@inproceedings{breidenstein-labeau-2024-using,
title = "Using Locally Learnt Word Representations for better Textual Anomaly Detection",
author = "Breidenstein, Alicia and
Labeau, Matthieu",
editor = "Tafreshi, Shabnam and
Akula, Arjun and
Sedoc, Jo{\~a}o and
Drozd, Aleksandr and
Rogers, Anna and
Rumshisky, Anna",
booktitle = "Proceedings of the Fifth Workshop on Insights from Negative Results in NLP",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.insights-1.11/",
doi = "10.18653/v1/2024.insights-1.11",
pages = "82--91",
abstract = "The literature on general purpose textual Anomaly Detection is quite sparse, as most textual anomaly detection methods are implemented as out of domain detection in the context of pre-established classification tasks. Notably, in a field where pre-trained representations and models are of common use, the impact of the pre-training data on a task that lacks supervision has not been studied. In this paper, we use the simple setting of k-classes out anomaly detection and search for the best pairing of representation and classifier. We show that well-chosen embeddings allow a simple anomaly detection baseline such as OC-SVM to achieve similar results and even outperform deep state-of-the-art models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="breidenstein-labeau-2024-using">
<titleInfo>
<title>Using Locally Learnt Word Representations for better Textual Anomaly Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alicia</namePart>
<namePart type="family">Breidenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthieu</namePart>
<namePart type="family">Labeau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on Insights from Negative Results in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Tafreshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arjun</namePart>
<namePart type="family">Akula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Drozd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The literature on general purpose textual Anomaly Detection is quite sparse, as most textual anomaly detection methods are implemented as out of domain detection in the context of pre-established classification tasks. Notably, in a field where pre-trained representations and models are of common use, the impact of the pre-training data on a task that lacks supervision has not been studied. In this paper, we use the simple setting of k-classes out anomaly detection and search for the best pairing of representation and classifier. We show that well-chosen embeddings allow a simple anomaly detection baseline such as OC-SVM to achieve similar results and even outperform deep state-of-the-art models.</abstract>
<identifier type="citekey">breidenstein-labeau-2024-using</identifier>
<identifier type="doi">10.18653/v1/2024.insights-1.11</identifier>
<location>
<url>https://aclanthology.org/2024.insights-1.11/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>82</start>
<end>91</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Locally Learnt Word Representations for better Textual Anomaly Detection
%A Breidenstein, Alicia
%A Labeau, Matthieu
%Y Tafreshi, Shabnam
%Y Akula, Arjun
%Y Sedoc, João
%Y Drozd, Aleksandr
%Y Rogers, Anna
%Y Rumshisky, Anna
%S Proceedings of the Fifth Workshop on Insights from Negative Results in NLP
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F breidenstein-labeau-2024-using
%X The literature on general purpose textual Anomaly Detection is quite sparse, as most textual anomaly detection methods are implemented as out of domain detection in the context of pre-established classification tasks. Notably, in a field where pre-trained representations and models are of common use, the impact of the pre-training data on a task that lacks supervision has not been studied. In this paper, we use the simple setting of k-classes out anomaly detection and search for the best pairing of representation and classifier. We show that well-chosen embeddings allow a simple anomaly detection baseline such as OC-SVM to achieve similar results and even outperform deep state-of-the-art models.
%R 10.18653/v1/2024.insights-1.11
%U https://aclanthology.org/2024.insights-1.11/
%U https://doi.org/10.18653/v1/2024.insights-1.11
%P 82-91
Markdown (Informal)
[Using Locally Learnt Word Representations for better Textual Anomaly Detection](https://aclanthology.org/2024.insights-1.11/) (Breidenstein & Labeau, insights 2024)
ACL