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Abstract

Genetic Algorithms (GAs) have been studied
across different fields such as engineering or
medicine to optimize diverse problems such as
network routing, or medical image segmenta-
tion. Moreover, they have been used to automat-
ically find optimal architectures for deep neural
networks. However, to our knowledge, they
have not been applied as a weight optimizer for
the Transformer model. While gradient descent
has been the main paradigm for this task, we
believe that GAs have advantages to bring to
the table. In this paper, we will show that even
though GAs are capable of fine-tuning Trans-
former encoders, their generalization ability is
considerably poorer than that from Adam; how-
ever, on a closer look, GAs ability to exploit
knowledge from 2 different pretraining datasets
surpasses Adam’s ability to do so.

1 Introduction

Genetic Algorithms (GAs), a set of optimization
methods, although widely studied in other fields
such as electric engineering (Li and Ge, 2009;
Sainath et al., 2021) or medicine (Ghosh et al.,
2016), have not played a big role in the field of NLP
as gradient descent algorithms. Indeed, a disadvan-
tage of GAs is high running times when the search
space is big. However, GAs possess advantages
that make us reconsider their usefulness in NLP
such as 1) algorithmic simplicity, 2) no vanishing-
or exploding-gradient problems since no gradient
signal is necessary, and 3) any mathematical ex-
pression can be optimized, such as Accuracy.

On the other hand, gradient descent approaches
such as Adam (Kingma and Ba, 2015) are widely
used not only due to the high fine-tuning scores
they achieve for NLP models, but also due to a
common –and barely challenged– assumption that
prevails in the NLP field: fine-tuning a Transformer
encoder that has been pretrained on two datasets
will lead to considerably better scores than fine-

tuning an encoder that was pretrained on either
of the two pretraining datasets since, according to
scaling laws (Kaplan et al., 2020), it is assumed
that the former encoder has learned linguistic and
(or) world knowledge from the two datasets, as op-
posed to the latter encoder which has only acquired
knowledge from one dataset. However, we pose
some skepticism on Adam’s ability to efficiently
exploit hidden knowledge from the 2 pretraining
datasets encoded in such encoders.

In this paper, we propose a two-sided study of
the ability of a GA to fine-tune pretrained Trans-
former encoders. Firstly, we study how well a GA
can fine-tune pretrained encoders for the task of
sentiment analysis across three datasets. And sec-
ondly, we put Adam to the test by comparing its
ability to leverage pretrained knowledge from 2
pretraining datasets, at fine-tuning time, with re-
spect to the ability of a GA to do so. Our main
hypothesis is that the GA’s crossover operator is
the key factor to both fine-tune pretrained encoders
and efficiently exploiting the knowledge from two
pretraining datasets. To our knowledge, this is the
first study of fine-tuning Transformer encoders via
GAs.

Interestingly, our results are divided: we encoun-
tered both a negative and a positive result. On the
one hand, although we confirm our hypothesis and
show the ability of a GA to fine-tune Transformer
encoders, we find two big deficiencies when com-
pared against Adam: considerably higher training
times (up to 46x) and a high drop in accuracy scores
(up to 28 points) –a negative result. On the other
hand, our results show that the GA outperforms
Adam’s ability to leverage knowledge from two
pretraining datasets at fine-tuning time: fine-tuning
encoders, pretrained on 2 datasets, via Adam leads
to an average gain of 0.55 accuracy points with
respect to fine-tuning encoders pretrained on only
one pretraining dataset; but the GA’s mean gain in
performance under the same scenario is 1.65 points,
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a relative increase of 200% (and up to 1540% for a
particular case) –a positive result.

Overall, we believe GAs hold as an efficient
mechanism for knowledge recombination of Trans-
former encoders. We hope the community will
follow our work to carry out a deeper exploration
of GAs on more challenging tasks.

2 Related Work

2.1 Genetic Algorithms

We note that our work is not the first to use
GAs to optimize the weights of a Neural Net-
work (NN) (Lander and Shang, 2015; Vázquez-
Fernández et al., 2012; David and Greental, 2014).
However, previous works evolved NNs (mainly
feedforward NNs) containing only a few thousand
weights. Our Transformer encoders contain almost
9.5 million parameters. On the other hand, recently,
Sobhanam and Prakash (2023) used GAs for BERT-
based models such as RoBERTa to automatically
search for the best hyperparameter values for an
optimal fine-tuning, such as the layers to be fine-
tuned, the batch size, the learning rate, and the most
suitable activation function; however, in that work,
the GA is not used for finding the optimal weights
of the model but only optimal hyperparameters.

2.2 AutoML

This area, also called Neural Architecture Search
(Elsken et al., 2019), aims to automatically discover
optimal architectures for deep NNs via variations
of GAs. Recent works have shown the ability of
GAs to find architectures as optimal as those from
human designers (Miikkulainen et al., 2019; Xie
and Yuille, 2017; Liang et al., 2019) and architec-
tures that obtained SOTA results (Real et al., 2019).
But, to our knowledge, there is no previous work
where a Transformer model was fine-tuned using
GAs.

3 Methods and Datasets

3.1 Genetic Algorithm

We use a variant of the Eclectic Genetic Algorithm
(EGA) (Kuri and Quezada, 1998; Kuri-Morales
et al., 2013). We chose it due to 1) its optimal trade-
off between complexity,1 efficiency, and memory

1More complex than the Canonical GA (CGA) (Sivanan-
dam and Deepa, 2008) but simpler than latest GAs. We note
that we also experimented with the CGA, but we obtained
poor results due to its over-simplicity which refrained it to
cope with the high-dimensional space of Transformer models.

usage due to GPU restrictions, and 2) its resem-
blance to an ideal GA (Mitchell et al., 1993). EGA
follows the usual cycle of GAs. A population of n
individuals (pretrained Transformer encoders in our
case) is evolved through generations (an operation
that can be cast as fine-tuning). In each genera-
tion, individuals are ranked by their fitness score
(accuracy score on the train set) and crossed2 to pro-
duce offspring (new encoders), and some of these
offspring will experience mutation in their chromo-
somes (sets of hidden vectors). To allow EGA to
cross encoders (recombine the knowledge encoded
in their parameters), we replaced its crossover oper-
ator with the simulated-binary crossover: (Wirsan-
sky, 2020):

child1 = 0.5[(1 + β)parent1 + (1− β)parent2]

child2 = 0.5[(1− β)parent1 + (1 + β)parent2]

where β is a hyperparameter manually chosen;
and parent1, parent2 correspond to the set of all
hidden vectors of two Transformer encoders. The
crossover operation is done layer by layer3 of both
parent encoders which results in child1, child2 be-
ing the recombination of both parent encoders’ vec-
tors. Then these two offspring are evaluated on the
train set, their fitness score is compared with that
from all candidate encoders in the population, and
the cycle repeats.

To test our hypothesis, we fix the crossover’s
probability of occurrence to pcross = 1 to fully
test its effect; we set the probability of mutation to
pmut = 0.2 to control for its effect. To mutate an
encoder, we add a randomly drawn number in the
[-1, 1] interval to randomly chosen weights.

3.2 Datasets

For pretraining encoders, we use 2 popular datasets:
WikiText-103 (wiki) (Merity et al., 2017) and 1-
Billion-Word (lm1b) (Chelba et al., 2013). For fine-
tuning, we use three popular sentiment analysis
datasets: SST-2 (Socher et al., 2013), IMDB (Maas
et al., 2011), and Yelp (Zhang et al., 2015). We
chose these downstream datasets for interpretability
of results as binary accuracy scores are obtained.

2The individual in rank i is crossed with the individual in
rank n − i + 1, i.e. the best individual is crossed with the
worst one and so on.

3For example, the first attention layers of two encoders
will be crossed to produce two attention layers, one for each
child.
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4 Experiments and Results

4.1 Experimental Setup

We used the Transformer encoder variant from the
KerasNLP framework (Watson et al., 2022). We
pretrained 10 different encoders with each pretrain-
ing dataset by varying random seeds;4 we refer to
them as either wiki or lm1b encoders according to
the dataset used. We also pretrained 5 different en-
coders using both pretraining datasets; we call them
Mixed encoders. For some experiments with EGA
we used randomly initialized encoders; we call
them random encoders. We note 1) the same pre-
trained encoders are used for both cases fine-tuning
them via Adam (baselines) and fine-tuning them
via EGA, except for the Mixed encoders which are
used only as baselines; 2) for all experiments with
EGA, the number of generations is set to 100, the
population size to 20 encoders; to obtain means
and standard deviations, we run EGA 3 times for
each sentiment analysis dataset using different ran-
dom seeds; 3) for both Adam and EGA, to compute
downstream mean scores we use validation or test
accuracy scores (depending if the dataset has a test
set) of the encoders with highest validation score.

4.1.1 Gains in Accuracy Score
For Adam, we define gain in accuracy score as
the amount of performance increase in accuracy
points obtained by fine-tuning encoders pretrained
on 2 datasets with respect to the score obtained by
fine-tuning encoders pretrained on only one of the
two pretraining datasets. For example, the points
increased by fine-tuning Mixed encoders with re-
spect to fine-tuning wiki encoders on the SST-2
data. We refer to this gain as gainAdam.

For EGA, we define gain in accuracy as the gain
in points obtained by evolving (fine-tuning) wiki
and lm1b encoders in the same population with
respect to the score obtained by evolving only en-
coders of a single type (wiki or lm1b) which is the
equivalent figure of comparing leveraging two pre-
training datasets at fine-tuning time vs. only one
dataset; we refer to this as gainEGA.

We compute gains in accuracy score as follows:
gainAdam = accMixed_enc − accsingle_type_enc
gainEGA = accwiki+lm1b_enc−accsingle_type_enc
where acc means accuracy and single_type_enc
refers to either wiki or lm1b encoders. To compare
EGA’s gains in performance with those from Adam,

4We believe that by doing so the encoders can pick differ-
ent patterns even if pretrained on the same data.

we compute the relative increase in gain provided
by EGA:

gainEGA − gainAdam

|gainAdam| × 100% (1)

4.1.2 Effect of Number and Type of Encoder
To fully test EGA’s ability to recombine knowledge
from encoders, we carry out experiments across 6
levels where we vary the number and type of pre-
trained encoders. At Level 1, populations consist
of 10 different lm1b encoders and 10 random en-
coders; and similarly for Level 2 where instead of
lm1b we use wiki encoders. Populations at Levels
3, 4, and 5 contain 5, 10, and 15 pretrained en-
coders, respectively; but, different from Levels 1
and 2, we use both lm1b and wiki encoders (50%
wiki and 50% lm1b), and the rest of the population
are random encoders. Finally, populations at Level
6 consist only of pretrained encoders (10 wiki and
10 lm1b).

4.2 Results
4.2.1 Baselines
Fine-tuning encoders pretrained on both datasets
via Adam leads to two substantial gains in score
on SST-2 data: 1.69 and 1.1 points (Tables 2 and
3) with respect to wiki and lm1b encoders, respec-
tively, which are the differences in accuracy from
Mixed encoders and wiki, lm1b encoders in Ta-
ble 4. However, on the other downstream datasets,
this leads to minor gains: a gain of 0.36 points for
IMDB data when lm1b and Mixed encoders are
measured against each other, and gains of 0.1 and
0.58 points for Yelp data (Tables 2 and 3). Surpris-
ingly, we observe a drop in gain of 0.52 points for
IMDB data (Table 2): wiki encoders achieve a su-
perior accuracy score (85.03, Table 4) than Mixed
encoders (84.51) (we provide a possible explana-
tion for this finding in Section 5).

By averaging all gains in score from Adam in
Tables 2 and 3, we observe that Mixed encoders
lead to a mean increase of only 0.55 points. How-
ever, we do not jump straightaway to the conclusion
that, at fine-tuning time, Adam’s ability to leverage
knowledge from encoders pretrained on 2 datasets
is not as impactful as we expected since these re-
sults could be obscured by a ceiling effect, as we
discuss in Section 5.

4.2.2 Genetic Algorithm Results
SST-2: As shown in Table 1, EGA’s best score
on SST-2 data (59.15 points) comes from a mixed

27



Dataset Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
SST-2 57.25(0.021) 57.71(0.010) 57.91(0.011) 59.15(0.003) 58.69(0.016) 57.98(0.020)
IMDB 60.09(0.001) 57.0(5e-4) 57.41(0.002) 57.06(0.001) 57.87(0.023) 59.59(0.015)
Yelp 56.82(0.008) 58.0(0.001) 59.43(0.044) 59.04(0.010) 59.64(0.014) 57.33(0.006)

Table 1: Mean validation or test accuracy scores across three different random seeds of fine-tuning pretrained
encoders via EGA (standard deviations in parenthesis) for different Levels as described in Section 4.1.2.

Dataset Adam EGA Relative increase
SST-2 1.69 1.44 -14.79%
IMDB -0.52 2.59 598.07%
Yelp 0.1 1.64 1540%

Table 2: Gains in accuracy points by Adam and EGA:
two pretraining datasets (wiki+lm1b) vs. wiki dataset.
Column Relative increase shows the increase of perfor-
mance of EGA over Adam as in Section 4.1.1.

Dataset Adam EGA Relative increase
SST-2 1.1 1.9 72.72%
IMDB 0.36 -0.5 -238.88%
Yelp 0.58 2.82 386.20%

Table 3: Gains in accuracy points by Adam and EGA:
two pretraining datasets (wiki+lm1b) vs. lm1b dataset.
Column Relative increase shows the increase of perfor-
mance of EGA over Adam as in Section 4.1.1.

Dataset Wiki enc Lm1b enc Mixed enc
SST-2 75.12(0.014) 75.71(0.013) 76.81(0.010)
IMDB 85.03(0.006) 84.15(0.006) 84.51(0.003)
Yelp 87.62(0.006) 87.14(0.003) 87.72(0.004)

Table 4: Mean validation or test accuracy scores across
encoders (standard deviations in parenthesis) of fine-
tuning pretrained encoders via Adam.

population (Level 4): 5 wiki and 5 lm1b encoders
(and the rest random encoders). On the other hand,
the lowest accuracy scores come from populations
where only one type of encoder is used: Level 1
(only lm1b) and Level 2 (only wiki). As we see,
recombining the hidden knowledge from wiki and
lm1b encoders leads to substantial gains of 1.44 and
1.9 points (Tables 2 and 3) compared to crossing
either only wiki or only lm1b encoders. Comparing
EGA’s gains vs. Adam’s gains, we see that Adam
obtains a bigger gain than EGA when using two
pretraining datasets as opposed to only wiki data,
as shown in Table 2: 1.69 vs. 1.44 points; however,
this figure turns around for lm1b encoders where
EGA’s increase in gain is superior to that of Adam
by 72.72%.

IMDB: We observe a clear gain in performance
when knowledge from wiki encoders is mixed with
that from lm1b encoders: a rise of 2.59 points (Ta-
ble 2) which is the difference between crossing
only wiki encoders (Level 2, Table 1) and crossing
both encoders type (Level 6). Compared to Adam’s
gain in score (-0.52 points) EGA achieves a su-
perior relative increase in performance of 598%.
Nevertheless, similar to Adam, we see a drop in
gain: lm1b encoders provide better results for EGA
than wiki+lm1b encoders by 0.5 points (Level 1 vs.
Level 6) as shown in Table 3.

Yelp: The best scenario comes from mixing
knowledge from both encoder types (Table 1, Level
5): 59.64 points, providing a gain in score of 1.64
points with respect to fine-tuning only wiki en-
coders (Level 2), representing a remarkable rela-
tive increase of performance of 1540% with respect
to the gain obtained by Adam of only 0.1 points
(Table 2). From Table 3 we see the biggest gain
in accuracy score obtained by EGA across all sen-
timent analysis datasets: 2.82 points increase by,
again, crossing wiki with lm1b encoders (Level 5)
as opposed to only lm1b encoders (Level 1).

Fine-tuning times: As we see in Table 5, EGA
takes considerably more time than Adam (at least
31 times more) representing a disadvantage.

Dataset Adam EGA Factor
SST-2 1.57 51.59 33x
IMDB 3.42 158.92 46x
Yelp 2.9 90.13 31x

Table 5: Average time in min. that Adam and EGA take
to obtain an encoder with the highest validation score,
and the factor of difference between them.

5 Discussion and Conclusions

How well can EGA fine-tune Transformer en-
coders? We observed in Table 1 that EGA is able
to fine-tune the encoders on the sentiment analy-
sis datasets with scores reaching, or close to, the
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60 points threshold. Although there is a wide gap
compared to Adam’s scores (up to 28 points), we
believe these results show the capability of GAs for
fine-tuning Transformer encoders.

Exploiting knowledge from pretraining datasets:
Another important aspect of fine-tuning is leverag-
ing pretrained knowledge from two datasets. We
observed in Tables 2 and 3 how Adam more often
than not achieves small gains in performance with
an average gain across datasets of only 0.55 points.
Remarkably, EGA better exploits the hidden knowl-
edge from wiki and lm1b encoders by obtaining
and average gain of 1.65 points (3 times Adam’s
gain). On a closer look, we observe substantial
relative increases of performance from EGA of up
to 1540% as shown for the Yelp dataset.

Caution must be applied: We interpret these re-
sults with precaution. We cannot firmly conclude
that Adam’s capability of leveraging knowledge
from encoders pretrained on 2 datasets will invari-
ably lead to such a small average gain in accuracy
for any other task or dataset since we may be facing
a ceiling effect (Cohen, 1995). This effect happens
either when the NLP model is too close to a per-
fect score (which is not our case) or when the NLP
model is too close to its maximum capability in
solving a task, which may be our case. It is pos-
sible that the variant of Transformer encoder we
used, when pretrained on only one dataset, is al-
ready close to the maximum score it can achieve;
thus, knowledge from another pretraining dataset
helps but not as much as it would for a more diffi-
cult task where the initial score is small enough to
leave room for improvement.

2 is not always better than 1: We saw the inter-
esting finding that fine-tuning encoders pretrained
on only 1 dataset led to the best results for the
IMDB dataset, for both Adam (via wiki encoders)
and EGA (via lm1b encoders). To provide a plausi-
ble rationale, we manually reviewed IMDB, wiki,
and lm1b instances to find any qualitative patterns.
Our first observation is the similarity in writing
style between IMDB and wiki instances: long texts
with a clear description of an item, entity, or event
supported by facts or arguments and followed by
a conclusion –patterns that Adam may have recov-
ered from wiki encoders. On the other hand, we no-
tice the newspaper writing style in lm1b instances
which somehow differs from those in IMDB; prob-
ably, EGA exploited factuality and cultural patterns

from the news articles in lm1b that helped to clas-
sify IMDB instances since both datasets are con-
temporary with a short time gap. Moreover, we
believe that the different patterns in wiki and lm1b
instances, rather than complementing to each other
to improve on the downstream scores, as in the case
for the SST-2 and yelp data, they are at odds with
each other for the IMDB dataset; however, it is un-
clear exactly in which way. We believe this finding
requires a deeper analysis given the complexity of
the IMDB instances (Otterbacher, 2013).

Future work: We delimited our work to a spe-
cific choice of Transformer encoder, Genetic Al-
gorithm, pretraining data, and downstream task.
Naturally, further experimentation is necessary to
generalize our results, such as studying more com-
plex GAs and hybrid approaches that take advan-
tage of the strengths of both Adam (high scores in
low time) and GAs (ability to exploit different pre-
training data) for fine-tuning more complex NLP
models such as BERT (Devlin et al., 2019); test on
other pretraining datasets, such as the BookCorpus
(Zhu et al., 2015) or C4 (Raffel et al., 2020); and
test the hypotheses proposed in this work on more
complex downstream tasks and datasets to either
confirm our results and elaborate upon them, or to
pinpoint possible ceiling effects.
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A Appendix

A.1 Population-based Analysis
In this subsection, we show an additional analy-
sis at the population level across the last 4 levels,
where populations consist of both wiki and lm1b
encoders, for the SST-2 dataset. Figures 1, 2, 3,
4 show the evolution of accuracy scores through
generations. In each figure, training curve_1, vali-
dation curve_1 correspond to the evolution of one
population. Thus, we show the evolution of 5 pop-
ulations per level where each population is evolved
using a different random seed. In each curve, each
point represents the average accuracy score of one
population for a given generation number.

As we see across all figures, our belief that Trans-
former encoders pretrained on the same dataset,
but using a different random seed for pretraining,
can capture different linguistic or world knowledge
seems to be supported by these plots since at the
beginning of all evolution processes the standard
deviations for each population are very wide, which
means that accuracy scores across each individual
vary to a great extent which seems to imply that
individuals encode different knowledge (some of
them having learned patterns more useful for the
SST-2 data than others) which is reflected in their
different chromosomes.

Also, we observe in Figures 1 and 2 that for Lev-
els 3 and 4, around generation gen = 40, most of

Figure 1: Average accuracy scores at the population
level across generations for Level 3. Bars represent
standard deviations.

Figure 2: Average accuracy scores at the population
level across generations for Level 4. Bars represent
standard deviations.

Figure 3: Average accuracy scores at the population
level across generations for Level 5. Bars represent
standard deviations.

31

https://github.com/keras-team/keras-nlp
https://github.com/keras-team/keras-nlp
https://doi.org/10.1109/ICCV.2017.154
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11


Figure 4: Average accuracy scores at the population
level across generations for Level 6. Bars represent
standard deviations.

the populations tend to converge to the final aver-
age accuracy, and in several cases the variation is
minimal which means that individuals should share
a large part of their genetic material with each other.
This is a well-known effect in GAs and it tends to
lead to local optima. However, for Levels 5 and 6
where most or all encoders are pretrained, stability
for some populations tends to arrive at the last gen-
erations as there are cases where populations still
see an increase in their average scores by almost
the end of the run; this could mean that a bigger
diversity of both wiki and lm1b encoders is helpful
for avoiding or escaping local minima.

A.2 Genetic Analysis of the Best Individual
The best individual from all our experiments with
the SST-2 dataset comes from Level 4; this en-
coder achieved a validation score of val = 0.6135.
We traced back all its parents up to the first gen-
eration to have an idea of how its chromosome is
formed. Not surprisingly, half of its genetic mate-
rial is formed by weight vectors from wiki encoders
and half from lm1b encoders. This piece of evi-
dence further supports our hypothesis; recombining
knowledge from different types of encoders leads
to optimal individuals. It seems that weight vectors
from different encoder types may encode different
type of linguistic or world knowledge and when
recombined they produce parameters more fit to
the task at hand. We leave this hypothesis to be
tested in future work.

A.3 Robustness to Variability
We measured how robust is each optimization
method to the impact of random seed variation on
the downstream scores; ideally, optimization meth-
ods would provide a robust estimate of the accuracy
which translates into low variability. To measure

this property, we computed the Coefficient of Vari-
ation (CV) (Dodge, 2008) since directly comparing
the standard deviations from Adam and EGA is not
a reliable approach due to the wide gap between
mean accuracy scores from both methods. The co-
efficient of variation is a standardized measure that
takes into account the size of the mean scores as
follows:

CV =
standard_deviation

mean
× 100% (2)

Thus, higher CV values represent a higher de-
gree of variability. We compute coefficients of vari-
ation using means and standard deviations from
Tables 4 and 1 for Adam and EGA, respectively.
We find that while Adam’s CV values range from
0.007% to 0.018%, EGA’s CV values falls in the
0.0009%-0.07% range, both intervals containing
extremely low signs of variation showing that both
methods exhibit comparably high and robust esti-
mates of accuracy.

A.4 Sampling of SST-2

To allow for a faster (and more environmentally
friendly) training on the SST-2 data with EGA, we
investigated if we could reduce its train set size
through a learning curve. The learning curve in
Figure 5 was obtained by evolving 20 randomly
initialized encoders for 100 generations across 5
different random seeds. It shows that the best vali-
dation scores come from using approx. 5% of the
train set (3072 instances).5 Thus, we chose to use
a random sample of size 3072 for our experiments
with EGA and Adam.

A.5 Transformer Model and Training Details

Our target model is the Transformer encoder vari-
ant implemented in the KerasNLP framework
which is roughly the equivalent of a half-size
Transformer encoder from the original Transformer
model in (Vaswani et al., 2017). We chose this vari-
ant mainly for memory consumption reasons when
fine-tuning it with the genetic algorithm. We used
same settings and hyperparameters as in (Watson
et al., 2022) to have a fully reproducible baseline.
Also, for some of our experiments we used the
same dataset for pretraining (WikiText-103 dataset)
and the same dataset for fine-tuning (SST-2) as

5We used up to approx. 88% of the dataset to keep it
balanced between positive and negative labels since we are
optimizing accuracy scores.
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Figure 5: Learning curve. Each point is averaged on 5
different runs. Bars represent standard deviations.

those used in the KerasNLP original implementa-
tion.

More concretely, this Transformer implementa-
tion consists of 3 encoder blocks each with 4 at-
tention heads; feedforward layer size is 512; token
and learnable position embeddings are of dimen-
sion 256; sequence length of 128 tokens, and Word
Piece Tokenizer. Total number of parameters is
almost 9.5 million trainable weights. Pretraining
batch size is 128, fine-tuning batch size is 32, se-
quence length is set to 128, mask rate is set to 0.25,
dropout rate is set to 0.1, epsilon is set to 1e − 5,
pretraining learning rate is 5e−4, fine-tuning learn-
ing rate is 5e− 5, and pretraining epochs is set to
8. There is a parameter which we change from the
original implementation; we increased the number
of fine-tuning epochs to 15 since before the 15th
epoch validation scores go down.

A.6 Hardware and Software Used
We used Tensorflow version 2.10.1, KerasNLP ver-
sion 0.3.1, python version 3.10.9. To run our ex-
periments we used an Nvidia RTX3060 GPU. The
total time that all our experiments took to run was
495.55 hrs. (20.64 days).
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