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Abstract

Few-shot learning aims to learn representations
that can tackle novel tasks given a small number
of examples. Recent studies show that cross-
modal learning can improve representations for
few-shot classification. More specifically, lan-
guage is a rich modality that can be used to
guide visual learning. In this work, we ex-
periment with a multi-modal architecture for
few-shot learning that consists of three compo-
nents: a classifier, an auxiliary network, and a
bridge network. While the classifier performs
the main classification task, the auxiliary net-
work learns to predict language representations
from the same input, and the bridge network
transforms high-level features of the auxiliary
network into modulation parameters for lay-
ers of the few-shot classifier using conditional
batch normalization. The bridge should encour-
age a form of lightweight semantic alignment
between language and vision which could be
useful for the classifier. However, after eval-
uating the proposed approach on two popular
few-shot classification benchmarks we find that
a) the improvements do not reproduce across
benchmarks, and b) when they do, the improve-
ments are due to the additional compute and pa-
rameters introduced by the bridge network. We
contribute insights and recommendations for
future work in multi-modal meta-learning, es-
pecially when using language representations.

1 Introduction

It is widely recognized that humans can learn new
concepts based on very little supervision, i.e. with
few examples (or “shots”), and generalize these
concepts to unseen data (Lake et al., 2011). Re-
cent advances in deep learning on the other hand
have mostly relied on datasets with large amounts
of labeled examples, primarily due to overfitting
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Figure 1: Architectural overview of the method we ex-
perimented with. It consists of three components: a
classifier, an auxiliary network, and a bridge network.
The few-shot classifier and auxiliary network receive
the same input example. The bridge network transforms
high-level features of the auxiliary network into mod-
ulation parameters for layers of the few-shot classifier
through conditional batch normalization.

concerns in low data regimes. Although the de-
velopment of better data augmentation and regu-
larization techniques can alleviate these concerns,
many researchers now assume that future break-
throughs in low data regimes will emerge from
either transferring generic models pretrained on
very large datasets with unsupervised objectives
(Devlin et al., 2019; Brown et al., 2020), or from
meta-learning, i.e. “learning-to-learn”. Here, we
study the problem of learning-to-learn in few shots
by using an embedding space in which we perform
classification using a similarity metric. In this meta-
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learning setting, a model is trained on a handful of
labeled examples at a time under the assumption
that it will learn how to correctly project examples
of different classes and generalize this knowledge
to unseen labels at test time.

Although this setting is often used to illustrate
the remaining gap between human capabilities and
machine learning, we could argue that the lack of
context poses a serious disadvantage to machine
learning models. Indeed, these models typically
work based on a single-pass analysis while humans
can first look at and understand contextual informa-
tion before trying to interpret new classes (Swing-
ley, 2010). It has been observed many times in the
past that training models with contextual informa-
tion such as auxiliary modalities can help build a
more robust task-independent feature space (Ruder,
2017; Elliott et al., 2016; Radford et al., 2021).
Auxiliary tasks however often require large support
datasets with good label distributions and a deli-
cate adjustment of network capacity to really help
improve performance on the main task (Alonso
and Plank, 2016). Multi-modal information can be
difficult to process using a simple backbone archi-
tecture due to the varied structure and high-level
nature of some typically used modalities, although
recent Transformer-based works have shown it’s
possible, albeit costly (Jaegle et al., 2021). We re-
fer to the Appendix A for a more comprehensive
study of the related work.

We propose studying whether multitask learning
with multi-modal objectives could be beneficial for
few-shot learning even with commonly-used low-
capacity feature extraction backbones, and with-
out weight sharing between the main and auxiliary
tasks. We study a way to condition multiple layers
of our main feature extractor using an embedding
produced by an entirely separate auxiliary network
working on the same input data. The conditioning
is applied to normalization layer parameters using
a bridge network and it helps specialize the repre-
sentations produced by the main feature extractor
without affecting its architecture. Our idea here is
to mimic the way humans can leverage context to
help solve the recognition problem by combining
low-level and high-level cues. In other words, we
allow the main feature extractor to decide ahead of
time what it should focus on based on task-level
contextual knowledge. The proposed model ar-
chitecture is illustrated in Figure 1. In contrast
with previous works that also studied feature ex-
traction conditioning and multi-modal learning, our

approach is simple and can be applied to any fea-
ture extractor with batch normalization layers. The
bridged-parallel-network design we propose also
simplifies the feature alignment process since both
branches process the same input data. Finally, the
need for only a single input modality at test time
leads to a more practical design for downstream
applications.

However, after evaluating the proposed approach
on two popular few-shot classification benchmarks
we find that a) the improvements do not reproduce
across benchmarks, and b) when they do, the im-
provements are due to the additional compute and
parameters introduced by the bridge network. We
contribute insights and recommendations for fu-
ture work in multi-modal meta-learning, especially
when using language representations.

2 Proposed method

In this section, we formulate conditional batch nor-
malization in the context of few-shot learning. We
propose a model, SimpAux, with two feature ex-
tractors that predict high-level (language-based)
attributes of images as well as their semantic class.
The embeddings of the attribute prediction pipeline
(or “auxiliary” pipeline) are used to condition the
batch normalization layers of the main visual fea-
ture extractor, which is based on a ProtoNet archi-
tecture (Snell et al., 2017). More specifically, we
use ProtoNet++ improvement introduced in Ore-
shkin et al. (2018), with a Resnet-12 (He et al.,
2016), which is a common choice in few-shot learn-
ing settings (e.g. Oreshkin et al., 2018; Jiang et al.,
2019). The conditioning happens through a bridge
connection composed of dense layers that translates
the auxiliary embedding into batch normalization
statistics. These three components are shown in
Figure 1 and are described in the following subsec-
tions. Note that we use the same input modality
(imagery) for the auxiliary and main feature extrac-
tors. However, our method is not limited to this
modality: it was primarily chosen for compatibil-
ity with existing datasets. We refer the reader to
Appendix B for a review of the fundamental ideas
required to better understand our proposed few-shot
learning solution from a technical standpoint.

2.1 Auxiliary visual processing

The auxiliary network in our proposed approach
is agnostic of the main network’s architecture and
task. To simplify comparisons with a wider num-
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ber of few-shot learning methods and to improve
practicality, we formulate this network as a sec-
ond visual processing pipeline that converts the
same images fed to the main network into different
embeddings. The multi-modal nature of our over-
all design comes from the supervised task used to
learn the auxiliary network’s embeddings: its goal
is to predict language-based information from the
images. More specifically, we experimented with
predicting a) Attributes, available in datasets such
as CUB-200-2011 (Wah et al., 2011), with cross-
entropy, soft F1, or multi-label soft margin loss
functions, and b) caption embeddings, with cosine
similarity loss on the sentence embeddings emitted
by SentenceBERT (Reimers and Gurevych, 2019).
We ended up using multi-label soft margin loss as
it was simpler and the other approaches did not
provide significant improvements. However, for
the datasets for which attributes were not available,
we resorted to the sentence embeddings approach.
As for the auxiliary model architecture itself, we
also use a ResNet-12 as we do for the classifier.

2.2 Conditioning bridge

The role of the conditioning bridge is to transform
the embeddings generated by the auxiliary network
into an array of γ and β parameters that can be
used in the various batch normalization layers of
the main network. In contrast with late representa-
tion fusion strategies, e.g. the one of De Vries et al.
(2017), this strategy allows for the early modula-
tion of the main feature extraction pipeline with the
high-level semantic information extracted from the
auxiliary pipeline. Our hypothesis is that this infor-
mation provides adequate context to dynamically
adapt the main feature extractor while keeping its
original architecture intact (and thus simple).

Since the distribution of the input representation
varies at each layer of that network, the normal-
ization parameters also need to be unique for each
layer. We define our bridge as a multilayer percep-
tron (MLP) with a fixed intermediate representation
size and an output size that corresponds to twice
the total size of batch normalization layers in the
main network (to account for both γ and β).

3 Experimental results

We evaluate SimpAux against the baseline,
ProtoNet++, (the improved version of Pro-
toNets suggested in Oreshkin et al. (2018))
on two popular few-shot learning benchmarks,

CUB-200-2011 (Wah et al., 2011) and mini-
ImageNet (Vinyals et al., 2016) in 5-shot learning
settings, using attributes for CUB and embeddings
on synthetic captions for Mini-Imagenet for the
auxiliary visual processing network. We refer to
Appendix C for additional implementation details.

Table 1 shows the results of ProtoNet++ and
SimpAux on CUB 5-shot. Our model clearly out-
performs the baseline by a margin of around 1.5
points in accuracy.

Model Accuracy (%)
ProtoNet++ 88.5± 0.5
SimpAux 90.0± 0.7

Table 1: Accuracy on CUB. Each model was trained
with five random seeds. Reported is the mean accuracy
with 95% confidence intervals on 600 randomly gener-
ated test episodes.

These positive results on CUB showed the
promise of the proposed approach. However, in
the case of Mini-Imagenet 5-shot, in Table 2 we
can see the results of ProtoNet++ and SimpAux on
Mini-Imagenet. In this case, the baseline slightly
outperforms the proposed method, but recall that
here we are using synthetic captions.

Model Accuracy (%)
ProtoNet++ 75.4± 0.4
SimpAux 74.9± 0.1

Table 2: Accuracy on mini-ImageNet. Each model
was trained with five random seeds. Reported is the
mean accuracy with 95% confidence intervals on 600
randomly generated test episodes.

Finally, to test the hypothesis that the reason why
our approach outperforms the baseline in CUB but
not in ImageNet is the quality of the captions, we
design an ablation study. We introduce a varia-
tion of SimpAux in which we use the exact same
bridge network, but without input from the auxil-
iary network, to see whether the improvements are
actually coming from the captions information or
the additional compute and parameters from the
bridge network. We find that there is no signifi-
cant improvement over this variant when using the
captions, suggesting that the improvement comes
from the additional compute and the parameters
provided by the bridge network.

53



4 Discussion and recommendations

From the experimental results, we conclude that
a) the improvements provided by SimpAux do not
reproduce across benchmarks, and b) when these
improvements do indeed take place, they seem to
be due to the additional compute and parameters
provided by the bridge network.We hypothesize
three non-mutually exclusive reasons why image
captioning as auxiliary task modulation via con-
ditional batch normalization did not consistently
improve the results: 1) a lack of quality of the im-
age captions, attributes, or caption embeddings, 2)
the limited impact of the conditional batch normal-
ization approach, and 3) the difficulty of learning
the auxiliary task. While improving the quality of
captions, attributes and caption embeddings with
better annotations or more powerful models could
alleviate 1), the following recommendations and
observations look at other aspects involved in this
work.

Caution when evaluating systems with auxiliary
multi-modal information. Training models with
contextual information such as auxiliary modali-
ties have been shown to build a more robust task-
independent feature space (Ruder, 2017; Elliott
et al., 2016; Radford et al., 2021). However, spu-
rious improvements with multi-modal data are not
new. For instance, Elliott (2018) empirically raises
doubts about whether existing multi-modal trans-
lation systems, combining visual and textual data,
actually make use of the visual information. Simi-
larly, we have seen the other way around: it is per-
fectly possible to outperform a unimodal baseline
with a multi-modal one without actually making
use of the textual information; SimpAux’s improve-
ments in CUB were due to the additional parame-
ters introduced by the bridge network. Thus, we
recommend extra care when concluding that multi-
modal information helps in a certain task, which is
definitely possible but could be due to other factors.

Importance of implementation details. We ex-
perimented with different activation functions, in-
cluding ReLU (Agarap, 2018), SELU (Klambauer
et al., 2017), and SiLU (Hendrycks and Gimpel,
2016; Ramachandran et al., 2017). We found
that SiLU consistently yielded slightly better re-
sults across benchmarks and settings. Ensuring
that weight decay was not applied to bias parame-
ters, which is not the default behavior in PyTorch
(Paszke et al., 2019), also turned out to be key to re-

producing few-shot works originally implemented
in Tensorflow (Abadi et al., 2015).

Hyperparameter search. In the hyperparameter
search, we generally observed consistent results.
However, we also observed a few outliers, which
can be particularly extreme under certain settings
in few-shot learning, and if used as empirical evi-
dence, could totally change the conclusions. Thus,
we reiterate the need for reporting averages and
variances instead of the results of a single run, and
also recommend caution at extracting certain con-
clusions when performing large-scale hyperparam-
eter searches, as noted by Picard (2021).

Advantages of the proposed architecture.
Our network architecture decouples task-specific
branches: its bridge acts as a gate that selects rele-
vant hints from the auxiliary network to influence
the classification network. It is simpler than previ-
ous works that also studied feature extraction condi-
tioning and multi-modal learning, and by design it
requires a single input modality at test time, which
simplifies practical deployments. SimpAux’s ar-
chitectural considerations are orthogonal to other
few-shot learning research lines, and could be com-
bined with them. Thus, we believe that, despite
the limited success in the meta-learning setting,
these architectural advantages could be a source of
inspiration for future work.

Language-informed representations and few-
shot learning. Without episodic learning, Rad-
ford et al. (2021) showed that language-informed
visual representations can be successfully learned
with large-scale supervised contrastive pretraining.
Their approach, CLIP, obtains high-performance
at zero-shot classification. Leveraging their pre-
trained encoders could be interesting in the context
of bootstrapping episodic learning with auxiliary
tasks. It would however be difficult to guarantee
that the classes used in few-shot settings have not
been observed by CLIP during pretraining.

5 Conclusion

In this work, we have studied a new multi-modal
architecture for few-shot learning consisting of an
image classifier, an auxiliary network trained with
image captions, and a modulating network based
on conditional batch normalization to connect the
two. While initially promising, we have observed
the limits of this approach and how these limits
could inform future research.
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A Related Work

Network conditioning. Normalization layers have
been used many times in the past as a means to
influence the behavior of deep feature extractors.
For example, early works in arbitrary style transfer
studied how modulating instance normalization pa-
rameters could align representations across styles
that are not already known at run time (Huang and
Belongie, 2017; Ghiasi et al., 2017). The flexibil-
ity gained by this modulation strategy has been
adopted to tackle many other problems where fea-
ture extractors must dynamically change their be-
havior at run-time. For example, De Vries et al.
(2017) and Perez et al. (2017) use conditional nor-
malization layers to manipulate feature extractors

in a selective manner for visual question answer-
ing and reasoning tasks. In the few-shot learning
literature, Oreshkin et al. (2018) apply a form of
normalization conditioning for task-dynamic fea-
ture extraction. In their case, instances are first
encoded with an “unconditioned” feature extractor,
and the resulting embeddings are used to condition
the same feature extractor in a subsequent pass. In
contrast, we base our conditioning on auxiliary la-
bels and formulate a single-pass inference process.
We also do not impose any constraints on the archi-
tecture of the main or auxiliary networks, meaning
one can be much smaller than the other if required
by the limited size of the dataset.

Note that there are also alternative conditioning
strategies for few-shot learning paradigms that do
not involve normalization layers. For example, em-
beddings can be directly modulated by a second
network stage that analyzes the contextual infor-
mation from the task (Ye et al., 2020; Qiao et al.,
2019). Popular feature extractor architectures can
also be slightly modified by adding conditionally
shifted neurons to adapt representations using con-
text at prediction time (Munkhdalai et al., 2018).
Alternatively, the entire parameter set of various
convolutional layers inside the feature extractor
can be inferred at prediction time using a parallel
network (Bertinetto et al., 2016, 2018; Zhao et al.,
2018). A recent approach has also been proposed
by Chen et al. (2022) to adapt large-scale multi-
modal transformer-based backbones. The down-
side to these solutions is the dependency on large
networks that must learn complex modulation oper-
ations from the task context, or the use of a memory
bank on which an attention mechanism can oper-
ate. In contrast, normalization conditioning is a
more lightweight approach that is easier to learn in
small data regimes due to the reduced complexity
of the modulation factors (i.e. the normalization
statistics).

Recent trends in few-shot learning. There have
been far too many strategies proposed to tackle few-
shot learning for us to inventory them here. For a
survey and a modern taxonomy, we refer the reader
to the work of Wang et al. (2020). Instead, we note
that many researchers over the years have high-
lighted the lack of a universal evaluation methodol-
ogy for these methods. Recent independent efforts
have shown that many “state-of-the-art” solutions
are actually quite fragile and can be outperformed
by simple baselines when evaluated and compared
properly (Chen et al., 2019; Dhillon et al., 2019;
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Tian et al., 2020). All of these works found that
simple CNN backbones trained using a cross en-
tropy loss and then optionally fine-tuned on test
time queries can deliver competitive performance
with respect to recent models. Transductive learn-
ing using test time queries in particular has been
recently re-explored as an effective solution for
few-shot learning (Dhillon et al., 2019; Ziko et al.,
2020). Such findings highlight that more research
effort should be spent on model-agnostic robust-
ness improvements and less on the introduction or
tuning of new model architectures as well as their
training regimes. Our work falls in line with this
idea while also promoting the use of multi-modal
labels for improved few-shot learning.

As for multi-modal few-shot learning itself: it is
not a new approach to the problem, but it is also not
a popular one, as typical benchmarks only focus on
using only imagery as input. Nonetheless, multi-
ple strategies have been proposed to help deal with
data scarcity in few-shot learning. For example,
Pahde et al. (2019) feed image captions to a gen-
erative model during training to obtain additional
images of the target classes. Their method however
relies on several pre-trained and notably hard-to-
train model components. Xing et al. (2019) and
Schwartz et al. (2019) also leverage caption data
but instead combine visual and semantic represen-
tations to improve class discrimination in metric
space. In contrast to our work, they rely on paral-
lel feature extraction pipelines that are combined
in a “late fusion” fashion, whereas we propose a
way to modulate the entirety of any visual pipeline
architecture with semantic information. Vuorio
et al. (2019) applies a similar modulation idea to
the model-agnostic, meta-learning (MAML) frame-
work of Finn et al. (2017). In their case, they rely
on the modulation layers proposed by Perez et al.
(2017) to condition their main task network. Tseng
et al. (2020) follow the same strategy to deal with
domain generalization issues in few-shot learning.
In comparison, our proposed auxiliary network is
trained in a supervised cross-modal setting where
its embeddings are used to modulate our main net-
work. Also, since we apply modulation through
batch normalization, our approach can handle data
samples that do not possess auxiliary labels or cap-
tions.

B Background

Here, we review some of the fundamental ideas re-
quired to understand our proposed few-shot learn-
ing solution.

B.1 Episodic few-shot learning and ProtoNets
In episodic few-shot learning, an “episode” is repre-
sented as an N -way, K-shot classification problem
where N is the number of examples per class and
K the number of unique class labels. During train-
ing, the data in each episode is provided as a sup-
port set S = {(x1,1,y1), ..., (xN,K ,yN )} where
xi,j ∈ RD is the i-th instance of the j-th class, and
yj ∈ {0, 1}K is its corresponding one-hot labeling
vector. The goal in each episode is to optimize a
function f that classifies new instances provided
through a “query” set Q which contains instances
of the same classes as S. This task is difficult be-
cause N is typically very small (e.g. 1 to 10), the
classes change every episode, and the actual test set
used to evaluate a model does not contain classes
that were seen in support sets during training.

We build our solution on top of Prototypical Net-
works (ProtoNets; Snell et al., 2017), as it is now
accepted as a good yet simple baseline. Accord-
ing to (Chen et al., 2019), it is more robust than
other recent few-shot learning approaches and it
generalizes well across various dataset domains.
ProtoNets tackle few-shot learning by learning an
embedding space where each class is represented
by a cluster, or prototype. A prototype ck ∈ RM

for a class k is simply defined as the mean of the
instance embeddings that belong to k, that is:

ck =
1

Sk

∑

(xi,j ,yi)∈Sk

f(xi,j), (1)

where Sk is the support subset of all instances that
belong to class k, and f is a learned function. Next,
the probability of assigning a new instance x to a
class k is computed via the softmax of the distance
to all class prototypes:

p(y = k|x) = exp−d(f(x), ck)∑
k′ exp−d(f(x), ck′)

, (2)

for any given distance function d : RM × RM 7→
[0,+∞).

B.2 Batch normalization and conditioning
Batch normalization was proposed by (Ioffe and
Szegedy, 2015) as a solution to speed up training
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by reducing the problem of coordinating weight
updates across the different layers of a model. In
short, batch normalization performs a reparame-
terization on the intermediate representations of a
model so that assumptions regarding their spread
and distribution in subsequent layers will be less
affected by stochastic updates. More specifically,
given a batch of n feature maps B = {z1, ...,zn}
with C channels each, batch normalization per-
forms channel-wise reparameterization using

BN(zl,c|B,γ,β) = γc ·
zl,c − µc

σ2
c + ϵ

+ βc, (3)

where γ and β are vectors of learned channel-wise
parameters, ϵ is a constant used for numerical sta-
bility, and µc and σ2

c are the mean and variation
values computed across batch and spatial dimen-
sions of B.

Many researchers now recognize that batch nor-
malization has beneficial side-effects on the land-
scape of the optimization problem (Goodfellow
et al., 2016; Santurkar et al., 2018). These benefits
have lead to the rapid adoption of this technique
across the majority of new and popular model ar-
chitectures. Consequently, the important role and
ubiquitous nature of batch normalization make it
an interesting target for the conditioning of models
using auxiliary data. This idea was first introduced
by De Vries et al. (2017): they inject visual con-
cepts from natural language in a visual processing
pipeline for VQA by manipulating batch normaliza-
tion parameters. These parameters are influenced
by the embeddings produced with a recurrent net-
work. One advantage of this approach is that it can
help learn how to dynamically specialize a model
at test time without drastically increasing its overall
number of learnable parameters. This advantage is
very interesting in the context of few-shot learning
where only small datasets prone to overfitting are
considered.

C Other implementation details

Our ProtoNet backbone is the improved version of
the original method (coined ProtoNet++) suggested
by Oreshkin et al. (2018) that includes residual
connections between convolution layers (Resnet-
12). We implement the models and data loaders
with PyTorch (Paszke et al., 2019) and Torchmeta
(Deleu et al., 2019), a meta-learning library. We
experimented with different activation functions,
and SiLU (Ramachandran et al., 2017) yielded the
best results.

In our experiments, we use the CUB-
200-2011 (Wah et al., 2011) and mini-
ImageNet (Vinyals et al., 2016) datasets.
For CUB, we use the split of Chen et al. (2019)
and also experiment with the captions collected
by Reed et al. (2016). For mini-ImageNet, we
use the setting proposed by Ravi and Larochelle
(2016), with synthetic captions generated using
an open-source implementation of a Transformer
(Vaswani et al., 2017) for image captioning.1

Our implementation is publicly available on
Github.2

1https://github.com/saahiluppal/catr
2https://github.com/jordiae/simpaux-release
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