@inproceedings{nguyen-etal-2024-ceval-benchmark,
title = "{CE}val: A Benchmark for Evaluating Counterfactual Text Generation",
author = {Nguyen, Van Bach and
Seifert, Christin and
Schl{\"o}tterer, J{\"o}rg},
editor = "Mahamood, Saad and
Minh, Nguyen Le and
Ippolito, Daphne",
booktitle = "Proceedings of the 17th International Natural Language Generation Conference",
month = sep,
year = "2024",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.inlg-main.6",
pages = "55--69",
abstract = "Counterfactual text generation aims to minimally change a text, such that it is classified differently. Assessing progress in method development for counterfactual text generation is hindered by a non-uniform usage of data sets and metrics in related work. We propose CEval, a benchmark for comparing counterfactual text generation methods. CEval unifies counterfactual and text quality metrics, includes common counterfactual datasets with human annotations, standard baselines (MICE, GDBA, CREST) and the open-source language model LLAMA-2. Our experiments found no perfect method for generating counterfactual text. Methods that excel at counterfactual metrics often produce lower-quality text while LLMs with simple prompts generate high-quality text but struggle with counterfactual criteria. By making CEval available as an open-source Python library, we encourage the community to contribute additional methods and maintain consistent evaluation in future work.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-etal-2024-ceval-benchmark">
<titleInfo>
<title>CEval: A Benchmark for Evaluating Counterfactual Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Van</namePart>
<namePart type="given">Bach</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christin</namePart>
<namePart type="family">Seifert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Schlötterer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Natural Language Generation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saad</namePart>
<namePart type="family">Mahamood</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nguyen</namePart>
<namePart type="given">Le</namePart>
<namePart type="family">Minh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daphne</namePart>
<namePart type="family">Ippolito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Counterfactual text generation aims to minimally change a text, such that it is classified differently. Assessing progress in method development for counterfactual text generation is hindered by a non-uniform usage of data sets and metrics in related work. We propose CEval, a benchmark for comparing counterfactual text generation methods. CEval unifies counterfactual and text quality metrics, includes common counterfactual datasets with human annotations, standard baselines (MICE, GDBA, CREST) and the open-source language model LLAMA-2. Our experiments found no perfect method for generating counterfactual text. Methods that excel at counterfactual metrics often produce lower-quality text while LLMs with simple prompts generate high-quality text but struggle with counterfactual criteria. By making CEval available as an open-source Python library, we encourage the community to contribute additional methods and maintain consistent evaluation in future work.</abstract>
<identifier type="citekey">nguyen-etal-2024-ceval-benchmark</identifier>
<location>
<url>https://aclanthology.org/2024.inlg-main.6</url>
</location>
<part>
<date>2024-09</date>
<extent unit="page">
<start>55</start>
<end>69</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CEval: A Benchmark for Evaluating Counterfactual Text Generation
%A Nguyen, Van Bach
%A Seifert, Christin
%A Schlötterer, Jörg
%Y Mahamood, Saad
%Y Minh, Nguyen Le
%Y Ippolito, Daphne
%S Proceedings of the 17th International Natural Language Generation Conference
%D 2024
%8 September
%I Association for Computational Linguistics
%C Tokyo, Japan
%F nguyen-etal-2024-ceval-benchmark
%X Counterfactual text generation aims to minimally change a text, such that it is classified differently. Assessing progress in method development for counterfactual text generation is hindered by a non-uniform usage of data sets and metrics in related work. We propose CEval, a benchmark for comparing counterfactual text generation methods. CEval unifies counterfactual and text quality metrics, includes common counterfactual datasets with human annotations, standard baselines (MICE, GDBA, CREST) and the open-source language model LLAMA-2. Our experiments found no perfect method for generating counterfactual text. Methods that excel at counterfactual metrics often produce lower-quality text while LLMs with simple prompts generate high-quality text but struggle with counterfactual criteria. By making CEval available as an open-source Python library, we encourage the community to contribute additional methods and maintain consistent evaluation in future work.
%U https://aclanthology.org/2024.inlg-main.6
%P 55-69
Markdown (Informal)
[CEval: A Benchmark for Evaluating Counterfactual Text Generation](https://aclanthology.org/2024.inlg-main.6) (Nguyen et al., INLG 2024)
ACL