluators by the number
of systems (15 x 15). The data selection and allo-
cation process is illustrated in Figure 1.

3.3 Participant selection

We invited researchers at the ADAPT Research
Centre (Ireland) to participate in our study via an
email (see email template in Appendix A) to the
centre-wide mailing list, linking to a sign-up form
that asked for English language proficiency (Profi-
cient User – C1, C2, Independent User – B1, B2,
Basic User – A1, A2), prior experience with error

3We had intended to also stratify in terms of seen vs. un-
seen properties, but used the WebNLG’17 list of unseen prop-
erties erroneously, so counts aren’t in quite the same propor-
tions as the whole dataset.

4We chose Latin-square design to optimise cost and benefit.

annotation (yes/no), and an example annotation.
Participants were excluded if they had no prior ex-
perience with error annotation or if the example
was incorrectly annotated. The Google Form used
for this purpose is in the supplementary materials
on our GitHub.

We received a total of 11 sign-ups. Out of these,
10 marked their English language proficiency as
Proficient User (C1, C2), and one marked it as Inde-
pendent User (B1, B2). Six participants had prior
experience with error annotation, while five did
not. We selected six participants from the sign-ups
based on their prior experience and the correctness
of the example annotation. An additional nine par-
ticipants were selected from a previously conducted
pilot experiment (see below); these are proficient
users of English and NLP researchers.

3.4 Error categories

We use three error types and definitions for anno-
tation, following Huidrom and Belz (2023). We
refrain from using the term ‘hallucination’ due to
its meaning in the field of psychology. For instance,
(Blom, 2010) defines hallucination as “a percept,
experienced by waking individual, in the absence of
an appropriate stimulus from extracorporeal world.”
Instead, we use the term “addition” as defined be-
low. In the following definitions, ‘input’ is the set
of triples, and ‘output’ is the verbalisation (text).

• Omission: Some content that is present in the
input and should be rendered in the output is
not present in the output. Moreover, there are
no word span(s) in the output that are intended
to render it, but do so wrongly. i.e. this type
of error can be fixed by adding something to
the output.

• Addition: The output text contains word
span(s) for which there is no corresponding
part of the input that they render. In other
words, some content that is not present in the
input and should not be rendered in the output
is nevertheless rendered by some word span(s)
in the output. Moreover, there is no content
in the input that the word span(s) are intended
to render, but render wrongly. i.e. this type
of error can be fixed by removing something
from the output.

• Repetition: Some content is repeated verba-
tim in the output, but there is no corresponding
repetition in the input.
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3.5 Annotation process

We record the word-span annotations of our set
of input and system outputs pairs using via the
brat annotation tool5. The input here is a set
of triples, and the system output is the gener-
ated verbalisation. Each triple consists of the
elements Subject, Predicate, and Object, and
the verbalisation. For example, an input triple
could be Take_It_Off (Subject), producer
(Predicate), Wharton_Tier (Object), and the
corresponding system output (verbalisation) could
be Wharton Tiers produced Take It Off.

The annotation task is to mark and label omis-
sions in the set of input triples, and additions and
repetitions in the verbalisation. There can be any
number of semantic errors, including none, in any
triple-set/verbalisation pair.

3.6 Summarised annotation steps

The following is the summarised annotation steps.
Verbatim annotation instructions can be found in
Appendix C.

1. Omission annotation: The evaluator should
check if each element in the input triples is
verbalised. If any element is missing, it should
be marked as an omission error. If the entire
triple is not verbalised, each element of the
triple should be marked as an omission. If all
elements are verbalised, it means there are no
omission errors.

2. Addition annotation: The evaluator should
check if all content words and phrases in the
verbalisation correspond to elements in the
triples. If any content word or phrase does
not match an element in the triples, it should
be marked as an addition error. If all content
phrases correspond correctly, it means there
are no addition errors.

3. Repetition annotation: The evaluator should
check for repeated content in the output, in-
cluding close paraphrases. If any element
in the triples is rendered more than once, it
should be marked as a repetition error, un-
less there is corresponding repetition in the
input triple elements. If all content words
and phrases in the verbalisation correspond
correctly to the triples without repetition, it
means there are no repetition errors.

5https://brat.nlplab.org

4 Human Evaluation

4.1 Data
We use the system outputs from the WebNLG 2020
(Ferreira et al., 2020) on the English test dataset,
which contains 1,779 different input triple sets.
There are a total of 19 categories in the WebNLG
2020 dataset, of which 16 are present in the train-
ing set, and three are unseen in the training set
(Film, MusicWork, Scientist). We selected 450 in-
put triple sets with stratification for our experiment.
Table 2 shows the overall counts of the number of
triples and categories in the WebNLG 2020 English
test dataset along with the counts in the stratified
samples.

Number of Triples Categories
1 2 3 4 5 6 7 Seen Unseen
369 349 350 305 213 114 79 966 813
90 90 90 75 60 30 15 285 165

Table 2: Triple size and category counts for the overall
dataset (third row) and the stratified sample (fourth row).

4.2 Brat annotation tool setup
We use the brat annotation tool (Stenetorp et al.,
2012), a web-based tool for text annotation, to
record word-span annotations of semantic errors
(omission, addition, and repetition) in input triple
sets and system output pairs. We use ngrok6 to
host brat for our experiment. The annotators were
provided with the link to the brat annotation tool
via email along with login credentials (username
and password).

To annotate the errors, the evaluators have to (i)
log in to the brat annotation tool using the provided
credentials, (ii) select the word span to be marked
as an error, which gives a pop-up window contain-
ing the list of semantic error types under the ‘entity
type’ label in the interface, (iii) select the correct
‘entity type’ label for the selected word span, and
(iv) log out of the brat annotation tool.

4.3 Pilot experiment and feedback
We conducted a pilot experiment on a set of 10
triples/verbalisation pairs with 10 researchers from
ADAPT Research Centre, Ireland. We collected
feedback via Google Form to identify questions
or issues encountered during the annotation pro-
cess, and to collect suggestions regarding ways to
improve the evaluation design, etc. We paid each
evaluator 15 Euros per hour for the pilot.

6https://ngrok.com

https://brat.nlplab.org
https://ngrok.com
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System #Omissions #Additions #Repe-
titions

#Total
errors

WebNLG 2020
(Avg. Raw)

Fluency Data
Coverage

R
ul

e-
ba

se
d Baseline-FORGE2020 12 13 2 27 82.430 92.892

DANGNT-SGU 14 18 1 33 78.594 95.315
RALI 13 21 2 36 77.759 95.204

N
on

-L
L

M
ne

ur
al

Amazon-AI-Shanghai 15 19 0 34 90.286 94.393
NUIG-DSI 20 14 0 34 88.898 92.063
NILC 47 36 3 86 74.851 81.605
TGEN 18 18 0 36 86.163 88.176
CycleGT 19 14 1 34 84.820 91.231
FBConvAI 16 23 3 42 90.837 93.169
OSU-Neural-NLG 11 8 6 25 90.066 95.123
cuni-ufal 21 15 4 40 87.642 93.291
bt5 16 19 0 35 88.688 93.836
Huawei-Noah’s-Ark-Lab 30 30 4 64 75.205 84.743

L
L

M GPT-3.5 13 26 0 39 - -
LLAMA-2 70bchat 24 32 1 57 - -
Total error counts 289 306 27 622
Mean 19.267 20.4 1.8 41.467
Standard Deviation 9.177 7.763 1.859 15.95

Table 3: Counts of each error type for each system. The last two columns present the average fluency and data
coverage scores from the WebNLG’20 human evaluation analysis.

Error Rate
1 triple 2 triples 3 triples 4 triples 5 triples 6 triples 7 triples

Error Type (n=90) (n=90) (n=90) (n=75) (n=60) (n=30) (n=15)
Omissions 0.167 0.183 0.152 0.23 0.187 0.3 0.2
Additions 0.278 0.139 0.207 0.23 0.217 0.256 0.191
Repetitions 0 0.011 0.015 0.013 0.013 0.055 0.029

Table 4: Rates of omission, addition and repetition errors relative to input size.

One common suggestion was to add more exam-
ples to the annotation guidelines, including special
cases that annotators should look out for. Other
feedback related to how to present the layout of
triples/verbalisation pairs on brat, providing step-
by-step instructions on using brat, and giving back-
ground information on what a triple and verbalisa-
tion are. More details can be found in Appendix B.

After improving the evaluation design based on
the feedback from our pilot experiment, we con-
ducted our main evaluation study with 15 evalua-
tors on 30 triples/verbalisation pairs for each eval-
uator. We paid 25 Euros for our main study, esti-
mating that it took about an hour to do. We raised
the payment relative to the pilot experiment due to
the task’s increased complexity in the number of
triples/verbalisation pairs to be evaluated. All com-
munication for both the pilot and main experiments
took place via email exchanges.

5 Results and Analysis

In this Section, we present our results and analy-
sis. We report the raw error counts (Table 3), and
error rates for different input properties (Tables 4,

5, and 6). Lastly, we present further analysis on the
correlation between error types and system type.

5.1 Raw error counts

Table 3 provides counts of each error type for each
system, including the number of omissions, addi-
tions, repetitions, and total errors. Additionally,
it includes the average fluency and data coverage
scores from the WebNLG’20 human evaluation.

We can see that omission and addition errors are
more prevalent and consistent across systems, as
indicated by their higher mean values and moder-
ate standard deviations. These errors occur rela-
tively frequently, with less variation between sys-
tems, suggesting that their occurrence is more pre-
dictable. In contrast, repetition errors occur less
frequently but have pronounced relative variability,
as evidenced by a standard deviation that exceeds
their mean. However, it has to be noted that due
to their sparsity, repetition error counts and rates
provide a less reliable picture than the other two er-
ror types investigated here. Omission and addition
errors constitute 46.47% and 49.19% of all errors,
respectively, while repetition errors just 4.34%.
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Figure 2: Brat annotation tool interface with example
input-output pairs.

Highlighting some system-specific observations,
we can observe that (i) NUIG-DSI, a non-LLM
neural system, has a higher proportion of omis-
sion errors compared to the other two error types
(58.82%); (ii) GPT-3.5 (LLM) shows a higher pro-
portion of addition errors (66.67%) and has no rep-
etition errors; (iii) OSU-Neural-NLG, a non-LLM
neural system has a relatively high proportion of
repetition errors (24%); and (iv) cuni-ufal, another
non-LLM neural system, also has a high proportion
of repetition errors (10%).

Rule-based systems have fewer total errors on
average than neural systems. However, rule-based
systems have a higher tendency towards addition er-
rors, suggesting they struggle with filtering out un-
necessary items. Non-LLM neural systems, show
a balanced distribution between omission and addi-
tion errors. Repetition errors are relatively low
across all non-LLM neural systems, except for
OSU-Neural-NLG, which has higher repetition
rates (24%). LLM-based systems are observed
to have a strong tendency to add extra content but
manage to avoid repetitions effectively.

The last two columns in Table 3 present fluency
and data coverage scores copied verbatim from
the WebNLG 2020 Shared Task human evaluation,
derived from the WebNLG 2020 Human Evalua-
tion test set. Systems with higher fluency scores
tend to have fewer total errors, especially omission
and repetition errors. For example, Amazon-AI-
Shanghai, FBConvAI and OSU-Neural-NLG have
fluency scores above 90 and these systems show
similarly high levels of addition and omission er-

rors, except for FBConvAI which has relatively
higher rate of addition errors.

Systems with high data coverage tend to have
higher addition errors. For example, DANGNT-
SGU, Amazon-AI-Shanghai and OSU-Neural-
NLG have data coverage score above 94 and these
systems exhibit low omission errors but sometimes
have more additions as in DANGNT-SGU. Mean-
while, low fluency and low data coverage systems
have higher errors across all types, in general. For
example, NILC have the lowest fluency (74.851)
and data coverage (81.605) score and highest total
errors (86), suggests that low fluency and low data
coverage correlates with higher errors, especially
omission and addition errors. While specific flu-
ency and data coverage scores are not available for
LLM-based systems, the error patterns suggest a
tendency for over-generation (addition errors).

Overall, the rule-based systems are more con-
sistent and generally reliable with balanced errors,
meaning that the rule-based systems tend to have a
more uniform error distribution, with less variation
in the number of omission, addition, and repeti-
tion errors between the different rule-based sys-
tems. Non-LLM neural systems can achieve higher
fluency and data coverage but need careful manage-
ment of errors, meaning that high fluency and high
data coverage correlates with lower errors. LLM-
based systems show potential but require improve-
ment in addressing over-generation (additions) and
missing content (omissions) issues effectively.

5.2 Error rates relative to different factors

In this section, we calculate error rates relative
to (i) input size (number of triples); (ii) system
type (rule/template-based, non-LLM neural, LLM-
based); and (iii) seen vs. unseen properties, in
order to gain a better understanding of how these
factors relate to errors.

Rates of omission, addition and repetition errors
relative to input size. Table 4 shows occurrence
rates for omission, addition and repetition errors
relative to different numbers of input triples (1–7).
We define these error rates as:

Error Rateinput size =
Ei,e

i× Ti
(1)

where e denotes the error type (one of omission,
addition, and repetition), and i denotes input triple
size (one of 1–7). Ei,e is the number of errors
found for the given error type e and input size i,
while Ti is the total number of data items of length
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i. Multiplying Ti by i gives us the total number of
triples in data items of input size i. Intuitively, these
error rates thus capture how many e.g. omission
errors there are per triple for a given input size.
Note that we need to look at per-triple rates here
to be able to compare error rates across input sizes.
For consistency, we also report the other two error
rates below per triple.

None of the error types follow a uniformly in-
creasing or decreasing trend according to Table 4.
Omissions and repetitions have a slightly clearer
tendency to increase with more triples, indicating
greater challenges in handling larger input sizes.
Notably, 4-triple inputs show the same error rate
(0.23) in both omissions and additions, this being
the highest observed error rate in omissions. Repeti-
tions follow a clearer upward trend with increasing
numbers of triples, although they remain the least
frequent error type.

It is clear from Table 4 that the complexity intro-
duced by higher numbers of triples impacts error
rates to some extent, and this is clearer in the case
of omissions and repetitions. Additions do not
show any clear trend with changing input sizes.

Rates of omission, addition and repetition errors
relative to system type. Second, we look at oc-
currence rates for omission, addition and repetition
errors for rule-based, non-LLM neural and LLM
system types. We define this error rate as follows:

Error Ratesystem type =
Es,e

is × Ts
(2)

where e denotes the error type (one of omission,
addition and repetition), and s denotes system type
(one of rule-based, non-LLM neural and LLM).
Es,e represents the number of errors found for the
given error type e and system type s. Ts is the total
number of data items produced by systems of type
s, and is is the average number of input triples in
data items of type s.

Error Rate
Neural

Error Type Rule-based
LLM +
Non-LLM
neural

LLM Non-LLM
neural

Omissions 0.137 0.219 0.195 0.224
Additions 0.182 0.223 0.305 0.206
Repetitions 0.018 0.019 0.005 0.022

Table 5: Rates of omission, addition and repetition er-
rors relative to system type.

Table 5 highlights substantial differences in er-
ror rates between the different types of system.

Rule-based systems have the lowest omission rate
(0.137), with non-LLM neural systems having the
highest (0.224), and LLM systems (0.195) falling
in between. The indication is that overall, neural ar-
chitectures are more prone to omission errors than
rule-based systems, although LLMs less so than
other neural systems.

Overall, addition rates are higher than omission
rates, except for non-LLM neural systems. The
gap is particularly big for LLM systems which also
have the highest overall addition rate (0.305); rule-
based systems have the lowest (0.182).

Repetition rates are notably low across all sys-
tems. LLM systems have the lowest repetition rate
(0.005), suggesting a superior ability to avoid re-
dundancies. Non-LLM neural systems have the
highest repetition rates (0.022), followed closely
by rule-based systems (0.018).

Rule-based systems generally show lower error
rates in both omissions and additions compared to
neural systems, suggesting a more controlled and
predictable output. Non-LLM neural systems have
lower addition error rates (0.206), but these are
still higher than those of rule-based systems. LLM
models, while showing high error rates in additions,
perform well in minimising repetition errors.

Rates of omission, addition and repetition er-
rors relative to seen/unseen category. Finally,
we look at occurrence rates for omission, addition
and repetition errors relative to seen vs. unseen
properties. We define this error rate as:

Error Rateseen/unseen =
Ec,e

ic × Tc
(3)

where e denotes error type (one of omission, addi-
tion and repetition), and c denotes category (one
of seen and unseen). Ec,e is the number of errors
found for the given error type e and category c. Tc

is the total number of data items in category c pro-
duced by systems, and ic is the average number of
input triples in data items of type c.

Error Rate

Error Type Seen
(size 1-6 only) Unseen

Omissions 0.144 0.301
Additions 0.199 0.246
Repetitions 0.011 0.03

Table 6: Rates of omission, addition and repetition er-
rors relative to seen vs. unseen category.

Table 6 shows the resulting error rates. Note that
error rates are computed on the subset of data items
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of input lengths 1–6, because that is all we have
for the seen category. We observe that the omis-
sion rate for data items containing unseen proper-
ties (0.301) is more than twice that of data items
with only seen properties (0.144). This suggests
that when the systems encounter data it has previ-
ously been exposed to, it is much better at ensuring
that necessary elements are not omitted. For addi-
tion rates, the difference between items with seen
(0.199) and unseen (0.246) properties is smaller,
Repetition errors are the least frequent across both
categories, with 0.011 for seen and 0.03 for unseen,
but here nearly three times as many mistakes are
made for unseen properties.

5.3 Correlation between error types by
system type

In Table 7, we report Pearson’s correlation coef-
ficients between error types for all system types
combined (last row), and separately by system type
(rest of table).

Om vs Add Add vs Rep Rep vs Om
Rule-based 0.619 -0.143 -0.866
LLM NA NA NA
Non-LLM neural 0.847 0.046 0.152
All neural 0.712 -0.076 0.197
Overall correlation 0.715 -0.068 0.192

Table 7: Pearson’s correlation coefficients for pairs of
error types, separately for the three system types at
the top (NA for LLMs where we only have two data
points), and for all system types in the last row (Overall
correlation coefficient). Om=Omission, Add=Addition,
Rep=Repetition.

We observe a strongly positive overall corre-
lation between omissions and additions (0.715),
i.e. systems that make more omission errors also
tend to make more addition errors. In contrast,
there is no correlation between additions and rep-
etitions (-0.068), or between repetitions and omis-
sions (0.192), when not differentiating between
systems.

However, when looking at correlations for sys-
tem types separately, rule-based systems show a
strong inverse relationship between repetitions and
omissions (-0.866). Both non-LLM neural and all
neural systems show strong positive correlations
between omissions and additions (0.847 for the
former, and 0.712 for the latter). Non-LLM neu-
ral systems have the highest correlation between
omissions and additions.

6 Discussion

Correlation and Dependency Insights. We ob-
serve a strong positive correlation between omis-
sions and additions across different types of sys-
tems, perhaps indicating a common underlying
cause for these errors where they do occur. No-
tably, neural systems (both LLM and non-LLM)
exhibit this trend, perhaps suggesting that when
these systems fail to include expected elements,
they overcompensate by adding unexpected ones.

Distinct System Type Behaviours. Rule-based
systems show a strong negative correlation between
repetitions and omissions, and have a higher ten-
dency towards addition errors than the other two,
possibly because they struggle with precision in fil-
tering out unnecessary items despite their intended
factual accuracy (Gatt and Krahmer, 2018).

On the other hand, the neural systems all have
strong positive correlations between omissions and
additions. Non-LLM neural systems show the high-
est such correlation, emphasising the need for ro-
bust training and error-mitigation strategies.

Impact of Seen vs. Unseen Data. All error rates
are higher in data containing unseen properties than
in data containing only seen. We observe a clear
trend where systems perform better on familiar
(seen) data across all error types. This is consistent
with the expectation that models or systems are gen-
erally more accurate when dealing with data they
have previously encountered. The considerably
higher error rates for the unseen category indicate
that systems’ cannot transfer all learning to unseen
data. This is particularly evident in the substantial
increase in omission and repetition errors, suggest-
ing that the underlying model may require further
training or fine-tuning to improve its generalisation
capabilities. In contrast, addition errors show a
smaller increase.

Errors by Input Complexity (Number of Triples)
We observe that omissions and repetition rates have
an overall tendency to increase with more triples,
indicating that handling larger input sizes presents
greater challenges. The fluctuation in addition rates
without a clear trend suggests that this error type
might be affected by specific characteristics of the
input data rather than its size alone.
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7 Conclusion and Future Work

In the work presented in this paper, we conducted a
manual word-span annotation experiment with the
aim of investigating the different types and num-
bers of semantic errors observed in the texts gener-
ated by 15 table-to-text generation systems, namely
13 WebNLG 2020 systems and two more recent
LLM-based systems. We have described the er-
ror types, instructions for the evaluation and set
up of experiments we used for this purpose. We
have presented an analysis of the absolute numbers
of errors made by different systems, and the error
rates observed relative to input size, system type
and unseen vs. seen properties.

Among our findings, we observed high correla-
tion between omission and addition errors, higher
correlations between omission and addition errors
in neural systems, and higher error rates in the un-
seen category compared to seen for for all error
types. Overall, we found that the symbolic (rule
and template-based) systems are more semantically
consistent with the input. Non-LLM neural sys-
tems achieve higher fluency and data coverage but
need careful management of semantic errors, while
LLM-based systems require improvement particu-
larly in addressing over-generation (additions) and
missing content (omissions). Among these results
the particularly high addition error rate of LLM
systems (0.305) stands out. These observations
pinpoint future directions for what to focus on in
improving output quality in different types of sys-
tems.
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A Participants Recruitment Email

The following is our email template that we sent to
recruit participants for our experiment.

Subject: Participants needed for data-to-text
system evaluation (1 Hour, 25 Euros)

Dear all,
I hope this email finds you well. My name
is [FirstName LastName], and I am currently
working on a project focusing on the human
evaluation of data-to-text system outputs as a part
of my PhD thesis. I am reaching out to you to
invite you to participate in this exciting research
opportunity.

The aim of this project is to evaluate semantic
errors (addition, omission, substitution, repetition)
in the input (RDF triples) and data-to-text system
outputs pairs from WebNLG 2020 Shared Task.
We would need evaluations to be completed no
later than [DD MM YY].

Our pilot experiment showed that the evaluation
should take about an hour and we are offering 25
Euro for this task.

Prior to the evaluation process, there will be a
training session to familiarise the participants
with the annotation tool we will be using and of
course, provide clear guidelines on how to evaluate
these system outputs. We will ensure that the
participants have all the necessary resources and
support to carry out the evaluation effectively. To
acknowledge the time and effort, we are offering
compensation for your participation.

We believe that this research project makes a
significant contribution to the scientific work in the
field.

If you are interested in being a part of this research
project and contributing to the field, please express
your interest by filling out this Google Form.

https://doi.org/10.18653/v1/2021.inlg-1.23
https://doi.org/10.18653/v1/2021.inlg-1.23
https://doi.org/https://doi.org/10.1016/j.csl.2023.101482
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Thank you for considering this opportunity. Your
participation is highly valued, and I look forward
to the possibility of working together on this
important research project.

Best regards,
[Signature]

B Pilot Participants Feedback

Nine out of 10 evaluators filled in the reflection
form. The other evaluator gave their feedback via
text communication. In this section, we report the
feedback as received from the reflection form. We
summarise them below:

• Five out of nine evaluators expressed the over-
all pilot experiment was neither easy nor diffi-
cult, two of them marked as easy and the other
two marked it as difficult.

• Six out of nine evaluators found the annotation
guidelines easy to follow, two of them marked
it as neither easy nor difficult and one of them
found to be difficult.

• On an average, it took about 20 minutes for
the evaluators to understand the annotation
guidelines.

• On an average, it took about 25 minutes for
the evaluators to complete the annotation task.

• All evaluators confirmed that they read the
annotation guidelines before starting the an-
notations.

• Six out of nine evaluators found the brat an-
notation difficult to use. Meanwhile, three of
them found it easy.

• Seven out of nine evaluators expressed their
need on more training for using the brat anno-
tation tool (apart from Section 3 "Instructions
for using the brat annotation tool" in the in-
structions document) whereas two of them
answered a no.

• Seven out of nine evaluators found the error
type’s definitions and examples easy to follow
in the instructions document easy to follow.
Meanwhile, two of them found it difficult.

• Eight out of nine participants expressed their
interest in the main study, one of them ex-
pressed as a maybe.

C Annotation Steps

We asked annotators to follow the following anno-
tation steps, as part of the annotation guidelines:

1. In the first step, the evaluator should exam-
ine whether each element in the input triples
is verbalised or not. If an element is not ex-
pressed in the verbalisation, mark the element
as an omission error type in the triple.

If the whole triple is not expressed in the
verbalisation, mark each element as an omis-
sion error type in the triple. For example,
if the triple ‘ENAIRE | city | Madrid’ is
not expressed in the verbalisation, then mark
‘ENAIRE’ as an omission, ‘city’ as an omis-
sion and ‘Madrid’ as an omission.

If each element in the input triples is ver-
balised which means there is no omission er-
ror, then proceed to the second step.

2. In the second step, the evaluator should exam-
ine whether all the content words and phrases
in the verbalisation render a corresponding
element(s) in the triples.

If a content word phrase does not render a cor-
responding element in the input triples, mark
it as an addition error type.

If all the content phrases in the verbalisation
render a corresponding element in the input
triples this means there is no addition error, so
proceed to the third step.

3. In the third step, the evaluator should check if
any part of the output is repeated, including
close paraphrases. This is the case e.g. if an
element in the triples is rendered more than
once. If there is a content phrase that is re-
peated in this sense, mark it as a repetition
error type.

If all the content phrases in verbalisation in-
clude all the elements in the triples without an
extra in the verbalisation that has no relation
in the input triples, which means there is no
repetition error, then proceed to the next pair
of triple(s) and verbalisation.

D Additional Notes Given to Evaluators

We provide the following notes below to the evalu-
ators along with the annotation guidelines. More
details in Appendix E.

• If there is more than one triple in the in-
put, triples are enclosed within single quotes
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(‘ ’) and separated by commas. For exam-
ple, ‘Joe_Biden | president | United_States’,
‘Joe_Biden | birthPlace | Pennsylvania’.

• The evaluator should be careful while select-
ing the word span when marking an error. The
evaluator should select complete tokens, i.e.,
words in the text, that are delimited by whites-
pace.

For example, the selection for ‘president’ in
‘Joe Biden is the president of the United
States.’ is correct, but selecting just ‘pres’
is not correct, as in ‘Joe Biden is the president
of the United States.’ Similarly, ‘Joe_Biden
| president | United_States’ is correct, but
‘Joe_Biden | president | United_States’ is not.

• The evaluator should consider the inferred
verbs and tenses correct in verbalisations as
long as they are implied by the information in
the input triple(s).

For example, consider the input triple
“Alessio_Romagnoli | youthclub | A.S._Roma”
and the corresponding verbalisation “alessio
romagnoli plays for the a . s . roma youth
team.” Here ‘plays for’ can be inferred from
the presence of ‘youthclub’ in the input triple.
This is considered valid/correct and should
not be marked as an error.

• However, cases such as, ‘youthclub’
being verbalised as ‘youthteam’ (‘youth-
club’ is not rendered in the output and
‘youthteam’ is added in the output) or
‘AC_Hotel_Bella_Sky_Copenhagen’ ver-
balised as ‘hotel bella sky copenhagen’
(‘AC_Hotel_Bella_Sky_Copenhagen’ should
be marked as an omission and ‘hotel bella sky
copenhagen’ as addition) should be marked
as errors.

• The evaluator should take extra care with units,
dates and other numerical values and their
conversions. For example, if ‘1234 m’ is ver-
balised as ‘1.234 km’ then it should not be
considered an error. If ‘2006-12-31’ is ver-
balised as ‘31st July 2016’ then it should be
marked as an omission (‘2006-12-31’ is not
rendered in the output), and addition (‘31st
July 2016’ is added in the output). If ‘610.0’
is verbalised as ‘610 metres’ then it should be
considered an error where ‘metres’ will be an
addition error.

E Other Supplementary Materials

We have also included our participation selection
form, participation reflection form and annotation
guidelines as a part of the supplementary materials
for this paper. We share all data and other resources
on our GitHub link here: RHuidrom96/Differences-
in-Semantic-Errors-Made-by-Different-Types-of-
Data-to-text-Systems.

F Tables

System #With Error #Error Free

R
ul

e-
ba

se
d Baseline-FORGE2020 15 15

DANGNT-SGU 12 18
RALI 13 17

N
on

-L
L

M
ne

ur
al

Amazon-AI-Shanghai 13 17
NUIG-DSI 10 20
NILC 21 9
TGEN 14 16
CycleGT 14 16
FBConvAI 15 15
OSU-Neural-NLG 10 20
cuni-ufal 13 17
bt5 14 16
Huawei-Noah’s-Ark-Lab 22 8

L
L

M GPT-3.5 16 14
LLAMA-2 70bchat 18 12

Table 8: Counts of each with error and error free sample
for each system.

Table 8 summarises the performance of various
systems in terms of the number of with error and
error free samples. Each system has a total of
30 samples. The distribution of with error versus
error free samples varies across the systems, with
no system being completely error-free.

System Type Average Error Rate per System
Rule-based 0.44
Non-LLM neural 0.49
LLM 0.57

Table 9: Average Error Rates per System Type for sam-
ples with errors

Table 9 presents average error rates for sam-
ples containing errors across different system types.
The formulas for calculating these average error
rates per system type are detailed in equations 4
and 5. Rule-based systems exhibit the lowest aver-
age error rate of 0.44. In comparison, Non-LLM
neural systems have an average error rate of 0.49.
LLM systems, on the other hand, demonstrate the
highest average error rate of 0.57. This summary
highlights how different system types perform in
terms of error rates, providing insight into their
relative effectiveness.

https://github.com/RHuidrom96/Differences-in-Semantic-Errors-Made-by-Different-Types-of-Data-to-text-Systems/tree/main
https://github.com/RHuidrom96/Differences-in-Semantic-Errors-Made-by-Different-Types-of-Data-to-text-Systems/tree/main
https://github.com/RHuidrom96/Differences-in-Semantic-Errors-Made-by-Different-Types-of-Data-to-text-Systems/tree/main
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Average Error Rate per System Type =
∑

(Error Rate per System)
Number of Systems in the System Type

(4)

Error Rate per System =
Number of Samples with Errors

Total Number of Samples
(5)
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