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Abstract

Neural end-to-end surface realizers output
more fluent texts than classical architectures.
However, they tend to suffer from adequacy
problems, in particular hallucinations in numer-
ical referring expression generation. This poses
a problem to language generation in sensitive
domains, as is the case of robot journalism cov-
ering COVID-19 and Amazon deforestation.
We propose an approach whereby numerical
referring expressions are converted from digits
to plain word form descriptions prior to being
fed to state-of-the-art Large Language Models.
We conduct automatic and human evaluations
to report the best strategy to numerical super-
ficial realization. Code and data are publicly
available1.

1 Introduction

The significant advances in deep learning for NLP
and its enormous success in other text genera-
tion tasks, such as machine translation (Akhbardeh
et al., 2021). As a result, approaches to surface re-
alization of data-to-text systems have moved from
traditional modular pipeline architectures (Reiter
and Dale, 2000) to end-to-end ones. These sys-
tems transform a simple meaning representation
into text without any explicit intermediate repre-
sentations (Wen et al., 2015; Dušek and Jurčíček,
2016; Lebret et al., 2016; Gehrmann et al., 2018).
While early neural data-to-text systems required a
high amount of parallel training data, current state-
of-the-art (SOTA) architectures, known as Large
Language Models (LLMs) (Radford et al., 2019;
Lewis et al., 2020; Raffel et al., 2020a), can deliver
impressive results with less training, even excelling
in zero-short or few-shot settings.

With respect to linguistic output, neural end-to-
end surface realizers appear to generate more flu-
ent text than classical pipeline architectures but

1https://github.com/BotsDoBem/LargeLM

are more likely to suffer from (semantic) adequacy
problems, in particular, hallucinations (Ji et al.,
2023), whereby the system produces text that con-
tains information which is not present in the in-
put representation. A particular hallucination prob-
lem that modern approaches seem to struggle with,
unlike classical architectures, is numerical refer-
ring expression generation (Puduppully and Lap-
ata, 2021; Wallace et al., 2019; Ji et al., 2023). For
instance, let’s hypothesize the case where a sur-
face realizer produces the outcome: “The country
registered 458,098 cases of COVID-19”, whereas
the gold-standard reference points to “The country
registered 408,098 cases of COVID-19”. Albeit
there is only a single-digit difference between both
texts (which can be overlooked by popular auto-
matic quality metrics), the difference represents an
arithmetic change of 50,000 and may lead readers
to make drastic errors given the sensitivity of the
context.

To the best of our knowledge, this problem has
never been investigated in surface realization sys-
tems, despite having been addressed in other gen-
eration tasks such as text normalization (Zhang
et al., 2019; Sproat, 2022), question-answering
(Chen et al., 2021; Kim et al., 2022), and text-to-
speech (Nikulásdóttir and Guðnason, 2019); tasks
which also struggle to synthesize texts with nu-
merical referring expressions represented by digits.
One approach to circumvent the problem in text-
to-speech systems is to normalise the input texts
by converting numerical referring expressions from
digits to plain word form descriptions prior to being
fed into the system (Nikulásdóttir and Guðnason,
2019). Another technique used in Referring Ex-
pression Generation (REG) systems is slot-filling
or delexicalisation where values like date, number,
or constants are represented as a literal (Castro Fer-
reira et al., 2018; Cunha et al., 2020).

In the context of end-to-end surface realizers,
this study raises two questions:
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B. Portuguese English
Train Dev Test Train Dev Test

Daily Deforestation 4,062 504 484 3,874 452 462
Month Deforestation 324 20 22 456 36 26
Daily Fire 942 108 108 – – –
COVID-19 1,064 122 108 – – –

Total 6,392 754 722 4,330 488 488

Table 1: Data Statistics.

Figure 1: Example of Portuguese and English Meaning
Representation inputs and their corresponding outputs.

(RQ1) How well do state-of-the-art end-to-end
surface realizers generate numerical referring
expressions?
(RQ2) Are numerical referring expressions better
verbalized when represented by digits or text
(spell-out form)?

To answer these questions, we conducted au-
tomatic and human evaluations with three SOTA
LLMs: GPT-2 (Radford et al., 2019), BART (Lewis
et al., 2020), T5 (Raffel et al., 2020b), and their
multilingual counterparts. These models were
used to verbalize English and Brazilian Portuguese
news about Amazon Deforestation, Fire Alerts, and
COVID-19 cases using four different strategies,
which we discuss in Section 3. Code and data will
be publicly available.

2 Data

For training and evaluating the models, we
used automatic-generated reports by BotsDoBem,
a group of Twitter robot-journalists such as
CoronaReporter2 and DaMata3, which publish
news in Brazilian Portuguese and English. For
Brazilian Portuguese, the dataset comprises of i)
both daily and monthly reports on deforestation in
the Legal Amazon area of Brazil (Rosa Teixeira
et al., 2020), ii) daily reports about Fires in the
Brazilian Biomes, as well as iii) COVID-19 cases
in the country (Campos et al., 2020). For English,
the dataset comprises of daily and monthly reports
on deforestation in the Legal Amazon. Although

2https://twitter.com/CoronaReporter
3https://twitter.com/DaMataReporter

automatically generated, these texts contain a high
number of numerical referring expressions, mak-
ing them suitable for our goal of evaluating how
well neural end-to-end surface realizers generate
numerical referring expressions. Table 1 introduces
the number of instances per language and domain,
split into training, development, and test sets. Each
instance in the corpus consists of a meaning rep-
resentation and a corresponding gold-standard ver-
balization in Brazilian Portuguese or English repre-
senting the sentence of a report. For both languages,
the verbalizations were automatically generated by
the pipeline system described in Rosa Teixeira et al.
(2020) and Campos et al. (2020).

Figure 1 illustrates the structure of instances in
both the English and Portuguese datasets, which
consist of meaning representations starting with a
tag representing the report domain, followed by a
tag that marks the beginning of the sentence intents
(e.g., INTENTS). Each intent in the meaning repre-
sentation follows the intent-attribute-value schema.
Finally, the tag [HISTORY] marks where the verbal-
ization of the previous sentences in the paragraph
of the target will be depicted. In the example, the
tag [PARAGRAPH] means that the target sentence is
at the beginning of the paragraph.

3 Numerical Referring Expressions

To evaluate the effectiveness of a neural end-to-
end surface realizer in generating numerical ex-
pressions, we consider two forms of number rep-
resentation: digits and word (spell-out) form de-
scriptions. These are assessed in both the meaning
representations and the verbalizations, resulting in
a total of four distinct strategies:

1. Numbers represented by digits in the mean-
ing representation and the reference texts (no
desc);

2. Numbers are described in the input meaning
representation in spell-out form and digits in
the target references (desc src);

3. Numbers represented by digits in the mean-
ing representations and spell-out form descrip-
tions in the target references (desc trg); and

4. Numbers are described in a spell-out form in
both the input meaning representations and
target references (desc).

To exemplify, Table 2 depicts the four strate-
gies of a pair of meaning representations and their
corresponding English verbalizations. We utilized
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Numeric Referring Expressions
Strategies Area Month Year Input MR

no desc 322.91 4 2021 In April 2021, 322.91 sq km of the Legal Amazon were deforested, according to
data from the National Institute for Space Research (INPE)

desc src three hundred and
twenty-two point nine
one

four two thousand
and twenty-one

In April 2021, 322.91 sq km of the Legal Amazon were deforested, according to
data from the National Institute for Space Research (INPE).

desc trg 322.91 4 2021 In April two thousand and twenty-one, three hundred and twenty-two point nine one
sq km of the Legal Amazon were deforested, according to data from the National
Institute for Space Research (INPE).

desc three hundred and
twenty-two point nine
one

four two thousand
and twenty-one

In April two thousand and twenty-one, three hundred and twenty-two point nine one
sq km of the Legal Amazon were deforested, according to data from the National
Institute for Space Research (INPE).

Table 2: The strategies and representations of the numeric referring expressions. Strategies are highlighted.

the Python library4, num2words, to transform nu-
merical digits into their textual counterparts. This
library is effective for both English and Brazilian
Portuguese languages.

4 Experiments

To address our first research question (RQ1), we
evaluate the performance of three LLMs in generat-
ing numerical references: I) GPT-2, ii) BART, and
iii) T5 for English domains. Additionally, for Por-
tuguese, we fine-tuned GPorTuguese-2 (Guillou,
2020), a Brazilian Portuguese version of GPT-2,
as well as mBART-50 (Tang et al., 2020) and mT5
(Xue et al., 2021), which are the multilingual ver-
sions of BART and T5, respectively. These models
were selected due to a more sustainable perspective
of LLMs (Rillig et al., 2023) and the environmental
implications of the new LLMs, such as ChatGPT
(OpenAI, 2023) and BARD5. The model training
process involved 30 epochs, a learning rate of 1e-5,
a batch size of 1, 5 early stops, and a maximum
token length of 300.
4.1 Automatic Evaluation
We computed the BLEU score (Papineni et al.,
2002) of the system to analyze the generated texts’
fluency automatically and whether errors in numer-
ical referring expressions are reflected in its result.

4.2 Human Evaluation
To answer our research questions (RQ1) and
(RQ2), we performed a human evaluation against
the outcomes of our evaluated approaches.

Method We perform the human evaluation fol-
lowing the methodology of Thomson and Reiter
(2020), which aims to quantify the quality of auto-
matically generated texts according to the follow-
ing taxonomy of errors: Incorrect Number, Incor-

4https://pypi.org/project/num2words/
5https://bard.google.com/

rect Named Entity, Incorrect Word, Context, Not
Checkable and Other. Besides these categories, a
Fluency error category was incorporated into the
evaluation, which allowed raters to assess the out-
put for issues related to text flow acceptability. We
are primarily interested in the dimensions concern-
ing the number errors i.e., Incorrect Number and
Incorrect Word. We also drew on best practices con-
cerning error analysis and reporting as described in
van Miltenburg et al. (2021).

Data preparation and Annotation process
Overall, we selected 20% of a stratified sample,
comprising 852 instances of Brazilian Portuguese
output (per strategy and model). Three linguisti-
cally proficient annotators assessed these instances.
To ensure reliability, a duplicate batch was eval-
uated by the same three raters. For English, all
240 outputs (per strategy per model) were indepen-
dently annotated by two linguistically proficient
raters. This process followed a pilot annotation of
50 instances for each language to clarify any ambi-
guities in the annotation guidelines before the full
annotation task. Brazilian and English annotators
and/or raters are members of the research team.

It is worth noting that for the Portuguese dataset
annotators evaluated different entries in the first
and second batches, allowing for inter-rater agree-
ment assessment. To reduce bias during double
annotation, access to corresponding entries in dif-
ferent batches was not allowed. For both datasets,
in line with Thomson and Reiter (2020) methodol-
ogy, we removed any disagreement as a result of
raters not following annotations guidelines.

5 Results

The error rates and BLEU scores for each numer-
ical strategy and model for both English and Por-
tuguese are presented in Table 3. Numerical errors
were found to be the most common type across
both languages. However, the numerical error rates
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Error Rate Full Results for English (EN) and Brazilian Portuguese (PT)
S LM Number Named Entity Word Context Uncheckable Other Fluency BLEU

EN PT EN PT EN PT EN PT EN PT EN PT EN PT EN PT EN PT

N
o

D
es

c T5 mT5 0.48 0.45 0.05 0.02 0.08 0.08 0.03 0.03 0.03 0.03 0.08 0.07 0.05 0.03 0.69 0.58
GPT2 GPT2-pt 0.65 0.24 0.28 0.04 0.03 0.03 0.53 0.03 0.08 0.01 0.60 0.14 0.95 0.09 0.14 0.60
BART mBART 0.50 0.34 0.00 0.04 0.00† 0.00† 0.08 0.09 0.00† 0.01 0.00 0.07 0.15 0.10 0.61 0.51
Avg. Avg. 0.54* 0.34 0.11 0.04 0.03 0.04* 0.21 0.05* 0.03 0.02 0.23 0.09 0.38 0.07 0.48 0.56

D
.S

ou
rc

e T5 mT5 0.45† 0.37 0.00† 0.01 0.00† 0.08 0.00† 0.05 0.05 0.01 0.00† 0.04 0.08 0.02 0.69 0.59
GPT2 GPT2-pt 1.00 0.19† 0.05 0.01 0.00† 0.02 0.03 0.12 0.00† 0.01 0.00† 0.08 0.23 0.03 0.41 0.61
BART mBART 0.48 0.28 0.00† 0.03 0.00† 0.01 0.05 0.01 0.00† 0.01 0.03 0.13 0.23 0.05 0.62 0.59
Avg. Avg. 0.64 0.28* 0.02* 0.01 0.00* 0.04 0.03* 0.06 0.02 0.01 0.01 0.09 0.18 0.03* 0.57 0.60

D
.T

ar
ge

t T5 mT5 0.95 0.87 0.00† 0.00† 0.00† 0.04 0.03 0.00† 0.00† 0.00† 0.00† 0.01† 0.00† 0.02† 0.87† 0.65
GPT2 GPT2-pt 0.95 0.90 0.03 0.01 0.00† 0.04 0.13 0.11 0.13 0.00† 0.00† 0.08 0.18 0.05 0.35 0.64
BART mBART 0.90 0.79 0.05 0.06 0.08 0.09 0.05 0.09 0.03 0.00† 0.00† 0.10 0.18 0.09 0.60 0.61
Avg. Avg. 0.93 0.85 0.03 0.02 0.03 0.06 0.07 0.07 0.05 0.00* 0.00* 0.06 0.12 0.05 0.60* 0.64

D
es

c

T5 mT5 0.93 0.90 0.00† 0.00† 0.03 0.05 0.03 0.02 0.00† 0.00† 0.00† 0.01 0.00† 0.06 0.66 0.68†
GPT2 GPT2-pt 0.90 0.80 0.13 0.01 0.03 0.12 0.23 0.14 0.03 0.00† 0.05 0.03 0.25 0.15 0.28 0.67
BART mBART 1.00 0.89 0.00† 0.00 0.03 0.07 0.03 0.03 0.00† 0.00† 0.00† 0.03 0.05 0.15 0.58 0.65
Avg. Avg. 0.94 0.87 0.04 0.00* 0.03 0.08 0.09 0.06 0.01* 0.00* 0.02 0.02 0.10* 0.12 0.50 0.67*

Table 3: Error rates and BLEU score for the 4 numerical strategies and 3 language models – Higher error rates
denote more errors. Higher BLEU scores denote greater Fluency. ∗(Lowest error rate among strategies averages);
†(Lowest error rate among model and strategy combinations); S (Strategies); and D (Desc).

Incorrect Number Error Rate

Strategies LM English (EN) B. Portuguese (PT)
DM DD Overall DM DD Overall

No Desc

T5/mT5 0.50 0.45† 0.48 0.55 0.18 0.36
GPT2/GPT2-pt 0.65 0.65 0.65 0.00† 0.00† 0.00†
BART/mBART 0.50 0.50 0.50 0.18 0.09 0.14
Avg. 0.55* 0.53* 0.54* 0.24* 0.09 0.17*

Desc Source

T5/mT5 0.45† 0.45† 0.45† 0.73 0.07 0.40
GPT2/GPT2-pt 1.00 1.00 1.00 0.27 0.00† 0.14
BART/mBART 0.50 0.45† 0.48 0.45 0.00† 0.23
Avg. 0.65 0.63 0.64 0.48 0.02* 0.25

Desc Target

T5/mT5 0.95 0.95 0.95 1.00 0.68 0.84
GPT2/GPT2-pt 0.95 0.95 0.95 0.82 0.74 0.78
BART/mBART 0.95 0.85 0.90 0.82 0.55 0.69
Avg. 0.95 0.92 0.93 0.88 0.66 0.77

Desc

T5/mT5 1.00 0.85 0.93 1.00 0.68 0.84
GPT2/GPT2-pt 0.90 0.90 0.90 0.82 0.52 0.67
BART/mBART 1.00 1.00 1.00 1.00 0.69 0.84
Avg. 0.97 0.92 0.94 0.94 0.63 0.78

Kappa Statistic 0.94 0.92 0.93 1.00 0.99 0.97

Table 4: Results displaying the “Incorrect Number” er-
ror rates in English and Portuguese, categorized by
strategies, with higher values indicating more errors.
To facilitate comparison, we present results solely for
the Monthly (DM) and Daily Deforestation (DD) do-
mains, which are common to both languages. ∗(Lowest
error rate among strategies averages) and †(Lowest error
rate among model and strategy combinations).

varied depending on the language, strategy, and
models used.

In English, the average results per strategy in-
dicated that using text to represent numerical ref-
erences did not yield a positive impact. This is
evidenced by the No Desc strategy, which resulted
in the lowest error rate. However, when examin-
ing the results per model, T5(Desc Source) strat-
egy presented the lowest error rate, followed by
BART(Desc Source) and T5(No Desc) strategies.
In terms of automatic evaluation, the Desc Target
strategy yielded the highest BLEU score with T5
being the best model in this strategy. The Kappa
coefficient for inter-rater agreement regarding In-

correct Number error for both languages reached
up to 0.90 according to Table 4, indicating a rea-
sonable consensus between human evaluations.

Contrary to English, describing Portuguese nu-
merical referring expressions in the Desc Source
strategy resulted in the lowest error rate. The
model with the fewest errors was GPT2-pt(Desc
Source) strategy. Regarding the automatic evalua-
tion, the Desc strategy yielded the highest BLEU
score (0.68) with mT5, being the best model in this
strategy for Portuguese.

It is important to note that Brazilian Portuguese
approaches were evaluated across more domains
than their English counterparts due to differences
in both datasets. To compare the numerical error
rate of models across languages, Table 4 presents
the numerical error rate of approaches in daily and
monthly Amazon deforestation domains, which
share identical meaning representations in English
and Portuguese. Based on the Incorrect Number
Error Rate results, the No Desc was the best strat-
egy in both languages. While error rates between
daily and monthly deforestation were similar in En-
glish, Portuguese utterances in daily report format
introduced fewer numerical errors than monthly re-
ports, likely due to the higher amount of daily defor-
estation training sentences for Portuguese models.

6 Conclusion and Limitations

Finally, we revisit the research questions outlined
in Section 1: (RQ1) A human evaluation was
performed to annotate different error categories,
such as numerical, named entities, context, word,
uncheckable, other, and fluency errors. Results
depicted across languages, models, and numer-
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ical strategies show the numerical error rate as
the highest among the errors. Hence, concerning
this research question, there is clear evidence that
pure state-of-the-art large language models struggle
to generate adequate and faithful numerical refer-
ring expressions. (RQ2) Results demonstrated that
the Brazilian Portuguese approach Desc Source
performs better. However, for English, represent-
ing numerical references in spell-out form did not
help regardless of whether it was present in the
source meaning representation (Desc Source), in
the target text (Desc Target) or both (Desc). As
depicted in Table 1, we report lower results for
English when compared with Portuguese. This
may result from the smaller size of the English
dataset compared to Brazilian Portuguese. More-
over, surprisingly, for English, fine-tuning LLMs
with smaller amounts of training data did not ap-
pear to produce higher results than originally hoped.
More experiments will be needed however to verify
this.

As evidenced in the results, this study confirms
that Large Language Models struggle to generate
numerical referring expressions, although T5 has
performed better. The proposed strategy to solve
the problem did not affect English, although it de-
creased numerical errors when describing the num-
bers on the source of Portuguese trials. Hence this
strategy for describing numbers may help in low-
resource scenarios.

For future work, we plan to extend our experi-
ments to GPT3 and GPT46. However, since these
models are neither free, nor reproducible due to
limited or no information concerning model size,
architecture, training parameters, and data set cre-
ation, we will investigate related open-source vari-
ations such as BLOOM7 and GPT-J8.

7 Ethics Statement

As highlighted in the Human Evaluation Subsec-
tion 4.2, all annotators are members of the research
group and were responsible for evaluating with
an equal amount of occurrences; hence ethical ap-
proval for conducting research with human subjects
was not required. All data is publicly available (see
Data Subsection 2 for more information). No con-

6https://openai.com/blog/chatgpt
7BLOOM: BigScience Large Open-science Open-access

Multilingual Language Model – https://huggingface.co/
bigscience/bloom

8https://huggingface.co/docs/transformers/
model_doc/gptj

sent from data subjects was required as this data
is purely factual, containing no personal data, and
hence compliant with the EU’s General Data Pro-
tection Regulation (GDPR)9.
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A Appendix

A.1 Annotation Guidelines
After the most common error cases were identi-
fied and the treatment for the most difficult cases
was agreed upon, annotators followed common
guidelines for the rest of the evaluation process, as
described in the following list:

• Incorrect Number: Has incorrect numerical
values (e.g., model verbalizes an area value
of “354” as “345”); Numerical values not ver-
balized in numerical form in the final texts
were considered incorrect (e.g., “three hun-
dred fifty-four” instead of “354”);

• Incorrect Named Entity: verbalizes entities
incorrectly or verbalizes entities that do not
exist;

• Incorrect Word: occurrence of spelling er-
rors;

• Context Error: verbalizes some communica-
tive intent incorrectly (e.g., verbalizes last
month’s deforestation variation instead of to-
tal area deforestation);

• Not checkable: adds information that is not
present in the input semantic representation in
the verbalized text;

• Other: other types of verbalization errors;

• Fluency: the hypothesis verbalizes a not flu-
ent text.

The annotation guidelines are summarised be-
low:

- Entries were distributed in a collaborative
spreadsheet.

- Each row consisted of the original Meaning
Representation (MR), the generated hypothe-
sis, and the rating categories.

- LLMs used to generate the entries were omit-
ted in the spreadsheet.

- The spreadsheet was formatted to highlight
the options (y - red; n - green) aiming to
aid/ease the process with visual cues.

- Difficult cases were commented on to be fur-
ther discussed within the group of raters, fos-
tering improvements in the guidelines.

- Once, the annotation was finished, the spread-
sheets were exported in .csv files for result
computation.
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Expected output
The most affected state and municipality were respectively Pará (177.84
sq km) and Altamira, in the state of Pará (51.07 sq km).

Deforestation monthly intents
TOTAL_DEFORESTATION(area=“177.84”, location=“deter-amz”,
month=“4”, state=“PA”, year=“2021”) [SEP]
TOTAL_DEFORESTATION(area=“51.07”, city=“Altamira”,
location=“deter-amz”, month=“4”, state=“PA”, year=“2021”)

T5 nodesc
The most affected state and municipality were respectively Pará (177.84
sq km) and Altamira, in the state of Pará (51.07 sq km).
T5 desctrg
The state with the most deforestation in the month was Pará (one hun-
dred and seventy-seven point eight four sq km), and the most devas-
tated municipality was Altamira / Pará, where deforestation amounted to
fifty-one point zero seven sq km.
T5 descsrc
The state with the most deforestation in the month was Pará (177.84 sq
km), and the most devastated municipality was Altamira / Pará, where
deforestation amounted to 51.07 sq km.
T5 desc
The state with the most deforestation in the month was Pará (one hun-
dred and seventy-seven point eight four sq km), and the most devas-
tated municipality was Altamira / Pará, where deforestation amounted to
fifty-one point zero seven sq km.

Table 5: Sample from T5 outputs for English consider-
ing all 4 strategies. T5 performed as the best model for
English. The numeric referring expressions are bolded.

A.2 Expected Output
A sample from the expected output is presented
in Table 5 considering the meaning representation
and each strategy in English. Furthermore, Ta-
bles 6 and 7 show Human Evaluation results for
Portuguese and English languages and highlight
problems regarding generating numerical referring
expressions.
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Language Incorrect Number Incorrect Named Entity Incorrect Word Context Error

Input area=“322.91” city=“Novo Progresso, Itaituba” - -

English The National Institute for
Space Research (INPE)
estimated that deforesta-
tion of the Legal Ama-
zon amounted to 2,322.91
sq km in April two thou-
sand and twenty, which is
a one hundred and twenty-
six percent increase from
the previous month.

The National Institute for Space
Research (INPE) reported that de-
forestation amounted to twenty-
one point seven five sq km in
the state of Pará, in the state of
Pará, in February two thousand
and twenty.

The main class of defor-
estation was clear-cut de-
forestation, which removes
all vegetetation of the soil,
responsible for 317.93 sq
km of deforested area.”

The most affected
state and municipality
were respectively Pará
(177.84 sq km) and
Altamira / Pará, in the
state of Pará.

Input cases=“4091801”
deaths=“125584”

uc=“PARQUE NACIONAL DO
JAMANXIM”

- -

Portuguese São registrados, no
total, 135.584 mortes
e 4.093.801 casos de
#COVID19 no Brasil.

O INPE gerou alerta para devas-
tação (0,19 km²) causada pelo des-
matamento com solo exposto, que
remove totalmente a vegetação da
floresta, no dia 10 de agosto de
2020 na PARQUE NACIO

A cidade mais atingida foi
SANTAQUITÉRIA, em
CEARÁ, que registrou 22
focos de incêndio.

O Instituto Nacional
de Pesquisas Espaci-
ais(INPE) registrou um
total de quinhentos e
sessenta e nove focos de
queimadas no território
brasileiro, no dia onze
de outubro de dois mil
e vinte, o território
brasileiro foi atingido.

Table 6: Examples of categories of error in human evaluation for English and Brazilian Portuguese.

Language Not Checkable Other Fluency Problem

Input - -
English The main cause of deforesta-

tion was the destruction of the
soil, which leaves the soil clear
of vegetation.

The National Institute for
Space Research (INPE) in Pará,
where the most affected munic-
ipality was Novo Pro

The National Institute for Space Re-
search (INPE) reported that defor-
estation amounted to 21.75 sq km in
the state of Pará, in the state

Input area=“0.32” day=“22”
month=“8”

- -

Portuguese O INPE gerou alerta para
devastação (0,22 km2) cau-
sada pelo desmatamento com
solo exposto, que remove to-
talmente a vegetação da flo-
resta, no dia 22 de agosto
de 2020 na RESERVA EX-
TRATIVISTA VERDE PARA
SEMPRE / Pará - no mês já são
2 dias com alertas e 0,32 km2
desmatar.

A A A A A A A A BIOLÓG-
ICA NASCENTES DA
SERRA DO CACHIMBO
somou dois vírgula sete três
km2 de área desmatada no mês
de novembro de dois mil e
vinte.

Com um total de mil quinhentos
e setenta e oito vírgula oito sete
km2, o desmatamento com solo ex-
posto, deixando a terra sem vege-
tação, a principal causa de destru-
ição da Amazônia Legal no mês foi
o desmatamento com solo exposto,
deixando a terra sem vegetação.

Table 7: Examples of categories of error in human evaluation for English and Brazilian Portuguese.
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