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Abstract

Transformer-based pre-trained language mod-
els (PLMs) have achieved remarkable perfor-
mance in various natural language processing
(NLP) tasks. However, pre-training such mod-
els can take considerable resources that are al-
most only available to high-resource languages.
On the contrary, static word embeddings are
easier to train in terms of computing resources
and the amount of data required. In this paper,
we introduce MoSECroT (Model Stitching
with Static Word Embeddings for Crosslingual
Zero-shot Transfer), a novel and challenging
task that is especially relevant to low-resource
languages for which static word embeddings
are available. To tackle the task, we present
the first framework that leverages relative rep-
resentations to construct a common space for
the embeddings of a source language PLM
and the static word embeddings of a target
language. In this way, we can train the PLM
on source-language training data and perform
zero-shot transfer to the target language by sim-
ply swapping the embedding layer. However,
through extensive experiments on two classi-
fication datasets, we show that although our
proposed framework is competitive with weak
baselines when addressing MoSECroT, it fails
to achieve competitive results compared with
some strong baselines. In this paper, we at-
tempt to explain this negative result and provide
several thoughts on possible improvement.

1 Introduction

The emergence of PLMs and their multilingual
counterparts (mPLMs) (Devlin et al., 2019; Con-
neau et al., 2020) have proven effective for various
NLP tasks (Artetxe et al., 2020; ImaniGooghari
et al., 2023). However, such models are mostly lim-
ited to no more than a hundred languages, as the
pre-training requires considerable data that is only
available to these languages, leaving the majority

*Equal contribution.

of the world’s low-resource languages uncovered.
In this work, we explore the possibility of lever-
aging (1) a PLM in a source language, (2) static
word embeddings in a target language, which are
readily available for many low-resource languages
and are much easier to train, and (3) a technique
called model stitching, to enable zero-shot on the
target language without the need to pre-train.

Our contribution is summarized as follows: (i)
we introduce MoSECroT, a novel and challeng-
ing task for (especially low-resource) languages
where static word embeddings are available. (ii)
We propose a solution that leverages relative repre-
sentations to construct a common space for source
(English in our case) and target languages and that
allows zero-shot transfer for the target languages.

2 Related Work

Aligned crosslingual word embeddings enable
transfer learning by benefiting from a shared repre-
sentation space for the source and target languages.
Such embedding pairs are typically either trained
jointly (Hermann and Blunsom, 2014; Vulic and
Moens, 2016) or obtained through post-alignment
(Lample et al., 2018; Artetxe et al., 2018). Our
work applies a transformation in the manner of the
latter to align two embedding spaces where the
source embeddings are derived from a PLM and
target embeddings are static word embeddings.

Based on a recent consensus that similar inner
representations are learned by neural networks re-
gardless of their architecture or domain (Kornblith
et al., 2019; Vulić et al., 2020), Moschella et al.
(2023) propose an approach to align latent spaces
with respect to a set of samples, called parallel an-
chors. They transform the original, absolute space
to one defined by relative coordinates of the parallel
anchors, and denote all the transformed samples in
the relative coordinates as relative representations.

Model stitching was proposed as a way to com-

1



bine (stitch together) components of different neu-
ral models. Trainable stitching layers are first intro-
duced by Lenc and Vedaldi (2015), with a series of
subsequent works demonstrating the effectiveness
of the approach (Bianchi et al., 2020; Bansal et al.,
2021).

3 MoSECroT Task Setting

The task setting is straightforward: given a PLM of
a high-resource language (regarded as the source
language) and static word embeddings of another
language (low-resource and regarded as the target
language), the goal is to achieve zero-shot transfer
by using the target language embeddings directly
with the source language model via embedding
layer stitching. This can be done by first apply-
ing an alignment between the source and target
embedding spaces and subsequently swapping the
embedding matrices of the PLM.

We propose a novel method that leverages rela-
tive representations for embedding space mapping.
In the following, we describe our methodology in
more detail.

4 Methodology

Parallel anchor selection We first extract bilin-
gual parallel lexica between the source and the
target language. For most high-resource languages,
large bilingual lexica are available from MUSE1.
For low-resource languages, we crawl translations
of source language vocabulary from PanLex2 and
Google Translate3. Then we derive a subset of the
lexica as the parallel anchors A for our method: we
only keep those parallel lexica which exist in the
embeddings of source and target languages4.

Relative representations Following Moschella
et al. (2023), we build relative representations
(RRs) for each token in the embedding space based
on their similarities with anchor tokens in the re-
spective language. Specifically, we compute the
cosine similarity of the embedding of each token
with the embedding of each anchor token. This
computation is done in the embedding spaces of the
source and target languages respectively. For exam-
ple, in the source language, the similarity between

1https://github.com/facebookresearch/MUSE
2https://panlex.org
3https://translate.google.com
4The source language is always English and its embeddings

are extracted from English BERT’s (Devlin et al., 2019) token
embeddings. For target languages, embeddings are static word
embeddings from fastText (Bojanowski et al., 2017).

token xi and anchor aj is calculated as follows:

rs(i,j) = cos-sim(Es
{xi},E

s
{aj})

where Es
{xi}, Es

{aj} are the word embedding of xi
and aj in the source PLM embeddings Es. The
relative representation of token xi from the source
language is then defined as follows:

Rs
{xi} = [rs(i,1), r

s
(i,2), r

s
(i,3), · · · , rs(i,|A|)]

Note that the relative representation is sensitive to
the order of the anchors, so the relative representa-
tion for each token is computed with the anchors
in the same order. This computation results in a
matrix Rs ∈ R|V s|×|A| of source language embed-
dings and a matrix Rt ∈ R|V t|×|A| of target lan-
guage embeddings, where |V s| (resp. |V t|) is the
source-language (resp. target-language) vocabulary
size and |A| is the number of parallel anchors.

Embedding mapping The obtained relative rep-
resentations are vectors in R|A| for both source and
target languages. This dimension does not suit the
hidden dimension of the Transformer body of the
source PLM. Therefore, we propose to map the
relative representations of both source and target
languages back to RD, which is the same as the
dimension of Es. Given Es and Rs for source
language (resp. Et and Rt for target language), we
compute the transformed embedding of any token
xi from the source language (resp. any token yi
from the target language) as follows:

F s
{xi} =

∑
n∈N(xi)

(Rs
{xi},n/τ ·Es

{n})∑
n∈N(xi)

Rs
{xi},n/τ

F t
{yi} =

∑
n∈N(yi)(R

t
{yi},n/τ ·Es

{n})∑
n∈N(yi)R

t
{yi},n/τ

where N(xi) (resp. N(yi)) is the set of top-k closest
anchors in terms of the cosine similarity recorded
in Rs

xi
(resp. Rt

yi), Rs
{xi},n (resp. Rs

{yi},n) is
the cosine similarity between Es

{xi} (resp. Et
{yi})

and Es
{n} (resp. Et

{n}), and τ is the temperature.
Note that both the resulting transformed embed-
dings F s

{xi} and F t
{yi} are in RD, because it is

a weighted sum of the anchor embedding in the
source language, i.e., Es

{n}. A simple summary
of the process is to represent any token, no matter
whether it is from the source or target language, as
a weighted sum of the embeddings of some parallel
anchors in the source-language embedding space.
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Zero-shot stitching So far we project the target-
language embeddings to RD, which suits the hid-
den dimension of the Transformer body of the
source language. We also manipulate the orig-
inal token embedding matrix of the source lan-
guage, where the matrix dimensions stay the same:
F s ∈ R|V s|×D. We can simply fine-tune the model
(F s and the Transformer body) on the source-
language train set of a downstream task and then
assemble a target-language model for zero-shot
transfer, without training on the target language. To
do this, we only need to swap the source-language
embeddings F s with target-language embeddings
F t.

5 Experiments

5.1 Setup

We use the cased version of the English BERT
model (bert-base-cased) as the source language
PLM and consider eight target languages. Three
of the target languages are high-resource: German
(de), Spanish (es), and Chinese (zh), and the rest
are low-resource: Faroese (fo), Maltese (mt), East-
ern Low German (nds), Sakha (sah), and Tatar
(tt). Pre-trained static embeddings for all target
languages are available from fastText5, except for
Eastern Low German, for which we download fast-
Text embeddings from Huggingface6.

Using the method proposed in §4, we obtain
pairwise parallel anchors between English and each
target language. The size of the anchor set varies
depending on the vocabulary size of the language’s
embeddings and the overlap between the English
and target language lexica, which is the following
for each target language: 11836 (en-de), 11395
(en-es), 7662 (en-zh), 1577 (en-fo), 2600 (en-mt),
1309 (nds), 3242 (en-sah), and 9275 (en-tt).

We evaluate the proposed method on two text
classification datasets: Multilingual Amazon Re-
views Corpus (Keung et al., 2020) and Taxi1500
(Ma et al., 2023). See §C for details.

Apart from the standard weighting scheme il-
lustrated in §4, we propose two more settings:
one where we apply softmax over relative repre-
sentation weights (in the Embedding mapping
step), and another using sparsemax (Martins and
Astudillo, 2016). Compared to softmax, sparse-

5https://fasttext.cc/docs/en/
pretrained-vectors.html

6https://huggingface.co/facebook/
fasttext-nds-vectors

de es zh

LR 0.52 0.51 0.50
mBERT 0.61 0.65 0.51
LS 0.46 0.46 0.30

RRs standard top-50 0.53 0.51 0.38
RRs softmax top-50 0.50 0.53 0.38
RRs sparsemax top-50 0.56 0.57 0.24

Table 1: Evaluation results on the Amazon Reviews
Corpus. We report macro F1 scores on the test sets
of three high-resource target languages. Bold: highest
score per column.

max produces sparse weight distributions, mean-
ing more similarities are concentrated on fewer
anchors. We conduct preliminary experiments
to identify the optimal top-k closest anchors ∈
{1, 10, 50, 100} and find that the results are best
when using the top 50 anchors. See §A for an ex-
ploration of how different choices of k influence
the performance.

5.2 Baselines

We compare our method against three baselines:

Logistic Regression (LR) We train a simple tar-
get language logistic regression classifier using the
average of static word embeddings of the input sen-
tences. This approach does not require expensive
training of a language model but assumes we have
sufficient target language training data for a spe-
cific downstream task, which is hardly the case for
most low-resource languages in real scenarios.

mBERT We fine-tune multilingual BERT
(mBERT) (Devlin et al., 2019), which is pre-
trained on more than 100 languages, using the
English training data, and perform zero-shot
predictions directly on the target language test
data.

Least squares projection (LS) We propose a
straightforward approach, inspired by embedding
alignment frameworks such as VecMap (Artetxe
et al., 2018), to project target language embeddings
into the same space as the English PLM embed-
dings. Specifically, we learn a transformation ma-
trix W ∈ RDt×D by minimizing ||AtW −As||2F ,
where At ∈ R|A|×Dt

is the embeddings of anchors
in the target language and As ∈ R|A|×D is the em-
beddings of anchors from the English PLM. We
then project all target language embeddings using
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de es zh mt sah fo nds tt

LR 0.30 0.32 0.56 0.38 0.48 0.47 0.18 0.43
mBERT 0.24 0.60 0.62 0.08 0.07 0.18 0.12 0.18
LS 0.14 0.26 0.24 0.08 0.12 0.06 0.08 0.07

RRs standard top50 0.20 0.44 0.28 0.14 0.16 0.16 0.06 0.14
RRs softmax top50 0.20 0.48 0.28 0.15 0.19 0.16 0.06 0.17
RRs sparsemax top50 0.24 0.37 0.13 0.15 0.18 0.20 0.13 0.21

Table 2: Evaluation results on the Taxi1500 dataset. Reported metrics are macro F1 scores on the test sets of eight
target languages. Scores are averaged over five runs with different random seeds. Bold: highest score per column.

W and replace the BERT embedding layer with
the resulting matrix.

5.3 Results

We present evaluation results of RRs with the pro-
posed settings (§5.1) and compare them with the
baselines in Tables 1 and 2. Macro F1 is used due
to class imbalance in both datasets.

We notice that the naive LS baseline is almost
always beaten by the proposed method under mul-
tiple RR settings on both datasets. The only excep-
tion is nds, in Table 2, where both LS and RRs per-
form badly. This observation is a strong indicator
that RRs can better leverage the semantic similarity
encoded in different types of embeddings than LS.

Not very surprisingly, zero-shot with mBERT
is effective for high-resource languages in both
datasets but underperforms LR with large gaps on
low-resource languages in Taxi1500. There are
two possible explanations for this phenomenon.
First, representations in mBERT are not well-
aligned across low-resource languages. This
is possibly due to data sparsity, which is ob-
served by previous work (Wu and Dredze, 2020),
where mBERT archives good performance on high-
resource languages but sub-optimal performance
on low-resource languages. Second, Taxi1500 is a
relatively easy task: a model with good alignment
across languages, especially on the word level, is
expected to perform well. This argument is sup-
ported by a previous work (Liu et al., 2023), where
well-aligned word embeddings achieve better zero-
shot crosslingual performance than mPLMs on a
wide range of languages in Taxi1500.

Although none of the RR settings outperforms
mBERT on high-resource languages (as mentioned
earlier, mBERT has strong crosslingual transfer
ability on high-resource languages), for all five
low-resource languages not seen by mBERT (mt,
sah, fo, nds, tt), RRs outperform mBERT consis-

tently, with varying margins (ranging from +0.12
for sah to +0.01 for nds). This suggests that RRs
can be a promising alternative when a low-resource
language is not covered by an mPLM.

6 Analysis

In this section, we want to propose possible reasons
for the suboptimal results obtained by our frame-
work tackling the MoSECroT task.

Anchor selection The quality of the parallel an-
chors largely relies on the quality of the bilingual
lexica, which may contain, among others, poly-
semous words, that may influence the alignment
quality. Normalization can also be a source of ambi-
guity. For example, MUSE converts all words into
lowercase, so the word sie can have three mean-
ings in the German-English lexicon: you, she, and
they. We (1) only consider one translation (if there
are multiple) for each target language word, which
may not be the most accurate one; and (2) treat
all target language words whose translations are in
the source language vocabulary as anchors, which
increases the frequency of noisy translation pairs.

We try to decrease the influence of potentially
noisy anchor pairs by reducing the number of an-
chors to 3000 and 500 (the original anchor set used
during the preliminary experiments contains 6731
anchors, see §4) through random sampling, fol-
lowing the observation by Moschella et al. (2023)
that uniform selection from an anchor set is both
straightforward and has good performance. We
also remove stop words, whose translations are
more unstable, from the anchor set. Neither of the
two modifications shows an improvement over the
full anchor set (see §B for the comparison). One
possible explanation is that the translation qualities
vary across anchors and thus we cannot predict the
quality of sampled anchors.
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Translation quality We find that a large portion
of translations retrieved from PanLex are of low
quality. This is partly due to PanLex using interme-
diate languages when direct translation is unavail-
able for the language pair. We filter the translations
by empirically setting a threshold to the translation
quality scores, available through the API for ev-
ery translation. Nevertheless, we note that a high
translation quality score does not guarantee the
translation is perfect, and many translations are
good despite having low translation quality scores.
We believe the lack of high-quality parallel lexica
is a possible reason that RRs do not reach their full
potential on low-resource languages.

Reinitialized embedding space Our method re-
quires swapping the original PLM embeddings
with the transformed English RRs before fine-
tuning on English data, whereas the embedding
space of RRs might diverge substantially from the
original embedding space. As a result, it is unclear
whether the rest of the model parameters can be
adapted to the new embeddings during fine-tuning,
especially on smaller datasets like Taxi1500. We
thus suggest the alteration of the embedding space
through reinitialization with RRs as a likely factor
as to why we do not achieve good performance.

7 Conclusion

In this work, we introduce MoSECroT, a novel and
challenging task that is relevant for, in particular,
low-resource languages for which static word em-
beddings are available but few resources exist. In
addition, we propose for the first time a method
that leverages relative representations for embed-
ding space mapping and enables zero-shot trans-
fer. Specifically, we fine-tune a monolingual En-
glish language model using only English data, swap
the embeddings with target language embeddings
aligned using RRs, and apply zero-shot evaluation
on the target language. We show that the proposed
method is promising compared with mBERT on un-
seen languages but only modest improvements are
achieved. We provide several possible reasons and
leave improvement possibilities for future research.

Limitations

In this work, we propose the task of MoSECroT
and a solution to leverage available static pre-
trained embeddings and tackle downstream tasks
for low-resource languages. Our work has a few
limitations open to future research. First, we only

experiment with one model architecture (BERT).
Although many language-specific BERT models
exist and thus our method is applicable to a wide
range of high-resource source languages, it would
nevertheless be interesting to compare performance
across different model architectures. Second, the
explored tasks are exclusively text classification
tasks. We expect that the robustness of our method
can be much better studied by applying it to a more
diverse set of tasks.
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Ivan Vulić, Sebastian Ruder, and Anders Søgaard. 2020.
Are all good word vector spaces isomorphic? In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3178–3192, Online. Association for Computa-
tional Linguistics.

Shijie Wu and Mark Dredze. 2020. Are all languages
created equal in multilingual BERT? In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 120–130, Online. Association for Com-
putational Linguistics.

A Number of closest anchors

In addition to using all (6731) parallel anchors, we
consider only the top-k (k ∈ {1, 10, 50, 100}) clos-
est anchors of each word. We identify the optimal
value for k closest anchors based on zero-shot per-
formance on German and Chinese portions of the
Amazon Reviews Corpus (§C.1). Table 3 shows
results for different k values.

k de zh

1 0.44 0.41
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50 0.50 0.40

100 0.51 0.38
6731 0.44 0.21

Table 3: Number of closest parallel anchors (k) and
the corresponding zero-shot performance on de and zh
portions of the Amazon Reviews Corpus.
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B Total number of anchors

Following Moschella et al. (2023), we randomly
sample a subset of the parallel anchors (|A| ∈
{500, 3000}), and exclude stop words from the
anchor set. Table 4 shows zero-shot performance
on German and Chinese portions of the Amazon
Reviews Corpus (§C.1).

|A| de zh

500 0.39 0.19
3000 0.19 0.19
6731 0.44 0.21

Table 4: The total number of parallel anchors and the
corresponding zero-shot performance on de and zh por-
tions of the Amazon Reviews Corpus.

C Evaluation datasets

C.1 Multilingual Amazon Reviews Corpus
Presented by Keung et al. (2020) and contain-
ing product reviews in six languages, the origi-
nal dataset uses five labels corresponding to star
ratings, which we aggregate into three classes: pos-
itive, neutral, and negative. We evaluate the three
high-resource target languages (de, es, zh) on this
dataset.

C.2 Taxi1500
Taxi1500 (Ma et al., 2023) is a classification dataset
containing six classes for more than 1500 lan-
guages, including all of our target languages. We
follow the authors’ original training procedure and
hyperparameters and use a learning rate of 1e-5
instead of 2e-5, which we find works better for our
settings.

D Computational resources

Training can be completed in under three hours on
eight NVIDIA GeForce GTX 1080 Ti GPUs for
the Multilingual Amazon Reviews Corpus or about
half an hour on a single NVIDIA GeForce GTX
1080 Ti GPU for Taxi1500.
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