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Abstract

In this paper, we generate and compare three
types of explanations of Machine Learning
(ML) predictions: simple, conservative and uni-
fying. Simple explanations are concise, conser-
vative explanations address the surprisingness
of a prediction, and unifying explanations con-
vey the extent to which an ML model’s predic-
tions are applicable.

The results of our user study show that (1) con-
servative and unifying explanations are liked
equally and considered largely equivalent in
terms of completeness, helpfulness for under-
standing the AI, and enticement to act, and
both are deemed better than simple explana-
tions; and (2) users’ views about explanations
are influenced by the (dis)agreement between
the ML model’s predictions and users’ estima-
tions of these predictions, and by the inclu-
sion/omission of features users expect to see in
explanations.

1 Introduction
The increased accuracy of Machine Learning (ML)
models has led to their widespread adoption by de-
cision makers in vital domains, such as healthcare
and finance. This highlights the need for explana-
tions of the outcomes of these models to support
decision making by practitioners and end users.

To generate explanations, we adopt the human-
centered view in (Biran and McKeown, 2017),
whereby an explanation is “not about the model, but
about the evidence that led to the prediction” (ac-
cording to the model). Our explanations are aimed

*Work done while the author was at Monash University.

Table 1: Features and their values for an instance in the
Car Evaluation dataset (top part), and explanations for
the prediction made by the AI: features and values are
italicised, predicted outcomes appear in boldface italics,
and unifying information is shaded.

Feature: Value Feature: Value
Buying price: high Maintenance cost: high
Number of doors: four Seating capacity: four
Luggage boot size: big Safety rating: medium

Simple explanation
The AI system deems this car acceptable mainly because it
has a seating capacity of four and a medium safety rating.

Conservative explanation
Even though this car has a high buying price, the AI system
deems this car acceptable mainly because it has a seating
capacity of four and a medium safety rating. However, if
this car had a seating capacity of two, then the AI system
would deem it unacceptable.

Unifying explanation
The AI system deems this car acceptable mainly because it
has a seating capacity of four and a medium safety rating. In
fact, 85 out of 100 cars with a seating capacity of four
and a medium safety rating are deemed acceptable by the
AI system.

at non-expert users, whose goals are to obtain a
basic understanding of the reasons for a prediction,
and to decide on a course of action. Specifically,
we generate three types of explanations, simple,
conservative and unifying,1 and examine their in-
fluence on the achievement of these goals.

Table 1 illustrates these explanations for our ML
model’s prediction for an instance in the Car Eval-
uation dataset (Dua and Graff, 2017), which con-
tains features and feature values of cars, and their
acceptance status (acceptable or unacceptable).

A simple explanation implements Ockham’s Ra-
zor. It presents the most influential feature values

1These terms and their meaning are sourced from the liter-
ature on Explanatory Virtues (Kuhn, 1977; van Cleave, 2016).
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that lead to a predicted outcome. These explana-
tions are the baseline in our evaluation (Section 4).

A conservative explanation decreases the degree
to which we find an outcome surprising (increases
its expectedness). It comprises a simple explana-
tion plus a concessive-contrastive and a counterfac-
tual component — the former acknowledges fea-
ture values that would normally yield an outcome
that differs from the predicted one, and the latter
mentions the fewest changes required to get the
not-predicted outcome. These components have
strong support in the eXplainable Artificial Intelli-
gence (XAI) literature (Biran and McKeown, 2017;
Guidotti et al., 2019; Maruf et al., 2023; Miller,
2019; Sokol and Flach, 2020; Stepin et al., 2020;
van der Waa et al., 2018).

Finally, a unifying explanation conveys the ex-
tent of the coverage of a prediction to other entities
— in our case, these are instances that have the same
influential feature values as those of the instance
at hand (but may differ with respect to other val-
ues). It comprises the simple explanation plus a
component that communicates the proportion of in-
stances with the same influential feature values and
the same predicted outcome as the current instance.
This type of explanation has been considered only
in (Buçinca et al., 2020).

In this paper, we offer new algorithms for gen-
erating simple, conservative and unifying explana-
tions of the outcomes of logistic regression models.
These models, which are widely used in healthcare
and the social sciences, are considered transparent,
i.e., they are “interpretable by a Machine Learn-
ing expert or a statistician” (Biran and McKeown,
2017). It is important to explain the predictions
of transparent models because (1) these models
are commonly used as local surrogate explainer
models that approximate neural networks for an in-
stance of interest (Section 2); (2) transparent mod-
els are employed when the data are insufficient for
neural models; and (3) even if transparent models
are understandable by ML experts, they may be
unclear to lay practitioners and end users.

We conducted a user study to evaluate our ex-
planations. Our main findings are that conserva-
tive and unifying explanations are deemed largely
equivalent, are liked more than simple explanations,
and are deemed more complete, more helpful for
understanding the AI’s reasoning and more entic-
ing to act than simple explanations. Also, users’
views about explanations are influenced by the
(dis)agreement between the AI’s predictions and

users’ estimates of these predictions, and by the
inclusion/omission of features users expect to see
in explanations.

This paper is organised as follows. Section 2
discusses related work, Section 3 describes our
explanation-generation algorithms. Our user study
appears in Section 4 and its results in Section 5.
Section 6 discusses key findings and future work.

2 Related research

The sub-field of XAI focuses on explaining the
predictions made by ML models. In particular,
neural networks have received a lot of attention,
owing to their superior performance on one hand,
and their opaqueness on the other hand.

Transparent models as local surrogate explainers.
Linear regression, decision rules and decision
trees have been used to this effect. Under linear
regression, an explanation is cast as a linear
combination of the input features of a model,
where the coefficients are learned by perturbing
the features in the local neighbourhood of an
instance of interest (Ribeiro et al., 2016), or by
approximating a feature’s Shapley value (Kokalj
et al., 2021; Lundberg and Lee, 2017). The
explanations generated by these systems comprise
feature attributions that represent the contribution
of important features to a model’s prediction.
Looking at decision rules, Ribeiro et al. (2018)
search for the smallest set of “anchor rules” that
describes the largest part of the input space and
respects a precision threshold. The works that ap-
proximate the local neighbourhood of an instance
via decision trees specify this neighbourhood in
different ways; they also consider contrastive and
counterfactual explanations (Guidotti et al., 2019;
van der Waa et al., 2018).

Transparent models in their own right. There
has also been research on directly explaining the
predictions of two main types of transparent mod-
els, viz decision trees and linear classifiers, such as
logistic regression and linear SVMs. Decision trees
differ from linear models in that in decision trees,
the contributions of feature values to a prediction
are contextualised in light of the contributions of
other feature values, and only the features that are
relevant to a prediction appear in the path from the
root of the tree to that prediction. In contrast, in
linear models, the contributions of feature values
are independent of each other, and all the feature
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values contribute to the outcome, generally to dif-
ferent extents.

The predictions made by decision trees are gen-
erally explained by tracing the path from the root to
a predicted outcome (Guidotti et al., 2019; Stepin
et al., 2020). In addition, contrastive and/or coun-
terfactual explanations have been generated to en-
hance the explanations of decision tree predic-
tions (Maruf et al., 2023; Sokol and Flach, 2020;
Stepin et al., 2020). Looking at linear classifiers,
Biran and McKeown (2017) incorporated unex-
pected effects of individual features in their expla-
nations of the predictions of a logistic regressor,
but they did not consider unexpected predictions,
as done in our concessive-contrastive explanations.
Ustun et al. (2019) solved a discrete optimisation
problem to generate a list of actionable changes
in feature values that would cause a linear classi-
fication model to yield a desired outcome. Their
approach aims to provide recourse to people who
have been disadvantaged by such a model, rather
than conveying the fewest changes that yield a dif-
ferent outcome.

3 Generating Explanations
Our explanation-generation algorithms receive
three main inputs: an instance xxx, a logistic regres-
sion model denoted fβββ , and an outcome y predicted
by the model for the instance in question; the in-
stance xxx comprises features {x1, . . . , xN}, each
associated with a value. In this section, we spec-
ify the logistic regression classifier employed in
our research, and describe algorithms that generate
simple, conservative and unifying explanations for
the outcomes produced by this classifier.

3.1 Logistic regression model
Since our dataset comprises only categori-
cal features, we used a one-hot vector rep-
resentation, such that the logistic regression
model learns a weight for each feature value,
{x1,1, . . . , x1,m1 , . . . , xN,1, . . . , xN,mN

}, where
mi denotes the number of values associated with a
particular feature xi, for i = 1, . . . , N .

For a multinomial classification problem (one
versus the rest), this yields a model fβββ parame-
terised by an intercept βc,0 for each class c (the
intercepts are collectively denoted as βββ0), and coef-
ficients for each feature value for each class c,βββc =
{βc,1,1, . . . , βc,1,m1 , . . . , βc,N,1, . . . , βc,N,mN

}.
For a binary classification problem, fβββ contains

parameters (intercept and the coefficients for each

Table 2: Classes, features and feature values (in de-
scending order of desirability), logistic regression coef-
ficients and intercept for the Car Evaluation dataset; fea-
ture values of the sample car from Table 1 are shaded.

Classes Acceptable, Unacceptable
Feature Feature values and coefficients
Buying price low medium high very high

0.94 0.62 −0.45 −1.11
Maintenance cost low medium high very high

0.68 0.58 −0.29 −0.97
Number of doors five four three two

0.25 0.19 0.10 −0.54
Seating capacity four > four two

1.48 1.28 −2.76
Luggage boot size big medium small

0.43 0.19 −0.63
Safety rating high medium low

1.64 0.94 −2.58
Intercept −1.67

feature value) only for the positive outcome; the
parameters of the negative outcome are obtained by
negating the parameters for the positive outcome.
The intercept represents the log odds of the positive
outcome for the reference feature values — for our
one-hot vector representation, this corresponds to
0 for each feature value. For instance, the intercept
−1.67 in Table 2 means that a car where all feature
values are absent or unknown has a probability of
e−1.67

1+e−1.67 = 0.158 of being acceptable.

3.2 Generating simple explanations
Intuitively, the feature values of interest for ex-
plaining a prediction are those having positive co-
efficients for that prediction. To obtain this set of
feature values, we first separate the feature values
with positive and negative coefficients, and then
sort the feature values with positive coefficients
in descending order, starting with the most posi-
tive. The simplest explanation comprises x̂xxsimp –
the smallest set of feature values with positive co-
efficients that can overcome the net effect of the
feature values with negative coefficients and a neg-
ative intercept in order to yield the predicted out-
come. This reasoning is formalised in Algorithm 1
(Appendix A).

As an example, consider the feature values of
the Car Evaluation dataset and their coefficients in
a binary logistic regression model (Table 2), and
the feature values of the sample car from Table 1
(shaded in Table 2). Those with positive coeffi-
cients are: number of doors (four), seating capac-
ity (four), luggage boot size (big) and safety rating
(medium). Buying price (high) and maintenance
cost (high) have negative coefficients. After sorting
the feature values with positive coefficients, we get:
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seating capacity>safety rating>luggage boot size
> number of doors. The minimal set of feature
values that can overcome the intercept and the fea-
ture values with negative coefficients is x̂xxsimp =
{seating capacity (four), safety rating (medium)}.

After the feature values x̂xxsimp have been se-
lected, an explanation is produced by the fol-
lowing programmable template: “The AI system
deems this car Phraseoutcome(y) mainly because it
has Phrasefeature(x̂xxsimp)”, where Phraseoutcome(y) is a
function that articulates an outcome (e.g., “accept-
able”), and Phrasefeature(x̂xxsimp) is a function that
articulates a list of feature values (e.g., [mainte-
nance cost: low ⇒ “low maintenance cost”]) in
decreasing order of importance for a prediction.2

The resultant text appears in Table 1.

3.3 Generating conservative explanations
Conservative explanations account for outcomes
that appear surprising in light of background knowl-
edge (Schupbach and Sprenger, 2011; van Cleave,
2016). For instance, this happens in the car do-
main when a car with a high buying price and high
maintenance cost is deemed acceptable (Table 1).
Our conservative explanations address such sur-
prises by including two components: concessive-
contrastive and counterfactual. The concessive-
contrastive component acknowledges feature val-
ues that would normally lead to an outcome that
differs from the predicted one. These feature values
are overcome by the feature values in the simple ex-
planation, which explain the surprising (predicted)
outcome. The counterfactual component conveys
minimal changes in feature values that would yield
the outcome that was not predicted.

Algorithm 2 (Appendix A) presents our proce-
dure for generating a conservative explanation for
a prediction made by a logistic regression classi-
fier. First, we obtain the feature values that lead
to the predicted outcome, i.e., those in the simple
explanation (x̂xxsimp); next, we derive the feature val-
ues for the concessive-contrastive component (x̂xxcc);
and then we determine the feature values for the
counterfactual component (x̂xxcf).

Concessive-contrastive component (Algorithm 4,
Appendix A). We first find the feature values
whose coefficients disagree with the prediction, i.e.,
those with negative coefficients for the classifier of
class y. We then select the most influential of these
feature values as follows: (i) sort the feature values

2We eschew varying the generated text, e.g., by using Large
Language Models, as this may vitiate the experiment.

with negative coefficients in ascending order, start-
ing with the most negative; and (ii) choose the fea-
ture value with the most negative coefficient, and
all feature values with coefficients within 100×τ%
of the most negative coefficient, where τ is a tun-
able parameter. For our experiments, we set τ to
0.75, which means that we include feature values
whose coefficients are 75% or more of the most
negative coefficient. This value of τ , which was
empirically obtained, enables us to balance the in-
fluence of feature values and the number of feature
values included in the concessive-contrastive com-
ponent of an explanation.

To illustrate, let’s revisit the sample car in Ta-
ble 1. As seen in Table 2, the feature values that
have negative coefficients are high buying price
(−0.45) and high maintenance cost (−0.29). Since
0.29<τ × 0.45, x̂xxcc = {buying price (high)}.

Counterfactual component (Algorithm 5, Ap-
pendix A). We find the minimal number of changes
in feature values that yield an unsurprising (not pre-
dicted) outcome y′3 — this approach is appropriate
for logistic regression models, which assume that
features are independent.

To determine the impact of all possible changes
in the value of a feature on achieving the unsurpris-
ing outcome y′, for each feature, we compute the
difference between the coefficient for each value
not in xxx and the coefficient of the value in xxx based
on the classifier for y′; this yields a list of differ-
ences denoted δδδy′ . A positive δ means that we are
moving towards the unsurprising outcome y′, while
a negative δ means that we are moving away from
y′; hence, we consider only positive δs. To propose
the minimal number of changes, we first sort the
features in descending order of their maximum po-
tential impact (largest δ), and within each feature,
we sort the change in value in ascending order of
δ. That is, we start with the smallest change in the
maximum-impact feature.

To illustrate, consider the changes depicted in
Table 3, which decrease the acceptability of our
sample car. After sorting the features in descending
order of their highest δ, we get: seating capacity
(4.24)> safety rating (3.52)> luggage boot size
(1.06)>number of doors (0.73)>maintenance cost
(0.68)>buying price (0.66). We select seating ca-
pacity, and start by replacing the value four with

3We minimise the number of changes, rather than the mag-
nitude of change, because the relative importance of different
features (e.g., seating capacity versus maintenance cost) and
feature values depends on users’ priorities.
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Table 3: Changes in feature values that would make the
sample car less acceptable, and “gain” towards unac-
ceptability (δ).

Feature Value change(s) (δ) (δ)
buying price high ⇒ very high (0.66)
maintenance cost high ⇒ very high (0.68)
number of doors four ⇒ three (0.09); two (0.73)
seating capacity four ⇒ > four (0.20); two (4.24)
luggage boot size big ⇒ medium (0.24); small (1.06)
safety rating medium ⇒ low (3.52)

‘> four’. Since this does not change the prediction,
we replace it with two, which makes the car unac-
ceptable. Hence, x̂xxcf = {seating capacity (two)}.
If the car had still been acceptable, we would have
proceeded to safety rating, and so on.

Composing the explanation. After selecting the
feature values x̂xxsimp, x̂xxcc and x̂xxcf, an explanation
is produced by the following template: “Even
though this car has Phrasefeature(x̂xxcc), the AI sys-
tem deems this car Phraseoutcome(y) mainly because
it has Phrasefeature(x̂xxsimp). However, if this car had
Phrasefeature(x̂xxcf), then the AI system would deem it
Phraseoutcome(y′).” Table 1 shows the resultant text.

3.4 Generating unifying explanations
Unifying explanations embody an inductive reason-
ing style. They indicate the extent of the applicabil-
ity of an ML model’s predictions to other entities
which are similar to the instance at hand.

Algorithm 3 (Appendix A) presents our pro-
cedure for generating these explanations. First,
we obtain the feature values that lead to the pre-
dicted outcome, i.e., those in the simple explana-
tion (x̂xxsimp). Next, we find the ηx̂xxsimp training in-
stances that have the feature values mentioned in
the simple explanation of the current instance, and
determine how many of these training instances
have the same predicted outcome as the current in-
stance, ηx̂xxsimp,y. A unifying explanation is produced
by a programmable template that presents the
simple explanation followed by the proportion of
ηx̂xxsimp,y out of the reference training instances ηx̂xxsimp :
“The AI system deems this car Phraseoutcome(y)
mainly because it has Phrasefeature(x̂xxsimp). In
fact, Phraseprop(ηx̂xxsimp,y, ηx̂xxsimp) cars that have
Phrasefeature(x̂xxsimp) are deemed Phraseoutcome(y) by
the AI system”, where Phraseprop(ηx̂xxsimp,y, ηx̂xxsimp) is

articulated as “100×
ηx̂xxsimp,y

ηx̂xxsimp
out of 100” if the ratio

is less than 1, and as “all 100” otherwise. We use
proportion out of a referent, rather than percentage,
in line with the recommendations in (Gigerenzer,
2003); the referent is set to 100 to avoid presenting

referents of different magnitudes for different cars,
which may introduce a ratio bias (Spiegelhalter,
2017). The resultant text appears in Table 1.

4 Experimental Setup

We consider two research questions:
RQ1: How do the three types of explanations
compare to each other in terms of completeness
(no missing information), presence of mislead-
ing/contradictory/irrelevant information, users’ un-
derstanding of the AI’s reasoning for a predicted
outcome, and enticement to act on the predic-
tion (Hoffman et al., 2018), and the extent to which
an explanation is liked?
RQ2: Which independent variables influence
users’ views about the three types of explanations?

We first describe our dataset and classifier, fol-
lowed by the user study and our results.4

4.1 Dataset and logistic regression model
We chose the Car Evaluation dataset from the
UCI Machine Learning Repository (Dua and Graff,
2017), owing to the general accessibility of its do-
main and concepts — this dataset has relatively few
features, and users are familiar with their semantics.
The difficulty faced by users when predicting the
acceptability of a car pertains to understanding the
combined impact of several feature values, which
may have opposite effects on an outcome.

The Car Evaluation dataset was pre-processed
as described in Appendix B, yielding a balanced
binary dataset comprising 518 acceptable cars and
518 unacceptable cars. The dataset was split into
80% training and 20% test sets using proportional
sampling.

We trained a binary logistic regression model
with the features shown in Table 2, using the API
provided by scikit-learn (Pedregosa et al., 2011);
the coefficients of this model appear in Table 2.
This model achieved an accuracy of 96.26% and
95.67% on the training and test set respectively.
We did not cross-validate, as average classifier ac-
curacy is tangential to this research.

4.2 User study
After signing a consent form, participants filled a
demographic questionnaire and proceeded to the
body of the survey.

4We have addressed the recommendations for human eval-
uation in (Howcroft et al., 2020). The experiment and data are
available here.

https://umlt.infotech.monash.edu/?page_id=575
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4.2.1 Survey design
The design of the survey was similar to that
in (Maruf et al., 2023). The survey began with a
narrative immersion, where participants were told
that they have a car dealership, and are trialing an
AI system to help them predict whether a car was
acceptable or unacceptable for sale at their dealer-
ship. Participants were then shown the features and
values that are input to the AI, and asked which fea-
tures were important to them in order to determine
the acceptability of a car; this was followed by a
brief account of how an AI system makes predic-
tions (Figure 1, Appendix C). To set up a baseline
for users’ pre-existing beliefs, next, participants
were shown a test car, and for each feature value of
this car, they were asked whether it should make
the car more (un)acceptable for the AI; they were
then asked to estimate the AI-predicted outcome
for the test car, and to enter their confidence level
in this estimate.

In the main part of the survey, participants were
shown four car scenarios in random order. To detect
unreliable responses, we inserted an attention ques-
tion after each scenario, where users had to indicate
whether a neutral statement about background in-
formation in the scenario or an explanation was
true or false. A short version of the Matching Fa-
miliar Figures Test (Cairns and Cammock, 1978)
was given between scenarios as a filler.

Scenarios. We chose four car scenarios with di-
verse feature values, where a car was predicted as
acceptable in two scenarios and as unacceptable
in the other two. Each scenario began by showing
the features of a car with their values (Table 1).
For each feature value of the car, users were asked
whether it should make the car more (un)acceptable
for the AI; they were then asked to estimate the out-
come predicted by the AI, and to indicate their
confidence in this estimate (Figure 2, Appendix C).
On the next page, users were shown the prediction
made by the logistic regressor, and given three side-
by-side explanations for this prediction: simple,
conservative and unifying (Figure 3, Appendix C).
The side-by-side configuration of these explana-
tions was randomised between scenarios, but all
the participants saw the same configuration for a
given scenario.

Participants’ views about explanations. A 7-
point Likert scale was used throughout our ex-
periment, in line with recent best practice recom-
mendations in (van der Lee et al., 2021). Partici-

Table 4: Descriptive statistics – two options with the
most participants; domain familarity was self-rated.

Question Option #Part. (40)
Gender Male / Female 23 / 15
Age 25-34 / 35-44 17 / 12
Ethnicity Caucasian / East Asian 30 / 6
English proficiency High 40
Education Bachelor / Some college 16 / 14
ML expertise Low / Medium 23 / 17
Domain familiarity Average / Good 15 / 13

pants were asked to enter their level of agreement
(‘Strongly disagree’: 1 to ‘Strongly agree’: 7) with
statements about four attributes of an explanation,
sourced from Hoffman et al.’s (2018) Explanation
Satisfaction Scale: (1) it is complete, (2) it con-
tains misleading/contradictory/irrelevant informa-
tion, (3) it helps understand the AI’s reasoning, and
(4) it entices to act on the prediction (Figure 3, Ap-
pendix C). Participants were then asked to rate how
much they liked each explanation (‘Dislike a great
deal’: 1 to ‘Like a great deal’: 7), and to indicate
which features that had been omitted from the ex-
planations they expected to see, followed by an
attention question (Figure 4, Appendix C).

4.3 Participants
Our survey was implemented in the Qualtrics
platform, and conducted on CloudResearch (Lit-
man and Robinson, 2020) and Connect (a
CloudResearch platform). Participants spent about
25 minutes on the experiment on average, and they
were paid $10 USD. Their responses were validated
based on their answers to the attention questions
and the time they spent on the experiment, yielding
40 valid responses out of 42.5 Table 4 shows de-
scriptive statistics for the 40 retained participants.

5 Results
We addressed the research questions as follows.
(RQ1) We compared the ratings given by users to
the simple, conservative and unifying explanations
for the four explanatory attributes and the extent to
which an explanation was liked (Section 5.1).
(RQ2) We analysed the influence of three indepen-
dent variables on users’ ratings of our explanation
types: acceptance status of a car (acceptable or un-
acceptable), (dis)agreement between the outcome
predicted by the AI and users’ estimates of these
predictions, and whether features expected by users
were omitted from explanations (Section 5.2). Ac-
cording to Lombrozo (2016), explanation length

5The two rejected participants scored 50% on the attention
questions, while most participants scored 100%.

www.cloudresearch.com
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Table 5: Comparison between ratings of explanation
types: mean (standard deviation); a lower score is better
for Misleading/Contradictory/Irrelevant, and a higher
score is better for the other attributes.

Mean (standard deviation)
Attribute Simple Conservative Unifying
Complete 3.71 (1.72) 5.02 (1.85) 4.78 (1.79)
Misleading/. . . 2.12 (1.37) 2.30 (1.52) 2.14 (1.39)
Understand AI 4.43 (1.72) 5.64 (1.37) 5.58 (1.36)
Entice to act 5.13 (1.56) 5.55 (1.54) 5.59 (1.48)
Liked by users 3.40 (1.63) 5.21 (1.81) 5.18 (1.52)

affects users’ views. However, in our case, length
is highly correlated with explanation type, hence
length was excluded from our analysis.

Statistical significance was calculated using
Wilcoxon rank-sum tests for unpaired variables,
and Wilcoxon signed-rank tests for paired ratings
of different types of explanations. Significance
was adjusted using Holm-Bonferroni correction for
multiple comparisons (Holm, 1979).

5.1 Comparison between explanation types
Table 5 shows the means and standard deviations
of the users’ ratings of the three explanation types
for the four explanatory attributes and the extent
to which an explanation was liked. We performed
pairwise comparisons between the ratings of the ex-
planation types (Wilcoxon signed-rank test; statis-
tical significances appear in Table 9, Appendix D).
Our results indicate that (i) there was no difference
between the explanation types in terms of mislead-
ing/contradictory/irrelevant information; (ii) con-
servative and unifying explanations were deemed
better than simple explanations for the other three
explanatory attributes and the extent to which an
explanation was liked (p-value < 0.001); and
(iii) conservative and unifying explanations were
deemed equivalent for all the explanatory attributes
and the extent to which an explanation was liked,
but there is a trend whereby conservative explana-
tions were deemed more complete than unifying
explanations (0.05 < p-value < 0.1).

Finding 1 Conservative and unifying explanations
are deemed better than simple explanations, and
unifying explanations are deemed largely equiva-
lent to conservative explanations.

Our finding about conservative versus simple ex-
planations is consistent with the results in (Maruf
et al., 2023) about contrastive versus simple ex-
planations. However, our finding about unifying
versus simple explanations is somewhat at odds
with Buçinca et al.’s (2020), where simple explana-
tions were preferred for decision-making tasks.

5.2 Effect of independent variables
Acceptance status of a car. Even though the ac-
ceptance status of a car is domain specific, we con-
sider this variable, as the notions of acceptance
and rejection are general. We split the participant
responses according to the predicted outcome (ac-
ceptable or unacceptable), and for each outcome,
we compared users’ ratings of each pair of expla-
nation types. Our results indicate that the statis-
tical significances obtained from the initial pair-
wise comparisons between explanation types (Sec-
tion 5.1) largely held (Table 10, Appendix D), ex-
cept for enticement to act on the AI’s prediction
of an unacceptable outcome, where conservative
and unifying explanations were deemed equivalent
to simple explanations. Also, the trend whereby
conservative explanations are deemed more com-
plete than unifying explanations is exhibited only
for unacceptable cars.

Finding 2 The predicted outcome had little effect
on the results reported in Finding 1.

(Dis)agreement between the AI’s predictions and
users’ estimations of these predictions. Maruf
et al. (2023) found that contrastive explanations
which address users’ potential expectations are par-
ticularly valuable when an AI’s predictions (made
by a decision tree) disagree with users’ estimates
of these predictions. Here, we determine whether
this finding holds for conservative explanations of
the predictions of a logistic regressor, which have a
contrastive aspect, and whether it extends to unify-
ing explanations. To this effect, we compare users’
ratings of each pair of explanation types for AI Pre-
dict = User Predict and AI Predict ̸= User Predict
(84% and 16% of the responses respectively).

Our results indicate that the statistical signifi-
cances obtained from the initial pairwise compar-
isons between explanation types (Section 5.1) held
when the AI’s predictions agreed with users’ es-
timates of these predictions (Table 6). However,
when they disagreed, conservative and unifying
explanations were statistically significantly better
than simple explanations only for liking an expla-
nation (last row of Table 6). This result, which is
not in line with the findings in (Maruf et al., 2023)
for contrastive explanations, could be partially at-
tributed to the small sample size of AI Predict ̸=
User Predict (35 samples).

Finding 3 Conservative and unifying explanations
are deemed better than simple explanations when
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Table 6: Effect of (dis)agreement between ML model predictions and users’ estimates of these predictions on ratings
of explanations: mean (standard deviation) and statistical significance (Wilcoxon signed-rank test); a lower score
is better for Misleading/Contradictory/Irrelevant, and a higher score is better for the other attributes; statistically
significant results are boldfaced.

Mean (standard deviation) Statistical Significance

Attribute AI Predict vs Simple Conservative Unifying Simple vs Simple vs Unifying vs
User Predict Conservative Unifying Conservative

Complete AI=User 3.68 (1.70) 5.06 (1.81) 4.78 (1.76) 6.88E-10 6.42E-10 0.187
AI ̸=User 3.84 (1.86) 4.80 (2.08) 4.76 (1.98) 0.819 0.826 1

Misleading/Contra- AI=User 2.05 (1.29) 2.21 (1.42) 2.06 (1.34) 1 1 1
dictory/Irrelevant AI ̸=User 2.52 (1.68) 2.76 (1.90) 2.60 (1.63) 1 1 1
Understand AI=User 4.41 (1.68) 5.69 (1.34) 5.64 (1.30) 6.89E-12 3.31E-14 1
AI’s reasoning AI ̸=User 4.52 (1.98) 5.40 (1.52) 5.24 (1.61) 0.777 1 1

Entice to act AI=User 5.28 (1.44) 5.71 (1.40) 5.73 (1.33) 2.50E-03 4.87E-05 1
AI ̸=User 4.32 (1.90) 4.68 (1.97) 4.84 (2.01) 1 1 1

Liked by users AI=User 3.46 (1.62) 5.25 (1.79) 5.20 (1.53) 1.56E-10 6.60E-15 1
AI ̸=User 3.04 (1.64) 4.96 (1.94) 5.00 (1.50) 0.024 4.99E-03 1

the AI’s predictions agree with users’ estimates
of these predictions, and are deemed at least as
good as simple explanations when the predictions
disagree.

Features omitted from an explanation. Dale and
Reiter (1995) showed that descriptions with su-
perfluous attributes were preferred to minimal de-
scriptions. This prompted us to investigate whether
omitting features that are not influential, but are
expected by users, affects users’ views about ex-
planations. To this effect, we asked participants to
point out features they expected to see, but were
omitted from the explanations for each scenario. At
least 75% of the participants selected buying price
when it was omitted, and each omitted feature was
chosen by at least six participants (Table 11, Ap-
pendix D).

We then compared the ratings of explanations
that omitted expected features with the ratings of
explanations that had no omissions. Since con-
servative explanations contain the largest number
of features, and simple and unifying explanations
contain only features with values that have a pos-
itive impact on a predicted outcome, we consid-
ered only conservative explanations in our analy-
sis. We found that explanations that omit features
expected by users were statistically significantly
less liked and deemed less complete than explana-
tions that include all expected features (Wilcoxon
rank-sum test, p-value < 0.05; Table 7); and
there is a trend whereby explanations that omit
expected features were deemed to be more mis-
leading/contradictory/irrelevant than explanations
that have no omissions (0.05 < p-value < 0.1).
These results indicate that users may perceive some
domain-specific features to be essential, regardless

Table 7: Effect of omitted feature values on ratings of
conservative explanations: mean (std. dev.) and sta-
tistical significance (Wilcoxon rank-sum test); a lower
score is better for Misleading/Contradictory/Irrelevant,
and a higher score is better for the other attributes; sta-
tistically significant results are boldfaced, and trends
(0.05 < p-value < 0.1) are italicised.

Mean (std. dev.) Stat. Sig.
Attribute Omitted Not omitted Omit vs Not omit
Complete 4.84 (1.88) 5.76 (1.52) 0.027
Misleading/. . . 2.42 (1.56) 1.76 (1.14) 0.064
Understand AI 5.58 (1.34) 5.90 (1.49) 0.121
Entice to act 5.48 (1.54) 5.83 (1.53) 0.121
Liked by users 5.05 (1.84) 5.86 (1.56) 0.022

of their influence on the outcome, and omitting
these features from explanations adversely affects
users’ views.

Finding 4 Explanations that omit expected fea-
tures are liked less and are deemed less complete
than explanations that have no such omissions.

6 Conclusion
We have offered algorithms that generate simple,
conservative and unifying explanations for pre-
dictions made by a logistic regressor; and we re-
ported the results of a user study where we evalu-
ated these explanations in terms of the extent to
which they were liked and four explanatory at-
tributes, viz completeness, presence of mislead-
ing/contradictory/irrelevant information, helpful-
ness to understand the AI’s reasoning, and entice-
ment to act on the AI’s prediction. We also consid-
ered the influence of three independent variables on
users’ views about our explanations, viz predicted
outcome, (dis)agreement between the AI’s predic-
tion and users’ estimates of these predictions, and
presence/absence of features users expect to see in
explanations.
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Comparison between explanation types. Our
results show that conservative and unifying expla-
nations are better liked than their simple counter-
parts, and are deemed more complete, more helpful
to understand the AI’s reasoning, and more entic-
ing to act on the AI’s prediction; and that unifying
explanations are deemed largely equivalent to con-
servative explanations. In the future, it would be
interesting to compare an explanation that com-
bines conservative and unifying explanations with
each of these explanation types.

Effect of independent variables. Firstly, the out-
come predicted by the AI has little effect on users’
views about our explanations.

Second, conservative and unifying explanations
are deemed better than simple explanations when
the AI’s predictions agree with users’ estimates
of these predictions. However, when they dis-
agree, conservative and unifying explanations are
only liked better than simple explanations, and are
deemed equivalent for the other attributes. This
result may be partially attributed to the small num-
ber of data points for disagreement. In addition,
these findings with respect to conservative expla-
nations, which have a contrastive component, are
at odds with those in (Maruf et al., 2023), where
contrastive explanations of decision-tree predic-
tions were particularly favoured when the AI’s pre-
dictions and users’ estimates of these predictions
disagreed. This suggests that the factors that af-
fect users’ views about explanations may be more
nuanced than simply having a contrastive aspect,
e.g., whether a contrastive component explicitly
mentions the expectations it is addressing, as done
in (Maruf et al., 2023).

Finally, users have domain-specific expectations
about features that should appear in explanations,
regardless of their effect on the outcome, and not
meeting these expectations adversely affects users’
views about explanations.

Limitations and future work

User study. We could not recruit real users who
were personally engaged with our car-dealership
setting. This is a well-known problem in evaluating
NLG systems, which we tried to mitigate by using
a generally accessible domain, and a narrative im-
mersion at the start of our experiment.

Dataset and algorithms. Our dataset has only
categorical features, which are handled by our one-
hot encoding. In the future, we will adapt our

algorithms to numerical and ordinal features.
Our dataset comprises six variables, each with

3-4 values. This relatively small number is consis-
tent with the state-of-the-art for generating textual
explanations of the outcomes of transparent ML
models (Maruf et al., 2023; Stepin et al., 2020).
However, in the future, our explanation-generation
algorithms should be adapted to handle datasets
with a large number of features — even though
our algorithms select feature values with the high-
est impact, it is possible that when the feature set
is large, the generated explanations could become
quite lengthy.

Our algorithms for generating simple, conces-
sive and counterfactual explanations are linear in
the number of feature values, except for the sort-
ing steps of positive or negative coefficients. Our
algorithm for generating unifying explanations ex-
amines the training instances in the dataset to deter-
mine the model’s predictions for instances with the
same feature values as the instance at hand. How-
ever, sampling can be used, instead of examining
the entire training set.

Our algorithm for generating unifying explana-
tions is model agnostic, while the other algorithms
were developed for logistic regressors. However,
these algorithms are directly applicable to other
feature-attribution models, and are generalisable to
linear classifiers that use linear discriminant func-
tions, such as perceptrons and linear SVMs, and
log-linear models, such as Naïve Bayes.

Communicative goals and uncertainty. We con-
sidered two user goals: understanding the AI’s rea-
soning and acting on its prediction. However, ML
models are not 100% accurate, so another impor-
tant goal is to enable users to determine the trust-
worthiness of a prediction (Buçinca et al., 2020;
Cau et al., 2023). This goal is related to another
limitation of our work, viz our explanations omit
information about the accuracy of an ML model
— an issue that is investigated in (Zukerman and
Maruf, 2024).
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A Algorithms

Algorithm 1 Generate Simple Explanation
1: xxx: the feature values of an instance in the test set
2: fβββ : the logistic regression model
3: y: the model’s prediction for instance xxx
4: N : the number of features in the dataset
5: procedure GENERATESIMPLE(xxx, fβββ , y, N )
6: ▷ get coefficients corresponding to the feature values

in xxx from the classifier of class y
7: βββxxx

y ← getcoeff(xxx, βββy)
8: ▷ separate the indices of feature values with positive

and negative coefficients
9: IndexIndexIndexpos ← ∅, IndexIndexIndexneg ← ∅

10: βββ
xxxpos
y ← ∅ ▷ positive coefficients in βββxxx

y

11: xxxneg ← ∅ ▷ feature values with negative coefficients
12: for i← 1 to N do
13: if βxxx

y,i < 0 then
14: ▷ collect indices of feature values with nega-

tive coefficients
15: IndexIndexIndexneg ← append(IndexIndexIndexneg , i)
16: ▷ collect feature values with negative co-

efficients
17: xxxneg ← append(xxxneg , xi)
18: else
19: ▷ collect indices of feature values with posi-

tive coefficients
20: IndexIndexIndexpos ← append(IndexIndexIndexpos, i)
21: ▷ collect positive coefficients
22: βββ

xxxpos
y ← append(βββxxxpos

y , βxxx
y,i)

23: end if
24: end for
25: ▷ sort IndexIndexIndexpos in descending order of the positive

coefficients
26: IndexIndexIndexpos-sorted ← sort(IndexIndexIndexpos, βββxxxpos

y , descend)
27: i← 1
28: ▷ get the feature value with the most positive coeffi-

cient
29: x̂xxsimp ← {get-feature-value(Indexpos-sorted

i , xxx)}
30: ▷ iteratively add feature values with positive coeffi-

cients until prediction y is obtained
31: while fβββ(xxxneg ∪ x̂xxsimp) ̸= y do
32: i← i+ 1
33: x̂xxsimp ← append(x̂xxsimp,
34: get-feature-value(Indexpos-sorted

i , xxx))
35: end while
36: return x̂xxsimp
37: end procedure

Algorithm 2 Generate Conservative Explanation
1: xxx: the feature values of an instance in the test set
2: fβββ : the logistic regression model
3: y: the model’s prediction for instance xxx
4: y′: an alternative class (̸= y) for the counterfactual
5: N : the number of features in the dataset
6: τ : a threshold for selecting the concessive feature values
7: feature-values: the list of feature values in the dataset
{x1,1, . . . , x1,m1 , . . . , xN,1, . . . , xN,mN }

8: procedure GENERATECONSERVATIVE(xxx, fβββ , y, y′, N ,
τ , feature-values)

9: ▷ get coefficients corresponding to the feature values
in xxx from the classifier of class y

10: βββxxx
y ← getcoeff(xxx, βββy)

11: x̂xxsimp ← GENERATESIMPLE(xxx, fβββ , y, N )
▷ Algorithm 1

12: x̂xxcc ← GENERATECONCESSIVE(xxx, N , τ , βββxxx
y )

▷ Algorithm 4
13: x̂xxcf ← GENERATECOUNTERFACTUAL(xxx, fβββ , y′ ,
14: feature-values) ▷ Algorithm 5
15: return x̂xxcc, x̂xxsimp, x̂xxcf
16: end procedure

Algorithm 3 Generate Unifying Explanation
1: xxx: the feature values of an instance in the test set
2: fβββ : the logistic regression model
3: y: the model’s prediction for instance xxx
4: N : the number of features in the dataset
5: D: a set of training instances
6: procedure GENERATEUNIFYING(xxx, fβββ , y, N , D)
7: x̂xxsimp ← GENERATESIMPLE(xxx, fβββ , y, N )

▷ Algorithm 1
8: ▷ find the instances in D with the same feature values

as x̂xxsimp and the same prediction
9: ηx̂xxsimp = 0 ▷ same feature values

10: ηx̂xxsimp,y = 0 ▷ same feature values and prediction
11: for each x̂xx ∈ D do
12: if x̂xxsimp ⊆ x̂xx then
13: ηx̂xxsimp = ηx̂xxsimp + 1

14: if fβββ(x̂xx) = y then
15: ηx̂xxsimp,y = ηx̂xxsimp,y + 1
16: end if
17: end if
18: end for
19: return x̂xxsimp, ηx̂xxsimp,y , ηx̂xxsimp
20: end procedure
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Algorithm 4 Generate Concessive Explanation
1: xxx: the feature values of an instance in the test set
2: N : the number of features in the dataset
3: τ : a threshold for selecting the concessive feature values
4: βββxxx

y : coefficients corresponding to the feature values in xxx
from the classifier of class y

5: procedure GENERATECONCESSIVE(xxx, N , τ , βββxxx
y)

6: ▷ get the indices and corresponding coefficients of
feature values with negative coefficients

7: IndexIndexIndexneg ← ∅, βββxxxneg
y ← ∅

8: for i← 1 to N do
9: if βxxx

y,i < 0 then
10: ▷ collect indices of feature values with neg-

ative coefficients
11: IndexIndexIndexneg ← append(IndexIndexIndexneg , i)
12: ▷ collect negative coefficients
13: βββ

xxxneg
y ← append(βββxxxneg

y , βxxx
y,i)

14: end if
15: end for
16: ▷ sort IndexIndexIndexneg in ascending order of the negative

coefficients
17: IndexIndexIndexneg-sorted← sort(IndexIndexIndexneg , βββxxxneg

y , ascend)
18: ▷ get the feature value with the most negative coeffi-

cient
19: x̂xxcc ← {get-feature-value(Indexneg-sorted

1 , xxx)}
20: ▷ get the feature values whose coefficients ≥

τ×[the most negative coefficient]
21: for i← 2 to ||IndexIndexIndexneg-sorted|| do
22: if |βxxxneg

y,i | ≥ |τ × β
xxxneg

y,1 | then
23: x̂xxcc ← append(x̂xxcc,
24: get-feature-value(Indexneg-sorted

i , xxx))
25: else
26: break
27: end if
28: end for
29: return x̂xxcc
30: end procedure

B The Car Evaluation Dataset

This dataset, sourced from (Dua and Graff, 2017),
has 1728 instances and four classes – unacceptable,
acceptable, good and very good, with 70% of the
instances (1210 cars) being unacceptable. In line
with our previous work (Maruf et al., 2023), we
decided to generate a balanced binary classifica-
tion dataset.6 This was done by (i) merging the
instances from three classes (‘acceptable’, ‘good’
and ‘very good’) into one class called ‘accept-
able’, which comprises 518 instances; and (ii) ran-
domly removing 692 instances from the unaccept-
able class, which yields 518 unacceptable instances.
We then split these data into 80% training and 20%
test sets using proportional sampling (the final class
breakdown of the training and test sets appears in
Table 8).

6Recall that our algorithms rely on the values of the coef-
ficients generated by a logistic regression model, hence they
also apply to unbalanced datasets — a cost-sensitive logistic
regressor (Zhang et al., 2022) can be used for such datasets.

Algorithm 5 Generate Counterfactual Explanation
1: xxx: the feature values of an instance in the test set
2: fβββ : the logistic regression model
3: y′: an alternative class (̸= y) for the counterfactual
4: feature-values: the list of feature values in the dataset
{x1,1, . . . , x1,m1 , . . . , xN,1, . . . , xN,mN }

5: procedure GENERATECOUNTERFACTUAL(xxx, fβββ , y′,
feature-values)

6: ▷ for each feature, compute the difference between
the coefficient for each feature value not in xxx and
the coefficient of the feature value in xxx based on the
classifier of y′

7: δδδy′ ← compute-diff-coeff(xxx, βββy′ , feature-values)
8: ▷ sort the features in descending order of their max-

imum positive impact on y′, and for each feature,
sort the values in ascending order of their positive
impact on y′

9: xxxorder ← sort-feature-values-positive(xxx, δδδy′ ,
10: feature-values)
11: xxxnew ← xxx
12: x̂xxcf ← ∅ ▷ the counterfactual feature values
13: ▷ replace a current feature value with a different one

until the outcome switches to y′

14: for xj in xxxorder do
15: xxxnew ← replace-feature-value(xxxnew, xj)
16: if fβββ(xxxnew) = y′ then
17: ▷ find the feature values in xxxnew that are

different from those in xxx
18: x̂xxcf ← get-different-values(xxxnew, xxx)
19: break
20: end if
21: end for
22: ▷ if the value of a feature in x̂xxcf is not the highest

impact one, add the higher impact values of that
feature to x̂xxcf

23: x̂xxcf ← append(x̂xxcf,
24: get-higher-impact-feature-values(x̂xxcf, xxxorder))
25: return x̂xxcf
26: end procedure

Table 8: Breakdown of classes for the training and test
sets in the Car Evaluation dataset.

Partition Unacceptable Acceptable Total
Training 416 412 828
Test 102 106 208
Total 518 518 1036
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C Screenshots from the experiment

Figure 1: Background information; narrative immersion for the survey; features and feature values of a car;
description of the reasoning of AI systems; preamble to the experiment.
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Figure 2: First page of a car in the main survey: background information about the car; question about whether
the feature values of the car should make it more (un)acceptable for the AI; question about estimating the AI’s
prediction and indicating the confidence level if the estimated outcome is ‘acceptable’ or ‘unacceptable’.
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Table 9: Comparison between ratings of explanation types: mean (standard deviation) of ratings, and statistical
significance (Wilcoxon signed-rank test); a lower score is better for Misleading/Contradictory/Irrelevant, and a
higher score is better for the other attributes; statistically significant results are boldfaced, and trends (0.05 <
p-value < 0.1) are italicised.

Mean (standard deviation) Statistical Significance

Attribute Simple Conservative Unifying Simple vs Simple vs Unifying vs
Conservative Unifying Conservative

Complete 3.71 (1.72) 5.02 (1.85) 4.78 (1.79) 6.73E-11 5.46E-11 0.084
Misleading/Contradictory/Irrelevant 2.12 (1.37) 2.30 (1.52) 2.14 (1.39) 1 1 1
Understand AI’s reasoning 4.43 (1.72) 5.64 (1.37) 5.58 (1.36) 5.06E-13 1.08E-14 1
Entice to act 5.13 (1.56) 5.55 (1.54) 5.59 (1.48) 8.56E-04 1.31E-05 1
Liked by users 3.40 (1.63) 5.21 (1.81) 5.18 (1.52) 3.58E-13 3.30E-15 1

Table 10: Effect of the acceptance status of a car on ratings of explanation types: mean (standard devia-
tion) of ratings, and statistical significance (Wilcoxon signed-rank test); a lower score is better for Mislead-
ing/Contradictory/Irrelevant, and a higher score is better for the other attributes; statistically significant results are
boldfaced, and trends (0.05 < p-value < 0.05) are italicised.

Mean (standard deviation) Statistical Significance

Attribute Acceptance Simple Conservative Unifying Simple vs Simple vs Unifying vs
Status Conservative Unifying Conservative

Complete Acceptable 4.01 (1.62) 5.21 (1.84) 5.21 (1.60) 1.89E-04 9.37E-06 1
Unacceptable 3.40 (1.77) 4.82 (1.84) 4.35 (1.86) 3.14E-06 6.25E-05 0.057

Misleading/ Acceptable 2.06 (1.19) 2.14 (1.38) 2.14 (1.42) 1 1 1
Contradictory/Irrelevant Unacceptable 2.18 (1.52) 2.46 (1.64) 2.15 (1.36) 1 1 0.607

Understand AI’s reasoning Acceptable 4.72 (1.54) 5.90 (1.08) 5.91 (0.87) 3.14E-06 8.06E-08 1
Unacceptable 4.14 (1.85) 5.38 (1.58) 5.24 (1.66) 1.39E-06 1.25E-06 1

Entice to act Acceptable 5.06 (1.52) 5.54 (1.62) 5.76 (1.36) 0.020 1.63E-05 1
Unacceptable 5.20 (1.61) 5.56 (1.46) 5.42 (1.60) 0.337 1 1

Liked by users Acceptable 3.80 (1.50) 5.31 (1.65) 5.50 (1.29) 9.45E-06 1.65E-09 1
Unacceptable 3.00 (1.66) 5.10 (1.96) 4.85 (1.66) 2.81E-07 5.57E-09 1

D Experimental results

Table 9 displays the means and standard deviations
of the users’ ratings of the three explanation types
with respect to the four explanatory attributes and
the extent to which an explanation was liked, and
the statistical significance of the results (Wilcoxon
signed-rank test). Table 10 displays the same rat-
ings broken down according to the acceptance sta-
tus of a car. Table 11 shows the features expected
by users that were omitted from conservative ex-
planations for each car scenario.

Table 11: Number of users who expected to see a fea-
ture that was omitted from our explanations for each
scenario; a feature that was mentioned in our explana-
tions for that scenario is denoted by “–”.
Car # Car16 Car53 Car77 Car80
Feature / Outcome accept accept unaccept unaccept
Buying price – – 30 32
Maintenance cost – – – 12
Number of doors 8 14 12 6
Seating capacity – – – –
Luggage boot size 15 13 – 6
Safety rating – 17 – –
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