@inproceedings{warczynski-etal-2024-leveraging-large,
title = "Leveraging Large Language Models for Building Interpretable Rule-Based Data-to-Text Systems",
author = "Warczy{\'n}ski, J{\k{e}}drzej and
Lango, Mateusz and
Dusek, Ondrej",
editor = "Mahamood, Saad and
Minh, Nguyen Le and
Ippolito, Daphne",
booktitle = "Proceedings of the 17th International Natural Language Generation Conference",
month = sep,
year = "2024",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.inlg-main.48",
pages = "622--630",
abstract = "We introduce a simple approach that uses a large language model (LLM) to automatically implement a fully interpretable rule-based data-to-text system in pure Python. Experimental evaluation on the WebNLG dataset showed that such a constructed system produces text of better quality (according to the BLEU and BLEURT metrics) than the same LLM prompted to directly produce outputs, and produces fewer hallucinations than a BART language model fine-tuned on the same data. Furthermore, at runtime, the approach generates text in a fraction of the processing time required by neural approaches, using only a single CPU.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="warczynski-etal-2024-leveraging-large">
<titleInfo>
<title>Leveraging Large Language Models for Building Interpretable Rule-Based Data-to-Text Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jędrzej</namePart>
<namePart type="family">Warczyński</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mateusz</namePart>
<namePart type="family">Lango</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Dusek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Natural Language Generation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saad</namePart>
<namePart type="family">Mahamood</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nguyen</namePart>
<namePart type="given">Le</namePart>
<namePart type="family">Minh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daphne</namePart>
<namePart type="family">Ippolito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a simple approach that uses a large language model (LLM) to automatically implement a fully interpretable rule-based data-to-text system in pure Python. Experimental evaluation on the WebNLG dataset showed that such a constructed system produces text of better quality (according to the BLEU and BLEURT metrics) than the same LLM prompted to directly produce outputs, and produces fewer hallucinations than a BART language model fine-tuned on the same data. Furthermore, at runtime, the approach generates text in a fraction of the processing time required by neural approaches, using only a single CPU.</abstract>
<identifier type="citekey">warczynski-etal-2024-leveraging-large</identifier>
<location>
<url>https://aclanthology.org/2024.inlg-main.48</url>
</location>
<part>
<date>2024-09</date>
<extent unit="page">
<start>622</start>
<end>630</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Large Language Models for Building Interpretable Rule-Based Data-to-Text Systems
%A Warczyński, Jędrzej
%A Lango, Mateusz
%A Dusek, Ondrej
%Y Mahamood, Saad
%Y Minh, Nguyen Le
%Y Ippolito, Daphne
%S Proceedings of the 17th International Natural Language Generation Conference
%D 2024
%8 September
%I Association for Computational Linguistics
%C Tokyo, Japan
%F warczynski-etal-2024-leveraging-large
%X We introduce a simple approach that uses a large language model (LLM) to automatically implement a fully interpretable rule-based data-to-text system in pure Python. Experimental evaluation on the WebNLG dataset showed that such a constructed system produces text of better quality (according to the BLEU and BLEURT metrics) than the same LLM prompted to directly produce outputs, and produces fewer hallucinations than a BART language model fine-tuned on the same data. Furthermore, at runtime, the approach generates text in a fraction of the processing time required by neural approaches, using only a single CPU.
%U https://aclanthology.org/2024.inlg-main.48
%P 622-630
Markdown (Informal)
[Leveraging Large Language Models for Building Interpretable Rule-Based Data-to-Text Systems](https://aclanthology.org/2024.inlg-main.48) (Warczyński et al., INLG 2024)
ACL