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Introduction

Publication of negative results is difficult in most fields, and the current focus on benchmark-driven per-
formance improvement exacerbates this situation and implicitly discourages hypothesis-driven research.
As a result, the development of NLP models often devolves into a product of tinkering and tweaking,
rather than science. Furthermore, it increases the time, effort, and carbon emissions spent on developing
and tuning models, as the researchers have little opportunity to learn from what has already been tried
and failed.
The mission of the workshop on Insights from Negative Results in NLP is to provide a venue for many
kinds of negative results, with the hope that they could yield useful insights and provide a much-needed
reality check on the successes of deep learning models in NLP. In particular, we solicit the following
types of contributions:

• broadly applicable recommendations for training/fine-tuning, especially if X that didn’t work is
something that many practitioners would think reasonable to try, and if the demonstration of X’s
failure is accompanied by some explanation/hypothesis;

• ablation studies of components in previously proposed models, showing that their contributions
are different from what was initially reported;

• datasets or probing tasks showing that previous approaches do not generalize to other domains or
language phenomena;

• trivial baselines that work suspiciously well for a given task/dataset;

• cross-lingual studies showing that a technique X is only successful for a certain language or lan-
guage family;

• experiments on (in)stability of the previously published results due to hardware, random initiali-
zations, preprocessing pipeline components, etc;

• theoretical arguments and/or proofs for why X should not be expected to work;

• demonstration of issues with under-reporting of training details of pre-trained models, including
test data contamination and invalid comparisons.

The fifth iteration of the Workshop on Insights from Negative Results attracted 28 submissions and 4 from
ACL Rolling Reviews. In terms of topics/themes, 4 papers from our accepted proceedings discussed
“zero-shot / few-shot learning / low-resource settings”; 1 discussed “cross-modal fine-tuning”; 6 papers
examined pre-trained representations / generalization; 1 dealt with tokenization; 6 on the topic of “LLM
Reasoning / Alignment / Evaluations / Probing”; 1 on Multi-task Learning. Some submissions fit in more
than one category.
We accepted 19 short papers (57.5% acceptance rate).
We hope the workshop will continue to contribute to the many reality-check discussions on progress in
NLP. If we do not talk about things that do not work, it is harder to see what the biggest problems are
and where the community effort is the most needed.
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Abstract

Transformer-based pre-trained language mod-
els (PLMs) have achieved remarkable perfor-
mance in various natural language processing
(NLP) tasks. However, pre-training such mod-
els can take considerable resources that are al-
most only available to high-resource languages.
On the contrary, static word embeddings are
easier to train in terms of computing resources
and the amount of data required. In this paper,
we introduce MoSECroT (Model Stitching
with Static Word Embeddings for Crosslingual
Zero-shot Transfer), a novel and challenging
task that is especially relevant to low-resource
languages for which static word embeddings
are available. To tackle the task, we present
the first framework that leverages relative rep-
resentations to construct a common space for
the embeddings of a source language PLM
and the static word embeddings of a target
language. In this way, we can train the PLM
on source-language training data and perform
zero-shot transfer to the target language by sim-
ply swapping the embedding layer. However,
through extensive experiments on two classi-
fication datasets, we show that although our
proposed framework is competitive with weak
baselines when addressing MoSECroT, it fails
to achieve competitive results compared with
some strong baselines. In this paper, we at-
tempt to explain this negative result and provide
several thoughts on possible improvement.

1 Introduction

The emergence of PLMs and their multilingual
counterparts (mPLMs) (Devlin et al., 2019; Con-
neau et al., 2020) have proven effective for various
NLP tasks (Artetxe et al., 2020; ImaniGooghari
et al., 2023). However, such models are mostly lim-
ited to no more than a hundred languages, as the
pre-training requires considerable data that is only
available to these languages, leaving the majority

*Equal contribution.

of the world’s low-resource languages uncovered.
In this work, we explore the possibility of lever-
aging (1) a PLM in a source language, (2) static
word embeddings in a target language, which are
readily available for many low-resource languages
and are much easier to train, and (3) a technique
called model stitching, to enable zero-shot on the
target language without the need to pre-train.

Our contribution is summarized as follows: (i)
we introduce MoSECroT, a novel and challeng-
ing task for (especially low-resource) languages
where static word embeddings are available. (ii)
We propose a solution that leverages relative repre-
sentations to construct a common space for source
(English in our case) and target languages and that
allows zero-shot transfer for the target languages.

2 Related Work

Aligned crosslingual word embeddings enable
transfer learning by benefiting from a shared repre-
sentation space for the source and target languages.
Such embedding pairs are typically either trained
jointly (Hermann and Blunsom, 2014; Vulic and
Moens, 2016) or obtained through post-alignment
(Lample et al., 2018; Artetxe et al., 2018). Our
work applies a transformation in the manner of the
latter to align two embedding spaces where the
source embeddings are derived from a PLM and
target embeddings are static word embeddings.

Based on a recent consensus that similar inner
representations are learned by neural networks re-
gardless of their architecture or domain (Kornblith
et al., 2019; Vulić et al., 2020), Moschella et al.
(2023) propose an approach to align latent spaces
with respect to a set of samples, called parallel an-
chors. They transform the original, absolute space
to one defined by relative coordinates of the parallel
anchors, and denote all the transformed samples in
the relative coordinates as relative representations.

Model stitching was proposed as a way to com-
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bine (stitch together) components of different neu-
ral models. Trainable stitching layers are first intro-
duced by Lenc and Vedaldi (2015), with a series of
subsequent works demonstrating the effectiveness
of the approach (Bianchi et al., 2020; Bansal et al.,
2021).

3 MoSECroT Task Setting

The task setting is straightforward: given a PLM of
a high-resource language (regarded as the source
language) and static word embeddings of another
language (low-resource and regarded as the target
language), the goal is to achieve zero-shot transfer
by using the target language embeddings directly
with the source language model via embedding
layer stitching. This can be done by first apply-
ing an alignment between the source and target
embedding spaces and subsequently swapping the
embedding matrices of the PLM.

We propose a novel method that leverages rela-
tive representations for embedding space mapping.
In the following, we describe our methodology in
more detail.

4 Methodology

Parallel anchor selection We first extract bilin-
gual parallel lexica between the source and the
target language. For most high-resource languages,
large bilingual lexica are available from MUSE1.
For low-resource languages, we crawl translations
of source language vocabulary from PanLex2 and
Google Translate3. Then we derive a subset of the
lexica as the parallel anchors A for our method: we
only keep those parallel lexica which exist in the
embeddings of source and target languages4.

Relative representations Following Moschella
et al. (2023), we build relative representations
(RRs) for each token in the embedding space based
on their similarities with anchor tokens in the re-
spective language. Specifically, we compute the
cosine similarity of the embedding of each token
with the embedding of each anchor token. This
computation is done in the embedding spaces of the
source and target languages respectively. For exam-
ple, in the source language, the similarity between

1https://github.com/facebookresearch/MUSE
2https://panlex.org
3https://translate.google.com
4The source language is always English and its embeddings

are extracted from English BERT’s (Devlin et al., 2019) token
embeddings. For target languages, embeddings are static word
embeddings from fastText (Bojanowski et al., 2017).

token xi and anchor aj is calculated as follows:

rs(i,j) = cos-sim(Es
{xi},E

s
{aj})

where Es
{xi}, Es

{aj} are the word embedding of xi
and aj in the source PLM embeddings Es. The
relative representation of token xi from the source
language is then defined as follows:

Rs
{xi} = [rs(i,1), r

s
(i,2), r

s
(i,3), · · · , rs(i,|A|)]

Note that the relative representation is sensitive to
the order of the anchors, so the relative representa-
tion for each token is computed with the anchors
in the same order. This computation results in a
matrix Rs ∈ R|V s|×|A| of source language embed-
dings and a matrix Rt ∈ R|V t|×|A| of target lan-
guage embeddings, where |V s| (resp. |V t|) is the
source-language (resp. target-language) vocabulary
size and |A| is the number of parallel anchors.

Embedding mapping The obtained relative rep-
resentations are vectors in R|A| for both source and
target languages. This dimension does not suit the
hidden dimension of the Transformer body of the
source PLM. Therefore, we propose to map the
relative representations of both source and target
languages back to RD, which is the same as the
dimension of Es. Given Es and Rs for source
language (resp. Et and Rt for target language), we
compute the transformed embedding of any token
xi from the source language (resp. any token yi
from the target language) as follows:

F s
{xi} =

∑
n∈N(xi)

(Rs
{xi},n/τ ·Es

{n})∑
n∈N(xi)

Rs
{xi},n/τ

F t
{yi} =

∑
n∈N(yi)(R

t
{yi},n/τ ·Es

{n})∑
n∈N(yi)R

t
{yi},n/τ

where N(xi) (resp. N(yi)) is the set of top-k closest
anchors in terms of the cosine similarity recorded
in Rs

xi
(resp. Rt

yi), Rs
{xi},n (resp. Rs

{yi},n) is
the cosine similarity between Es

{xi} (resp. Et
{yi})

and Es
{n} (resp. Et

{n}), and τ is the temperature.
Note that both the resulting transformed embed-
dings F s

{xi} and F t
{yi} are in RD, because it is

a weighted sum of the anchor embedding in the
source language, i.e., Es

{n}. A simple summary
of the process is to represent any token, no matter
whether it is from the source or target language, as
a weighted sum of the embeddings of some parallel
anchors in the source-language embedding space.
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Zero-shot stitching So far we project the target-
language embeddings to RD, which suits the hid-
den dimension of the Transformer body of the
source language. We also manipulate the orig-
inal token embedding matrix of the source lan-
guage, where the matrix dimensions stay the same:
F s ∈ R|V s|×D. We can simply fine-tune the model
(F s and the Transformer body) on the source-
language train set of a downstream task and then
assemble a target-language model for zero-shot
transfer, without training on the target language. To
do this, we only need to swap the source-language
embeddings F s with target-language embeddings
F t.

5 Experiments

5.1 Setup

We use the cased version of the English BERT
model (bert-base-cased) as the source language
PLM and consider eight target languages. Three
of the target languages are high-resource: German
(de), Spanish (es), and Chinese (zh), and the rest
are low-resource: Faroese (fo), Maltese (mt), East-
ern Low German (nds), Sakha (sah), and Tatar
(tt). Pre-trained static embeddings for all target
languages are available from fastText5, except for
Eastern Low German, for which we download fast-
Text embeddings from Huggingface6.

Using the method proposed in §4, we obtain
pairwise parallel anchors between English and each
target language. The size of the anchor set varies
depending on the vocabulary size of the language’s
embeddings and the overlap between the English
and target language lexica, which is the following
for each target language: 11836 (en-de), 11395
(en-es), 7662 (en-zh), 1577 (en-fo), 2600 (en-mt),
1309 (nds), 3242 (en-sah), and 9275 (en-tt).

We evaluate the proposed method on two text
classification datasets: Multilingual Amazon Re-
views Corpus (Keung et al., 2020) and Taxi1500
(Ma et al., 2023). See §C for details.

Apart from the standard weighting scheme il-
lustrated in §4, we propose two more settings:
one where we apply softmax over relative repre-
sentation weights (in the Embedding mapping
step), and another using sparsemax (Martins and
Astudillo, 2016). Compared to softmax, sparse-

5https://fasttext.cc/docs/en/
pretrained-vectors.html

6https://huggingface.co/facebook/
fasttext-nds-vectors

de es zh

LR 0.52 0.51 0.50
mBERT 0.61 0.65 0.51
LS 0.46 0.46 0.30

RRs standard top-50 0.53 0.51 0.38
RRs softmax top-50 0.50 0.53 0.38
RRs sparsemax top-50 0.56 0.57 0.24

Table 1: Evaluation results on the Amazon Reviews
Corpus. We report macro F1 scores on the test sets
of three high-resource target languages. Bold: highest
score per column.

max produces sparse weight distributions, mean-
ing more similarities are concentrated on fewer
anchors. We conduct preliminary experiments
to identify the optimal top-k closest anchors ∈
{1, 10, 50, 100} and find that the results are best
when using the top 50 anchors. See §A for an ex-
ploration of how different choices of k influence
the performance.

5.2 Baselines

We compare our method against three baselines:

Logistic Regression (LR) We train a simple tar-
get language logistic regression classifier using the
average of static word embeddings of the input sen-
tences. This approach does not require expensive
training of a language model but assumes we have
sufficient target language training data for a spe-
cific downstream task, which is hardly the case for
most low-resource languages in real scenarios.

mBERT We fine-tune multilingual BERT
(mBERT) (Devlin et al., 2019), which is pre-
trained on more than 100 languages, using the
English training data, and perform zero-shot
predictions directly on the target language test
data.

Least squares projection (LS) We propose a
straightforward approach, inspired by embedding
alignment frameworks such as VecMap (Artetxe
et al., 2018), to project target language embeddings
into the same space as the English PLM embed-
dings. Specifically, we learn a transformation ma-
trix W ∈ RDt×D by minimizing ||AtW −As||2F ,
where At ∈ R|A|×Dt

is the embeddings of anchors
in the target language and As ∈ R|A|×D is the em-
beddings of anchors from the English PLM. We
then project all target language embeddings using

3



de es zh mt sah fo nds tt

LR 0.30 0.32 0.56 0.38 0.48 0.47 0.18 0.43
mBERT 0.24 0.60 0.62 0.08 0.07 0.18 0.12 0.18
LS 0.14 0.26 0.24 0.08 0.12 0.06 0.08 0.07

RRs standard top50 0.20 0.44 0.28 0.14 0.16 0.16 0.06 0.14
RRs softmax top50 0.20 0.48 0.28 0.15 0.19 0.16 0.06 0.17
RRs sparsemax top50 0.24 0.37 0.13 0.15 0.18 0.20 0.13 0.21

Table 2: Evaluation results on the Taxi1500 dataset. Reported metrics are macro F1 scores on the test sets of eight
target languages. Scores are averaged over five runs with different random seeds. Bold: highest score per column.

W and replace the BERT embedding layer with
the resulting matrix.

5.3 Results

We present evaluation results of RRs with the pro-
posed settings (§5.1) and compare them with the
baselines in Tables 1 and 2. Macro F1 is used due
to class imbalance in both datasets.

We notice that the naive LS baseline is almost
always beaten by the proposed method under mul-
tiple RR settings on both datasets. The only excep-
tion is nds, in Table 2, where both LS and RRs per-
form badly. This observation is a strong indicator
that RRs can better leverage the semantic similarity
encoded in different types of embeddings than LS.

Not very surprisingly, zero-shot with mBERT
is effective for high-resource languages in both
datasets but underperforms LR with large gaps on
low-resource languages in Taxi1500. There are
two possible explanations for this phenomenon.
First, representations in mBERT are not well-
aligned across low-resource languages. This
is possibly due to data sparsity, which is ob-
served by previous work (Wu and Dredze, 2020),
where mBERT archives good performance on high-
resource languages but sub-optimal performance
on low-resource languages. Second, Taxi1500 is a
relatively easy task: a model with good alignment
across languages, especially on the word level, is
expected to perform well. This argument is sup-
ported by a previous work (Liu et al., 2023), where
well-aligned word embeddings achieve better zero-
shot crosslingual performance than mPLMs on a
wide range of languages in Taxi1500.

Although none of the RR settings outperforms
mBERT on high-resource languages (as mentioned
earlier, mBERT has strong crosslingual transfer
ability on high-resource languages), for all five
low-resource languages not seen by mBERT (mt,
sah, fo, nds, tt), RRs outperform mBERT consis-

tently, with varying margins (ranging from +0.12
for sah to +0.01 for nds). This suggests that RRs
can be a promising alternative when a low-resource
language is not covered by an mPLM.

6 Analysis

In this section, we want to propose possible reasons
for the suboptimal results obtained by our frame-
work tackling the MoSECroT task.

Anchor selection The quality of the parallel an-
chors largely relies on the quality of the bilingual
lexica, which may contain, among others, poly-
semous words, that may influence the alignment
quality. Normalization can also be a source of ambi-
guity. For example, MUSE converts all words into
lowercase, so the word sie can have three mean-
ings in the German-English lexicon: you, she, and
they. We (1) only consider one translation (if there
are multiple) for each target language word, which
may not be the most accurate one; and (2) treat
all target language words whose translations are in
the source language vocabulary as anchors, which
increases the frequency of noisy translation pairs.

We try to decrease the influence of potentially
noisy anchor pairs by reducing the number of an-
chors to 3000 and 500 (the original anchor set used
during the preliminary experiments contains 6731
anchors, see §4) through random sampling, fol-
lowing the observation by Moschella et al. (2023)
that uniform selection from an anchor set is both
straightforward and has good performance. We
also remove stop words, whose translations are
more unstable, from the anchor set. Neither of the
two modifications shows an improvement over the
full anchor set (see §B for the comparison). One
possible explanation is that the translation qualities
vary across anchors and thus we cannot predict the
quality of sampled anchors.
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Translation quality We find that a large portion
of translations retrieved from PanLex are of low
quality. This is partly due to PanLex using interme-
diate languages when direct translation is unavail-
able for the language pair. We filter the translations
by empirically setting a threshold to the translation
quality scores, available through the API for ev-
ery translation. Nevertheless, we note that a high
translation quality score does not guarantee the
translation is perfect, and many translations are
good despite having low translation quality scores.
We believe the lack of high-quality parallel lexica
is a possible reason that RRs do not reach their full
potential on low-resource languages.

Reinitialized embedding space Our method re-
quires swapping the original PLM embeddings
with the transformed English RRs before fine-
tuning on English data, whereas the embedding
space of RRs might diverge substantially from the
original embedding space. As a result, it is unclear
whether the rest of the model parameters can be
adapted to the new embeddings during fine-tuning,
especially on smaller datasets like Taxi1500. We
thus suggest the alteration of the embedding space
through reinitialization with RRs as a likely factor
as to why we do not achieve good performance.

7 Conclusion

In this work, we introduce MoSECroT, a novel and
challenging task that is relevant for, in particular,
low-resource languages for which static word em-
beddings are available but few resources exist. In
addition, we propose for the first time a method
that leverages relative representations for embed-
ding space mapping and enables zero-shot trans-
fer. Specifically, we fine-tune a monolingual En-
glish language model using only English data, swap
the embeddings with target language embeddings
aligned using RRs, and apply zero-shot evaluation
on the target language. We show that the proposed
method is promising compared with mBERT on un-
seen languages but only modest improvements are
achieved. We provide several possible reasons and
leave improvement possibilities for future research.

Limitations

In this work, we propose the task of MoSECroT
and a solution to leverage available static pre-
trained embeddings and tackle downstream tasks
for low-resource languages. Our work has a few
limitations open to future research. First, we only

experiment with one model architecture (BERT).
Although many language-specific BERT models
exist and thus our method is applicable to a wide
range of high-resource source languages, it would
nevertheless be interesting to compare performance
across different model architectures. Second, the
explored tasks are exclusively text classification
tasks. We expect that the robustness of our method
can be much better studied by applying it to a more
diverse set of tasks.
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A Number of closest anchors

In addition to using all (6731) parallel anchors, we
consider only the top-k (k ∈ {1, 10, 50, 100}) clos-
est anchors of each word. We identify the optimal
value for k closest anchors based on zero-shot per-
formance on German and Chinese portions of the
Amazon Reviews Corpus (§C.1). Table 3 shows
results for different k values.

k de zh

1 0.44 0.41
10 0.51 0.38
50 0.50 0.40

100 0.51 0.38
6731 0.44 0.21

Table 3: Number of closest parallel anchors (k) and
the corresponding zero-shot performance on de and zh
portions of the Amazon Reviews Corpus.
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B Total number of anchors

Following Moschella et al. (2023), we randomly
sample a subset of the parallel anchors (|A| ∈
{500, 3000}), and exclude stop words from the
anchor set. Table 4 shows zero-shot performance
on German and Chinese portions of the Amazon
Reviews Corpus (§C.1).

|A| de zh

500 0.39 0.19
3000 0.19 0.19
6731 0.44 0.21

Table 4: The total number of parallel anchors and the
corresponding zero-shot performance on de and zh por-
tions of the Amazon Reviews Corpus.

C Evaluation datasets

C.1 Multilingual Amazon Reviews Corpus
Presented by Keung et al. (2020) and contain-
ing product reviews in six languages, the origi-
nal dataset uses five labels corresponding to star
ratings, which we aggregate into three classes: pos-
itive, neutral, and negative. We evaluate the three
high-resource target languages (de, es, zh) on this
dataset.

C.2 Taxi1500
Taxi1500 (Ma et al., 2023) is a classification dataset
containing six classes for more than 1500 lan-
guages, including all of our target languages. We
follow the authors’ original training procedure and
hyperparameters and use a learning rate of 1e-5
instead of 2e-5, which we find works better for our
settings.

D Computational resources

Training can be completed in under three hours on
eight NVIDIA GeForce GTX 1080 Ti GPUs for
the Multilingual Amazon Reviews Corpus or about
half an hour on a single NVIDIA GeForce GTX
1080 Ti GPU for Taxi1500.
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Abstract

ORCA (Shen et al., 2023) is a recent technique
for cross-modal fine-tuning, i.e., applying pre-
trained transformer models to modalities be-
yond their training data. The technique consists
primarily of training an embedder and fine-
tuning the embedder and model. Despite its
high performance on a variety of downstream
tasks, we do not understand precisely how each
of these components contribute to ORCA’s suc-
cess. Therefore, we run a series of ablations
and find that embedder training does not help
2D tasks at all, contrary to what the original
paper posits. In 1D tasks, some amount of em-
bedder training is necessary but more is not
better. In 4 out of 6 datasets we experiment
with, it is model fine-tuning that makes the
biggest difference. Through our ablations and
baselines, we contribute a better understanding
of the individual components of ORCA.

1 Introduction

Modern AI is based on a pipeline of pre-training
general-purpose models on vast amounts of data
and then adapting them to specific tasks. Exam-
ples across natural language processing (NLP) and
computer vision (CV) typically focus on within-
modality adaptation across, e.g., tasks or domains,
but there is also a recent line of work that looks
at leveraging pre-trained models across modali-
ties, e.g., Frozen Pretrained Transformers (FPT)
(Lu et al., 2021), ORCA (Shen et al., 2023), Om-
niPred (Song et al., 2024), Unified PDE Solver
(UPS) (Shen et al., 2024), inter alia.

ORCA is a recent example of a method for cross-
modal fine-tuning (Shen et al., 2023). It consists of
a three-phase pipeline, shown in Figure 1. First, a
pre-trained transformer model is chosen, and a cus-
tom embedder and predictor are created to support
new tasks with any input and output dimensions.
Second, a within-modality proxy dataset is chosen.
The embedder is trained to minimize the distance
between the target dataset and this proxy dataset, in

* Equal contribution.

Pre-trained 
Embedding 

Layer

Embedder

Predictor

Stage 2: Embedder 
training

Stage 3: 
Fine-tuning all 
components

3

Target dataset Proxy dataset

Task-Specific
Embedder

Embedded target Embedded proxy
Model

2

1

OTDD

Stage 1: Choose a pre-trained model and create a 
task-specific embedder and predictor

Figure 1: The ORCA pipeline. Stage 2 involves train-
ing the task-specific embedder. Stage 3 fine-tunes the
embedder, the pre-trained encoder, and the predictor.

order to map the target dataset into the embedding
space of the model. Finally, all three components
are fine-tuned on data from the target task.

According to Shen et al. (2023), embedder train-
ing is the reason for ORCA’s success. We expand
on their ablations to better understand the contri-
butions of ORCA’s individual components, focus-
ing on ablating the second and third stages of the
pipeline. Our specific research questions are:

1. How does the choice of proxy dataset affect
performance? (§3)

2. Does doing (more) embedder training im-
prove performance? (§4)

3. What do the embedder and the pre-trained
model contribute individually? (§5)

4. How much pre-training is necessary for cross-
modal transfer? (§6)

By disentangling the contributions of embedder
training and model fine-tuning, our results provide
a more nuanced perspective on the success of cross-
modal fine-tuning with ORCA. Additionally, our
findings highlight the importance of strong base-
lines and careful ablations when making claims
about why a method works.
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Figure 2: Per-epoch fine-tuning performance (↓) on 2D tasks (above) and 1D tasks (below) when the embedder is
trained with different proxy datasets or not trained at all, i.e., naive fine-tuning.

2 Experimental setup

Unless otherwise specified, we follow the ORCA
paper in using RoBERTa-base (Liu et al., 2019)
and Swin-base (Liu et al., 2021) as the pre-trained
transformers, a convolutional architecture for the
embedder, and a linear transformation for the pre-
dictor (see Appendix C for details). We also use
optimal transport dataset distance (OTDD; Alvarez-
Melis and Fusi, 2020) as the loss function during
embedder training. All our experiments use their
publicly available code.1 For training, we use the
same hyperparameters as they do, except for the
batch size when training on Satellite (64) and ECG
(32) data. We evaluate on six target datasets that
appear in the original paper, chosen to represent all
pairs of dimensions and types, and we experiment
with various proxy datasets. Dataset details are
shown in Appendix B.

Target datasets. We select three 2D datasets (Ni-
naPro, CIFAR-100, and Darcy Flow) and three 1D
datasets (Satellite, DeepSEA, and ECG) from the
NAS-Bench-360 benchmark (Tu et al., 2022). 2D
and 1D refer to the input being either a matrix (2
dimensions) or a sequence (1 dimension).

Proxy datasets. The original paper uses CIFAR-
10 (Krizhevsky, 2009) as the proxy dataset for all
2D tasks, and CoNLL 2003 (Tjong Kim Sang and
De Meulder, 2003) for all 1D tasks. We experiment
with additional proxy datasets to analyze their in-

1https://github.com/sjunhongshen/ORCA/

fluence on overall performance.
For the 2D tasks, we compare to two other image

datasets that maintain the same number of classes:
MNIST (Deng, 2012), a different image dataset,
and Fakedata2, a dataset of randomly classified
white noise images (Paszke et al., 2019). For the 1D
tasks, we compare to a custom-created fake dataset
classifying randomly generated language feature
vectors into the same number of classes as CoNLL.

3 How does the choice of proxy dataset
affect performance?

In this section, we experiment with the choice of
proxy dataset for the tasks. As a baseline, we com-
pare to just fine-tuning the embedder, model and
predictor, without training the embedder first.

As Figure 2 shows, all fine-tuning curves for the
2D datasets (first row) overlap, indicating that the
choice of proxy dataset is not important. Even fake
data as a proxy dataset results in the same perfor-
mance. Similarly, for the 1D tasks (second row),
there is no real difference between using CoNLL
and fake embeddings. Together, this shows that the
choice of proxy dataset for embedder training
does not matter for ORCA to work.

Comparing to a naive fine-tuning baseline allows
us to evaluate the claim that “ORCA consistently
outperforms naive fine-tuning” (Shen et al., 2023).
We find that embedder training does play a role
in the 1D tasks, but does not matter for 2D tasks,
even in the early stages of fine-tuning.

2From torchvision.datasets.
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Figure 3: Per-epoch embedder training comparing OTDD (↓) (metric minimized during this stage) to downstream
task performance (↓).

4 (More) embedder training is not the
secret to ORCA’s success

The previous results motivate us to more closely
examine the role of embedder training in ORCA. In
this stage, the OTDD metric is used to quantify the
distance between the proxy and target embeddings.
The authors minimize OTDD, claiming that “as the
dataset distance decreases, the fine-tuning accuracy
increases” (Shen et al., 2023).

However, when we examine the relationship be-
tween OTDD and downstream task performance,
we find that embedder training is unnecessary
in two out of six tasks (Figures 3a and 3c). For
the remaining four tasks, training the embedder
more can even lead to worse task performance.

As this section and the previous one show that
embedder training does not affect final performance
on the 2D tasks, we focus on the 1D tasks for our
remaining experiments.

5 Which components of ORCA are really
necessary?

To better understand how the fine-tuning phase af-
fects the multiple components of ORCA, we exper-
iment with freezing different parts of the pipeline:
the embedder, the pre-trained model, or both. We
compare our results with the original setup.

Row 1 of Figure 4 shows the results of freezing
both the embedder and the pre-trained model, and
only fine-tuning the predictor. Across all datasets,
the frozen versions perform much worse than the

original setup, regardless of embedder training.
This indicates that these datasets are not simple
enough to be solved by training a simple predictor.

In row 2, we freeze only the pre-trained model,
but fine-tune the embedder and the predictor. These
frozen versions also perform much worse than the
original setup, indicating that fine-tuning the pre-
trained model is a critical component of ORCA,
regardless of dataset and embedder training.

Finally, in row 3, we only freeze the embedder,
allowing the fine-tuning stage to affect both the
model and the predictor. As we already saw in Fig-
ure 2, training the embedder is important across all
three datasets. However, once this training is done,
even if it is frozen, adapting the pre-trained model
is sufficient for good task performance. This shows
that while training the embedder is important
for ORCA’s success on these datasets, it need
not be fine-tuned beyond that.

6 Pre-training is not always necessary

Our previous results show that fine-tuning the
model is necessary for good downstream task per-
formance, but they do not show whether using pre-
trained models is necessary for this. To answer this
question, we use RoBERTa models pre-trained on
different amounts of English data. Specifically,
we compare the original RoBERTa-base model
to a randomly initialized model with no training
data, along with three variants trained on less
data (Warstadt et al., 2020), shown in Appendix F.

Figure 5 shows that performance varies widely
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Figure 4: Performance (↓) when freezing both the embedder and model (top row), just the model (middle row) or
just the embedder (bottom row), before full fine-tuning. We also evaluate the impact of training (purple squares)
vs. not training (green triangles) the embedder before freezing. All ablations are compared to the original ORCA
approach without freezing (blue circles).
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Figure 5: Effect of different amounts of pre-training data on downstream performance (↓).

depending on the dataset. For Satellite, all models
perform the same, showing that the task is sim-
ple enough to be solved even without pre-training.
With DeepSEA and ECG, on the other hand, pre-
training data on the scale of 30B tokens results in
clearly better performance. These results highlight
the importance of comparing to a no pre-training
baseline, for ORCA—and indeed all cross-modal
fine-tuning work—to ensure that pre-training is ac-
tually necessary for the success of the method.

Until the 30B data scale, however, DeepSEA
performance remains within the variance of simply
fine-tuning a randomly-initialized model, whereas
ECG does benefit from even a small amount of
pre-training. This shows that even for non-trivial
tasks, the amount of pre-training has a notice-
able effect only at certain scales.

7 Conclusion

We perform a series of ablations to investigate how
the different components of ORCA, a recently-
proposed method for cross-modal fine-tuning, af-
fect its performance. Contrary to the original re-
sults, we find that embedder training does not help
2D tasks at all, compared to just fine-tuning with-
out training the embeddder. In 1D tasks, some
amount of embedder training is necessary, but un-
like the claim in the original paper, more embedder
training can even hurt performance on the target
task. When we freeze various components of the
ORCA pipeline, we find that fine-tuning the model
is crucial for good task performance. Finally, we
find that for one of the 1D tasks, using a pre-trained
model is actually not necessary, indicating the im-
portance of no pre-training baselines in evaluations
of cross-modal transfer.
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A Limitations

Choice of datasets. We only experiment with
three 2D datasets and three 1D datasets, and we
do not consider the experiments from the original
paper on tabular data, where our findings may not
hold. Additionally, due to the widely varying pat-
terns we find in our results, we believe that this
is not sufficient for our findings to generalize be-
yond these specific datasets to the modalities that
they represent. This points to a limitation of cross-
modal fine-tuning work in general, which would
benefit from a larger set of datasets, and in partic-
ular, more challenging tasks, as we find that the
Satellite dataset is very simple.

Choice of pre-trained models. Our experiments
focus on 1D tasks, for which we only experi-
ment with encoder-only architectures (specifically
RoBERTa-type models) even though other encoder-
only models and even other architectures (e.g.,
encoder-decoder and decoder-only models) could
also be used. We caution against claims about
generalization of our results for these tasks to pre-
trained models beyond just RoBERTa.

Ablating stage one. Our experiments focus on
stages two and three of the ORCA pipeline, but
stage one, i.e., the creation of the task-specific em-
bedder and predictor, is not something we vary. In
Shen et al. (2023) and in our work, the task-specific
embedder consists of a convolutional layer, a layer
norm, and a positional embedding, and the predic-
tor consists of a linear projection. It would be inter-
esting to test a much simpler method of converting
dimensions in the embedder than a convolutional
architecture, e.g., a linear projection, which we
leave to future work.

Evaluating what is being transferred. In Sec-
tion 5, we show that pre-training is necessary for
some cross-modal transfer, but we still do not know
exactly what is being transferred. The cross-modal
transfer literature posits that pre-trained knowledge
is somehow exploited in downstream tasks, but
since we do not know how to quantify “knowledge”
in this setting, we cannot make this claim. It is
just as plausible that models pre-trained on tokens
beyond a certain scale find better, more general
solutions that are a good initialization for adapting

to a new task. One way to further probe the trans-
fer hypothesis would be by limiting the number
of parameters that are allowed to change during
fine-tuning, e.g., by using parameter-efficient fine-
tuning with LoRA. We leave an exploration of this
to future work.

B Dataset details

Table 1 shows the target and original proxy datasets
considered, along with their dimension, type,
number of classes, and the metric used to measure
target task performance. The tasks are classified
into two types, taking into account whether the
task’s output is a singular prediction (point) or
multiple predictions (dense). The target datasets
are described in more detail below.

Figure 6: CIFAR-100 examples.

CIFAR-100: Standard Image Classification.
(Alex, 2009) The dataset consists of 32x32 color
images divided into 100 classes, based on the
object represented by the image. Some examples
can be seen in Figure 6.

Darcy Flow: Solving Partial Differential
Equations (PDEs). (Li et al., 2020) The only
regression task considered. Although, for the train-
ing stages, the dataset is divided into a total of 10
inferred classes. The dataset consists of 2D grids
specifying the initial conditions of a fluid, as an
output the same 2D grid on a later time is predicted.

DeepSEA: Predicting Functional Effects From
Genetic Sequences. (Feingold et al., 2004) The
dataset consists of a collection of genomic profiles
to estimate the behavior of chromatin proteins,
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Dim. Target dataset Type Metric # classes Proxy dataset # classes

NinaPro Point 0-1 error (↓) 18
2D CIFAR-100 Point 0-1 error (↓) 100 CIFAR-10 10

Darcy Flow Dense relative l2 (↓) 10

Satellite Point 0-1 error (↓) 24
1D DeepSEA Point (multi-label) 1 - AUROC (↓) 36 CoNLL-20033 7

ECG Point 1 - F1 (↓) 4

Table 1: Target datasets of each type along with the proxy datasets used for them in ORCA (Shen et al., 2023)

Figure 7: Example from the Darcy Flow dataset.

classifying it into 36 classes.

ECG: Detecting Heart Disease. (Clifford et al.,
2017) The dataset is formed by recordings of up to
a minute of Electrocardiograms classified into four
classes: normal, disease, other, or noisy rhythms.
Figure 8 shows an example of each of the classes.

NinaPro: Classifying Electromyography Sig-
nals. (Atzori et al., 2012) A subset of NinaPro
BD5 is taken, to classify the electromyography
(sEMG) signals of a collection of hand movements
in 18 classes. Some examples of the movements
can be seen in Figure 9.

Satellite: Satellite Image Time Series Analysis.
(Petitjean et al., 2012) The dataset consists of satel-
lite image time series (SITS), tracking the land
changes over the years, classifying them into 24
land cover types.

3We were unable to replicate the exact workflow to create
the language features passed to the model, so we used the ones
provided in the original ORCA GitHub.

Figure 8: Examples of ECG recordings of the 4 different
classes

C Embedder and predictor details

As described in Figure 1, in the first stage of the
ORCA workflow (Shen et al., 2023), a task-specific
embedder and predictor are created to support any
combination of input-output dimensions. Through-
out all our experiments, we kept the same archi-
tectures used in the original paper, which we will
explain in this section.

Task-specific Embedding Network The archi-
tecture is composed of a convolutional layer with
an input channel of the target dataset and an output
channel of the dimension of the pre-trained model
embedding space. The kernel size and stride can
be treated as a hyperparameter, but in all our exper-
iments for the 2D tasks both are set to four and, for
the 1D tasks, are computed based on the input and
target sequence length. After this, a layer norm and
a positional embedder are added to obtain the final
representation.

Task-specific Predictor Given the diversity of
the tasks considered, two different architectures are
implemented depending on the target task type. For
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Algorithm 1 Efficient approximation of OTDD using class-wise subsampling from (Shen et al., 2023)
Input: target dataset {xt, yt}, number of target classes Kt, source dataset S = {xs, ys}, subsample size
b, subsample round R

for each class i ∈ [Kt] in the target dataset do
Compute class weight wi =

number of target data in class i
total number of target data

Generate data loader Di consisting of data in class i
end for
for i ∈ [Kt] do

for r ∈ [R] do
Subsample b target data points Dir uniformly at random from Di

Compute class-wise distance dir = OTDD(Dir, S)
end for
Approximate class-wise OTDD by di =

1
R

∑R
i=1 dir

end for
Approximate OTDD by d =

∑Kt

i=1wiḋi

Figure 9: Samples of movements in NinaPro BD5 (Shen
et al., 2019), the dataset contains the electromyography
signals of the movements.

the point tasks, average pooling along the sequence
length dimension is applied, to obtain 1D tensors
with the same length as the dimension of the pre-
trained model embedding space. Then to map to
the number of classes of the target dataset, a linear
layer is used. For dense tasks, a linear layer is
applied to the sequence outputs to adjust the tensor
shape. Then, this tensor is molded to the desired
output dimension.

D OTDD approximation implementation

Following the original ORCA implementation
(Shen et al., 2023), we also used an approxima-
tion of OTDD using class-wise subsampling, as
described in Algorithm 1.

As described in the original paper, to tackle po-
tential memory issues when computing OTDD, the
dimensionality of the feature vectors is reduced

Figure 10: Example of Satellite (Petitjean et al., 2012)

by taking the average along the sequence length
dimension. On top of that, the target dataset is
divided into subsets based on the labels, each of
these subsets will be approximated with the aver-
age of batch samples (the number of maximum
samples taken from each class is determined for
every dataset). Then the OTDD between each class
representative and a sample of the proxy dataset
(5000 samples for CIFAR-10 and 2000 for CONLL
2003) is computed. Finally, the overall OTDD is
approximated by the weighted sum of the OTDD
of all the classes in the task dataset.

E Experimental Details

We run our experiments using a single 80GB
NVIDIA A100 GPU. As in the original paper (Shen
et al., 2023), we implemented the base models us-
ing the Huggingface Transformers library (Wolf
et al., 2020).
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F Details on pre-trained RoBERTa
models

Table 2 provides information about the amount
of training data seen by the different RoBERTa
variants released by Warstadt et al. (2020).

Model Training data

roberta-base ~30B
roberta-base-1B-2 1B
roberta-base-100M-3 100M
roberta-base-10M-3 10M
roberta-base-random 0

Table 2: Models for pre-trained knowledge comparison,
and their training data in number of tokens.
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Abstract

In recent years, the two-step approach for text
classification based on pre-training plus fine-
tuning has led to significant improvements in
classification performance. In this paper, we
study the low-budget scenario, and we ask
whether it is justified to allocate the additional
resources needed for fine-tuning complex mod-
els. To do so, we isolate the gains obtained
from pre-training from those obtained from
fine-tuning. We find out that, when the gains
from pre-training are factored out, the perfor-
mance attained by using complex transformer
models leads to marginal improvements over
simpler models. Therefore, in this scenario, uti-
lizing simpler classifiers on top of pre-trained
representations proves to be a viable alterna-
tive.

1 Introduction

In the past few years, a dominating paradigm
has emerged in text classification, primarily cen-
tered on a two-step approach: inducing pre-trained
weights, followed by task fine-tuning using a trans-
former model with supervised labeled data (Rad-
ford et al., 2018; Devlin et al., 2019). The new
approach has led to significant improvements over
previous classification strategies based on simpler
linear models trained on sparse bag-of-words fea-
ture representations.

The improvements observed in performance are
often attributed to the induced representation (Mi-
aschi and Dell’Orletta, 2020; Talmor et al., 2020;
Xia et al., 2020). It is not surprising that leveraging
contextual continuous word embeddings can lead
to improvements by mitigating the sparsity issues
of classical bag-of-words representations. At the
same time, we expect that richer transformer archi-
tectures would enhance classification performance
during fine-tuning. However, if the representation
is already strong enough, is it justified to allocate

additional resources for fine-tuning to achieve sat-
isfactory results?

When the same architecture is shared for both
pre-training and fine-tuning (Peters et al., 2018;
Devlin et al., 2019), it becomes challenging to dis-
entangle the relative influence of the representation
and the classifier. To isolate the performance of
each component, we propose an empirical study
where we train both simple linear models and com-
plex transformer models, with and without pre-
trained representations, and test their performance
in high and low annotation budget scenarios.

We specifically focus on investigating the previ-
ous question within the context of a low annotation
budget scenario, where the availability of labeled
data for fine-tuning is limited.

Our empirical study shows that:

• In low-budget scenarios, the incorporation of
pre-trained representations results in a more
significant performance improvement com-
pared to high-budget scenarios. Moreover,
when we isolate the gains attributed to pre-
training, the performance gains of transform-
ers over simpler models become marginal,
meaning that the quality of the representations
is the most important component.

• In this setting, a simple classifier on top of
a contextual representation achieves compet-
itive results compared to fine-tuning. Conse-
quently, the impact of the classifier proves to
be rather minimal, allowing us to utilize more
cost-effective alternatives.

2 Related Work

While transformer (Vaswani et al., 2017) architec-
tures are known to benefit from large amounts of
training data for optimal performance (Ezen-Can,
2020; Kirstain et al., 2022), the pre-training plus
fine-tuning approach has also shown promising re-
sults in low annotation budget scenarios (Ein-Dor
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et al., 2020; Tamkin et al., 2022; Shelmanov et al.,
2021; Zhang et al., 2022).

Fine-tuning is thought to adjust the pre-trained
representations in order to simplify the downstream
task (Zhou and Srikumar, 2022, 2021). However,
the fine-tuning step itself can be unstable (Mos-
bach et al., 2021; Zhang et al., 2021) and sensitive
to weight initialization (Dodge et al., 2020). These
issues are particularly pronounced in low-budget
scenarios (Margatina et al., 2022). To address these
challenges, researchers have explored techniques
such as parameter reduction (Han et al., 2021; He
et al., 2021; Liu et al., 2018) or modifications to the
fine-tuning procedure (Hua et al., 2021; Yang and
Ma, 2022). Other authors have explored the possi-
bility of using pre-trained representations directly
with simpler classifiers (Li et al., 2021; Dubey et al.,
2018)

The importance of representation choice has
lately received a significant amount of atten-
tion from the active learning (AL) community
(Schröder and Niekler, 2020; Zhang et al., 2017;
Ein-Dor et al., 2020; Yuan et al., 2020; Yauney and
Mimno, 2021; Margatina et al., 2022; Shelmanov
et al., 2021). Most of the research in AL attempts
to quantify what representation is best when train-
ing the initial model for active learning, which is
usually referred to as the cold start problem (Lu
and MacNamee, 2020; Zhang et al., 2022). The im-
portance of word embeddings has also been studied
in the context of highly imbalanced data scenarios
(Sahan et al., 2021; Naseem et al., 2021; Hashimoto
et al., 2016; Kholghi et al., 2016).

The main difference between our work and previ-
ous literature is that in prior studies, the fine-tuning
process involved the simultaneous updates of both
the pre-trained weights and the classifier, without
considering their relative importance. Having es-
tablished the relevance of the representation, es-
pecially in few-shot learning scenarios, we aim to
investigate whether fine-tuning complex architec-
tures in classification tasks is justified.

3 The Role of the Classifier in
Low-budget Scenarios

To conduct our study, we aim to compare the perfor-
mance of a transformer-based model and a simple
classifier, trained with and without pre-trained rep-
resentations. The main focus of our investigation
will be on scenarios with a limited annotation bud-
get, by utilizing learning curves. Each point in

Dataset Size Prior Len. Task

IMDB 50K 50% 313 sentiment
WiTox 224K 9% 78 toxicity
S140 1.6M 50% 23 sentiment
CivCom 2M 8% 58 toxicity

Table 1: Datasets statistics with the number of samples,
target (positive) class prior, average token sequence
length, and classification task.

these curves represents a specific training size, en-
abling us to evaluate the model’s performance as
the data size increases. Additionally, we will report
performance on the full dataset for the different
models. Next, we detail the models, datasets, and
learning curves employed.

3.1 Models

We contrast two model architectures: a transformer
(BERT) and a max-entropy model (MaxEnt). Each
of the models will be trained in two settings: 1)
without pre-trained representations and 2) with pre-
trained representations.

BERT (Devlin et al., 2019): BERTBASE-uncased
model (110M parameters) using standard pre-
training (BooksCorpus plus Wikipedia) and im-
plemented using the HuggingFace Transformers
library (Wolf et al., 2020). Learning without pre-
trained representations means learning with ran-
domly initialized weights (similar to Voita and
Titov, 2020 and Zhang and Bowman, 2018). The
hyper-parameter values can be found in A.2.

MaxEnt: A standard max-entropy model trained
with l2 regularization. When training without pre-
trained representations, we used a sparse bag-of-
n-grams representation. For the models with pre-
training, we extracted static representations from
the second-to-last hidden layer (Bommasani et al.,
2020; Devlin et al., 2019) using the average of
BERT’s token embeddings (768 dimensions vec-
tors). Our preliminary experiments have shown that
such embeddings yield better performance than us-
ing BERT’s [CLS] token (similar to the ablation
studies in Devlin et al., 2019 and the observations
presented in Lu and MacNamee, 2020). The regu-
larization parameters and the optimal n-gram size
were validated via 5-fold cross-validation.

3.2 Datasets

We use four textual classification datasets with
both balanced and imbalanced label distributions,
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Figure 1: Performance of different models when learning with a limited annotation budget on various datasets.
‘w/o’ means without pre-trained representations. We also report the expected performance of a random classifier
predicting i.i.d. labels.

encompassing two significant classification tasks
(sentiment analysis and toxicity detection) across a
variety of language registers and input lengths:

IMDB (Maas et al., 2011): Movie reviews anno-
tated with sentiment labels. This is a dataset with a
balanced distribution of labels.

Wikipedia Toxicity (WiTox; Wulczyn et al.,
2017): Wikipedia discussion comments annotated
with toxicity labels. This is a dataset with a highly
imbalanced label distribution: less than 10% of the
labels correspond to toxic comments.

Sentiment140 (S140; Go et al., 2009): A bal-
anced dataset of Twitter messages annotated with
sentiment.

Civil Comments (CivCom; Borkan et al., 2019):
Opinions posted in the Civil Comments platform
annotated for toxic behavior. This dataset exhibits
a significantly skewed label distribution, with less
than 10% toxic comments.

For Wikipedia Toxicity and Civil Comments, we
have applied a pre-processing consisting of remov-
ing all markup code and non-alpha-numeric charac-

ters except relevant punctuation. Table 1 presents
the datasets’ summary statistics.

3.3 Learning curves

For our study, we generate learning curves where
each point corresponds to a different training size
with a budget of N samples. We create training sets
by selecting the N random samples incrementally.
N ranges from 100 to 1000 in increments of 100.
At each step, new samples are added to the existing
selection.

For every model, some hyper-parameters need
optimization. At every point N in the learning
curve, we create an 80/20% 5-fold cross-validation
split and validate the optimal hyper-parameters. We
then use these hyper-parameters to train a model us-
ing all the N training samples, and its performance
is evaluated on the test set.

We repeat the experiments using 5 training sets
and initializing the parameters using different ran-
dom seeds. We report the mean results. As eval-
uation metrics we use: accuracy for the balanced
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Dataset Model ALC
w/o p.r.

IMDB
MaxEnt 0.75 0.84
BERT 0.50 0.87

WiTox
MaxEnt 0.32 0.50
BERT 0.18 0.51

CivCom
MaxEnt 0.11 0.32
BERT 0.15 0.26

S140
MaxEnt 0.58 0.79
BERT 0.53 0.79

Table 2: Model performance with a limited annotation
budget, using pre-trained representations (p.r.) and with-
out (w/o). We report the area under the learning curve
(ALC) from 100 to 1000 examples, using accuracy for
balanced datasets and F1 (of the target class) for imbal-
anced datasets. The best model performance for each
dataset is reported in bold.

datasets (IMDB and Sentiment140) and F1 (of the
target class) for the imbalanced datasets (Wikipedia
Toxicity and Civil Comments).

In total, we performed 400 experiments for each
model: 4 datasets, with and without pre-trained rep-
resentations, 5 seeds, and 10 learning points. For
BERT, the computation of each learning point took
27 minutes on average on a single Nvidia V100
GPU, totaling 177 hours of GPU computation. A.1
contains further details about the running times.

4 Results

Figure 1 shows our main results on analyzing the
performance of models under the low-budget anno-
tation setting. To summarize the learning curve re-
sults, we also compute a single performance score
for each model: the area under the learning curve
(ALC). This provides us with a more robust met-
ric to compare the different models for a dataset1.
Table 2 shows the results obtained.

We observe that in the low-budget scenario when
pre-trained representations are used, the choice of
model seems to be of little importance. Both the
complex transformer model and a simple linear
max-entropy model perform similarly.

In addition, when only very few labels are avail-
able (first curve points in Figure 1), the simpler
model seems to outperform the more complex
one. MaxEnt demonstrates a more stable behavior

1Direct performance comparison across datasets is not
always feasible because the underlying score may vary.

Dataset Model Performance
w/o p.r.

IMDB
MaxEnt 0.89 0.89
BERT 0.53 0.93
Random 0.50 0.50

WiTox
MaxEnt 0.66 0.61
BERT 0.48 0.68
Random 0.16 0.16

CivCom
MaxEnt 0.60 0.57
BERT 0.15 0.70
Random 0.14 0.14

S140
MaxEnt 0.81 0.86
BERT 0.77 0.86
Random 0.50 0.50

Table 3: Model performance using all training data.

within this range, due to its fewer number of param-
eters. This shows that when the training set is small
there is not much to be gained from fine-tuning all
the layers of the model.

The biggest difference in performance in the low-
budget scenario comes from the representation and
not the architecture. In fact, without pre-trained rep-
resentations, the more complex models perform sig-
nificantly worse than simpler models. Pre-trained
representations seem to be capturing some proper-
ties of the input space that can be exploited by all
models. We suppose that since pre-training implic-
itly induces a distance space over words, models
using pre-trained representations generalize more
easily to unseen words. This would explain why
pre-trained representations are especially helpful
in the low-annotation budget scenario since gener-
alization to unseen words is critical in this case.

Table 3 presents the performance results ob-
tained by employing the entire training set. Within
this data-rich scenario, typically used for model
comparison, we first confirm the well-established
fact that BERT with pre-trained weights yields bet-
ter results than simpler models (Devlin et al., 2019).
Interestingly, in this context, simpler models do not
seem to obtain significant benefits from the use of
pre-trained representations. Unlike the low-budget
scenario, in this setting, fine-tuning all layers of the
model results in significant performance improve-
ments.
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5 Conclusion

In this paper, we studied classifiers in a low-budget
scenario, analyzing the impact of fine-tuning on
performance by separating the benefits derived
from pre-training weights from those of architec-
tural fine-tuning.

Based on our findings, we recommend testing
simple models that incorporate pre-trained repre-
sentations before investing resources in fine-tuning
complex models. In fact, when labeled data is
scarce, the role of the representations is crucial,
and the use of pre-trained representations enhances
performance across all models, regardless of their
complexity. As a result, the choice of classifier
becomes irrelevant in this context compared to the
quality of the representations. The marginal perfor-
mance gains offered by more sophisticated architec-
tures may not justify the additional computational
resource demands.

Limitations

When studying the performance of a simple classi-
fier over pre-trained representations, we have con-
sidered BERT as the representative for transformer-
based models. A comparison with other trans-
former models, with a different number of parame-
ters and embedding representations, would make
our conclusions more general.

Our analysis is limited to binary classification
tasks. Future research should aim to extend our
study to other types of tasks to better understand
the broader implications of our findings.
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A Appendix

A.1 BERT Runtime
Table 4 shows BERT’s training plus testing running
times for the budgets considered in the learning
curves studied in this work. These experiments
were performed using a single Nvidia V100 GPU.

Budget IMDB WiTox CivCom S140

100 15:07 38:02 27:30 01:00
200 17:24 40:17 27:31 01:21
300 19:57 41:54 27:45 01:45
400 21:35 42:27 29:57 02:18
500 22:54 43:02 31:35 03:03
600 25:19 47:09 32:28 03:24
700 26:50 44:50 34:02 03:35
800 28:48 48:09 34:59 03:40
900 31:02 48:40 35:45 04:01

1000 30:35 56:12 36:20 04:15

Table 4: BERT training and testing average runtime.

Table 5 displays the average speed of embedding
generation, measured in samples per second.

Dataset Gen. Time

IMDB 37.48 i/s
Sentiment140 135.42 i/s
Wiki Toxic 186.20 i/s
Civil Comments 131.37 i/s

Table 5: Embedding generation average speed.

Compared to fine-tuning, embedding extraction
is a significantly more efficient operation and can
feasibly be computed on the CPU.

A.2 Experimental Details
Table 6 contains a summary of BERT hyper-
parameters used in the experiments.

Hyper-parameter Value

Max. training epochs 10
Learning rate 5 · 10−5

AdamW λ 0.0
AdamW β1 0.9
AdamW β2 0.999
Attention dropout 0.1
Hidden dropout 0.1
Mixed Precision fp16
Seq. length (IMDB) 350
Seq. length (Wiki Toxic) 150
Seq. length (Civil Comments) 150
Seq. length (Sentiment140) 50
Batch size (IMDB) 20
Batch size (Wiki Toxic) 50
Batch size (Civil Comments) 50
Batch size (Sentiment140) 64

Table 6: BERT hyper-parameters.
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Abstract

Genetic Algorithms (GAs) have been studied
across different fields such as engineering or
medicine to optimize diverse problems such as
network routing, or medical image segmenta-
tion. Moreover, they have been used to automat-
ically find optimal architectures for deep neural
networks. However, to our knowledge, they
have not been applied as a weight optimizer for
the Transformer model. While gradient descent
has been the main paradigm for this task, we
believe that GAs have advantages to bring to
the table. In this paper, we will show that even
though GAs are capable of fine-tuning Trans-
former encoders, their generalization ability is
considerably poorer than that from Adam; how-
ever, on a closer look, GAs ability to exploit
knowledge from 2 different pretraining datasets
surpasses Adam’s ability to do so.

1 Introduction

Genetic Algorithms (GAs), a set of optimization
methods, although widely studied in other fields
such as electric engineering (Li and Ge, 2009;
Sainath et al., 2021) or medicine (Ghosh et al.,
2016), have not played a big role in the field of NLP
as gradient descent algorithms. Indeed, a disadvan-
tage of GAs is high running times when the search
space is big. However, GAs possess advantages
that make us reconsider their usefulness in NLP
such as 1) algorithmic simplicity, 2) no vanishing-
or exploding-gradient problems since no gradient
signal is necessary, and 3) any mathematical ex-
pression can be optimized, such as Accuracy.

On the other hand, gradient descent approaches
such as Adam (Kingma and Ba, 2015) are widely
used not only due to the high fine-tuning scores
they achieve for NLP models, but also due to a
common –and barely challenged– assumption that
prevails in the NLP field: fine-tuning a Transformer
encoder that has been pretrained on two datasets
will lead to considerably better scores than fine-

tuning an encoder that was pretrained on either
of the two pretraining datasets since, according to
scaling laws (Kaplan et al., 2020), it is assumed
that the former encoder has learned linguistic and
(or) world knowledge from the two datasets, as op-
posed to the latter encoder which has only acquired
knowledge from one dataset. However, we pose
some skepticism on Adam’s ability to efficiently
exploit hidden knowledge from the 2 pretraining
datasets encoded in such encoders.

In this paper, we propose a two-sided study of
the ability of a GA to fine-tune pretrained Trans-
former encoders. Firstly, we study how well a GA
can fine-tune pretrained encoders for the task of
sentiment analysis across three datasets. And sec-
ondly, we put Adam to the test by comparing its
ability to leverage pretrained knowledge from 2
pretraining datasets, at fine-tuning time, with re-
spect to the ability of a GA to do so. Our main
hypothesis is that the GA’s crossover operator is
the key factor to both fine-tune pretrained encoders
and efficiently exploiting the knowledge from two
pretraining datasets. To our knowledge, this is the
first study of fine-tuning Transformer encoders via
GAs.

Interestingly, our results are divided: we encoun-
tered both a negative and a positive result. On the
one hand, although we confirm our hypothesis and
show the ability of a GA to fine-tune Transformer
encoders, we find two big deficiencies when com-
pared against Adam: considerably higher training
times (up to 46x) and a high drop in accuracy scores
(up to 28 points) –a negative result. On the other
hand, our results show that the GA outperforms
Adam’s ability to leverage knowledge from two
pretraining datasets at fine-tuning time: fine-tuning
encoders, pretrained on 2 datasets, via Adam leads
to an average gain of 0.55 accuracy points with
respect to fine-tuning encoders pretrained on only
one pretraining dataset; but the GA’s mean gain in
performance under the same scenario is 1.65 points,
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a relative increase of 200% (and up to 1540% for a
particular case) –a positive result.

Overall, we believe GAs hold as an efficient
mechanism for knowledge recombination of Trans-
former encoders. We hope the community will
follow our work to carry out a deeper exploration
of GAs on more challenging tasks.

2 Related Work

2.1 Genetic Algorithms

We note that our work is not the first to use
GAs to optimize the weights of a Neural Net-
work (NN) (Lander and Shang, 2015; Vázquez-
Fernández et al., 2012; David and Greental, 2014).
However, previous works evolved NNs (mainly
feedforward NNs) containing only a few thousand
weights. Our Transformer encoders contain almost
9.5 million parameters. On the other hand, recently,
Sobhanam and Prakash (2023) used GAs for BERT-
based models such as RoBERTa to automatically
search for the best hyperparameter values for an
optimal fine-tuning, such as the layers to be fine-
tuned, the batch size, the learning rate, and the most
suitable activation function; however, in that work,
the GA is not used for finding the optimal weights
of the model but only optimal hyperparameters.

2.2 AutoML

This area, also called Neural Architecture Search
(Elsken et al., 2019), aims to automatically discover
optimal architectures for deep NNs via variations
of GAs. Recent works have shown the ability of
GAs to find architectures as optimal as those from
human designers (Miikkulainen et al., 2019; Xie
and Yuille, 2017; Liang et al., 2019) and architec-
tures that obtained SOTA results (Real et al., 2019).
But, to our knowledge, there is no previous work
where a Transformer model was fine-tuned using
GAs.

3 Methods and Datasets

3.1 Genetic Algorithm

We use a variant of the Eclectic Genetic Algorithm
(EGA) (Kuri and Quezada, 1998; Kuri-Morales
et al., 2013). We chose it due to 1) its optimal trade-
off between complexity,1 efficiency, and memory

1More complex than the Canonical GA (CGA) (Sivanan-
dam and Deepa, 2008) but simpler than latest GAs. We note
that we also experimented with the CGA, but we obtained
poor results due to its over-simplicity which refrained it to
cope with the high-dimensional space of Transformer models.

usage due to GPU restrictions, and 2) its resem-
blance to an ideal GA (Mitchell et al., 1993). EGA
follows the usual cycle of GAs. A population of n
individuals (pretrained Transformer encoders in our
case) is evolved through generations (an operation
that can be cast as fine-tuning). In each genera-
tion, individuals are ranked by their fitness score
(accuracy score on the train set) and crossed2 to pro-
duce offspring (new encoders), and some of these
offspring will experience mutation in their chromo-
somes (sets of hidden vectors). To allow EGA to
cross encoders (recombine the knowledge encoded
in their parameters), we replaced its crossover oper-
ator with the simulated-binary crossover: (Wirsan-
sky, 2020):

child1 = 0.5[(1 + β)parent1 + (1− β)parent2]

child2 = 0.5[(1− β)parent1 + (1 + β)parent2]

where β is a hyperparameter manually chosen;
and parent1, parent2 correspond to the set of all
hidden vectors of two Transformer encoders. The
crossover operation is done layer by layer3 of both
parent encoders which results in child1, child2 be-
ing the recombination of both parent encoders’ vec-
tors. Then these two offspring are evaluated on the
train set, their fitness score is compared with that
from all candidate encoders in the population, and
the cycle repeats.

To test our hypothesis, we fix the crossover’s
probability of occurrence to pcross = 1 to fully
test its effect; we set the probability of mutation to
pmut = 0.2 to control for its effect. To mutate an
encoder, we add a randomly drawn number in the
[-1, 1] interval to randomly chosen weights.

3.2 Datasets

For pretraining encoders, we use 2 popular datasets:
WikiText-103 (wiki) (Merity et al., 2017) and 1-
Billion-Word (lm1b) (Chelba et al., 2013). For fine-
tuning, we use three popular sentiment analysis
datasets: SST-2 (Socher et al., 2013), IMDB (Maas
et al., 2011), and Yelp (Zhang et al., 2015). We
chose these downstream datasets for interpretability
of results as binary accuracy scores are obtained.

2The individual in rank i is crossed with the individual in
rank n − i + 1, i.e. the best individual is crossed with the
worst one and so on.

3For example, the first attention layers of two encoders
will be crossed to produce two attention layers, one for each
child.
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4 Experiments and Results

4.1 Experimental Setup

We used the Transformer encoder variant from the
KerasNLP framework (Watson et al., 2022). We
pretrained 10 different encoders with each pretrain-
ing dataset by varying random seeds;4 we refer to
them as either wiki or lm1b encoders according to
the dataset used. We also pretrained 5 different en-
coders using both pretraining datasets; we call them
Mixed encoders. For some experiments with EGA
we used randomly initialized encoders; we call
them random encoders. We note 1) the same pre-
trained encoders are used for both cases fine-tuning
them via Adam (baselines) and fine-tuning them
via EGA, except for the Mixed encoders which are
used only as baselines; 2) for all experiments with
EGA, the number of generations is set to 100, the
population size to 20 encoders; to obtain means
and standard deviations, we run EGA 3 times for
each sentiment analysis dataset using different ran-
dom seeds; 3) for both Adam and EGA, to compute
downstream mean scores we use validation or test
accuracy scores (depending if the dataset has a test
set) of the encoders with highest validation score.

4.1.1 Gains in Accuracy Score
For Adam, we define gain in accuracy score as
the amount of performance increase in accuracy
points obtained by fine-tuning encoders pretrained
on 2 datasets with respect to the score obtained by
fine-tuning encoders pretrained on only one of the
two pretraining datasets. For example, the points
increased by fine-tuning Mixed encoders with re-
spect to fine-tuning wiki encoders on the SST-2
data. We refer to this gain as gainAdam.

For EGA, we define gain in accuracy as the gain
in points obtained by evolving (fine-tuning) wiki
and lm1b encoders in the same population with
respect to the score obtained by evolving only en-
coders of a single type (wiki or lm1b) which is the
equivalent figure of comparing leveraging two pre-
training datasets at fine-tuning time vs. only one
dataset; we refer to this as gainEGA.

We compute gains in accuracy score as follows:
gainAdam = accMixed_enc − accsingle_type_enc
gainEGA = accwiki+lm1b_enc−accsingle_type_enc
where acc means accuracy and single_type_enc
refers to either wiki or lm1b encoders. To compare
EGA’s gains in performance with those from Adam,

4We believe that by doing so the encoders can pick differ-
ent patterns even if pretrained on the same data.

we compute the relative increase in gain provided
by EGA:

gainEGA − gainAdam

|gainAdam| × 100% (1)

4.1.2 Effect of Number and Type of Encoder
To fully test EGA’s ability to recombine knowledge
from encoders, we carry out experiments across 6
levels where we vary the number and type of pre-
trained encoders. At Level 1, populations consist
of 10 different lm1b encoders and 10 random en-
coders; and similarly for Level 2 where instead of
lm1b we use wiki encoders. Populations at Levels
3, 4, and 5 contain 5, 10, and 15 pretrained en-
coders, respectively; but, different from Levels 1
and 2, we use both lm1b and wiki encoders (50%
wiki and 50% lm1b), and the rest of the population
are random encoders. Finally, populations at Level
6 consist only of pretrained encoders (10 wiki and
10 lm1b).

4.2 Results
4.2.1 Baselines
Fine-tuning encoders pretrained on both datasets
via Adam leads to two substantial gains in score
on SST-2 data: 1.69 and 1.1 points (Tables 2 and
3) with respect to wiki and lm1b encoders, respec-
tively, which are the differences in accuracy from
Mixed encoders and wiki, lm1b encoders in Ta-
ble 4. However, on the other downstream datasets,
this leads to minor gains: a gain of 0.36 points for
IMDB data when lm1b and Mixed encoders are
measured against each other, and gains of 0.1 and
0.58 points for Yelp data (Tables 2 and 3). Surpris-
ingly, we observe a drop in gain of 0.52 points for
IMDB data (Table 2): wiki encoders achieve a su-
perior accuracy score (85.03, Table 4) than Mixed
encoders (84.51) (we provide a possible explana-
tion for this finding in Section 5).

By averaging all gains in score from Adam in
Tables 2 and 3, we observe that Mixed encoders
lead to a mean increase of only 0.55 points. How-
ever, we do not jump straightaway to the conclusion
that, at fine-tuning time, Adam’s ability to leverage
knowledge from encoders pretrained on 2 datasets
is not as impactful as we expected since these re-
sults could be obscured by a ceiling effect, as we
discuss in Section 5.

4.2.2 Genetic Algorithm Results
SST-2: As shown in Table 1, EGA’s best score
on SST-2 data (59.15 points) comes from a mixed

27



Dataset Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
SST-2 57.25(0.021) 57.71(0.010) 57.91(0.011) 59.15(0.003) 58.69(0.016) 57.98(0.020)
IMDB 60.09(0.001) 57.0(5e-4) 57.41(0.002) 57.06(0.001) 57.87(0.023) 59.59(0.015)
Yelp 56.82(0.008) 58.0(0.001) 59.43(0.044) 59.04(0.010) 59.64(0.014) 57.33(0.006)

Table 1: Mean validation or test accuracy scores across three different random seeds of fine-tuning pretrained
encoders via EGA (standard deviations in parenthesis) for different Levels as described in Section 4.1.2.

Dataset Adam EGA Relative increase
SST-2 1.69 1.44 -14.79%
IMDB -0.52 2.59 598.07%
Yelp 0.1 1.64 1540%

Table 2: Gains in accuracy points by Adam and EGA:
two pretraining datasets (wiki+lm1b) vs. wiki dataset.
Column Relative increase shows the increase of perfor-
mance of EGA over Adam as in Section 4.1.1.

Dataset Adam EGA Relative increase
SST-2 1.1 1.9 72.72%
IMDB 0.36 -0.5 -238.88%
Yelp 0.58 2.82 386.20%

Table 3: Gains in accuracy points by Adam and EGA:
two pretraining datasets (wiki+lm1b) vs. lm1b dataset.
Column Relative increase shows the increase of perfor-
mance of EGA over Adam as in Section 4.1.1.

Dataset Wiki enc Lm1b enc Mixed enc
SST-2 75.12(0.014) 75.71(0.013) 76.81(0.010)
IMDB 85.03(0.006) 84.15(0.006) 84.51(0.003)
Yelp 87.62(0.006) 87.14(0.003) 87.72(0.004)

Table 4: Mean validation or test accuracy scores across
encoders (standard deviations in parenthesis) of fine-
tuning pretrained encoders via Adam.

population (Level 4): 5 wiki and 5 lm1b encoders
(and the rest random encoders). On the other hand,
the lowest accuracy scores come from populations
where only one type of encoder is used: Level 1
(only lm1b) and Level 2 (only wiki). As we see,
recombining the hidden knowledge from wiki and
lm1b encoders leads to substantial gains of 1.44 and
1.9 points (Tables 2 and 3) compared to crossing
either only wiki or only lm1b encoders. Comparing
EGA’s gains vs. Adam’s gains, we see that Adam
obtains a bigger gain than EGA when using two
pretraining datasets as opposed to only wiki data,
as shown in Table 2: 1.69 vs. 1.44 points; however,
this figure turns around for lm1b encoders where
EGA’s increase in gain is superior to that of Adam
by 72.72%.

IMDB: We observe a clear gain in performance
when knowledge from wiki encoders is mixed with
that from lm1b encoders: a rise of 2.59 points (Ta-
ble 2) which is the difference between crossing
only wiki encoders (Level 2, Table 1) and crossing
both encoders type (Level 6). Compared to Adam’s
gain in score (-0.52 points) EGA achieves a su-
perior relative increase in performance of 598%.
Nevertheless, similar to Adam, we see a drop in
gain: lm1b encoders provide better results for EGA
than wiki+lm1b encoders by 0.5 points (Level 1 vs.
Level 6) as shown in Table 3.

Yelp: The best scenario comes from mixing
knowledge from both encoder types (Table 1, Level
5): 59.64 points, providing a gain in score of 1.64
points with respect to fine-tuning only wiki en-
coders (Level 2), representing a remarkable rela-
tive increase of performance of 1540% with respect
to the gain obtained by Adam of only 0.1 points
(Table 2). From Table 3 we see the biggest gain
in accuracy score obtained by EGA across all sen-
timent analysis datasets: 2.82 points increase by,
again, crossing wiki with lm1b encoders (Level 5)
as opposed to only lm1b encoders (Level 1).

Fine-tuning times: As we see in Table 5, EGA
takes considerably more time than Adam (at least
31 times more) representing a disadvantage.

Dataset Adam EGA Factor
SST-2 1.57 51.59 33x
IMDB 3.42 158.92 46x
Yelp 2.9 90.13 31x

Table 5: Average time in min. that Adam and EGA take
to obtain an encoder with the highest validation score,
and the factor of difference between them.

5 Discussion and Conclusions

How well can EGA fine-tune Transformer en-
coders? We observed in Table 1 that EGA is able
to fine-tune the encoders on the sentiment analy-
sis datasets with scores reaching, or close to, the

28



60 points threshold. Although there is a wide gap
compared to Adam’s scores (up to 28 points), we
believe these results show the capability of GAs for
fine-tuning Transformer encoders.

Exploiting knowledge from pretraining datasets:
Another important aspect of fine-tuning is leverag-
ing pretrained knowledge from two datasets. We
observed in Tables 2 and 3 how Adam more often
than not achieves small gains in performance with
an average gain across datasets of only 0.55 points.
Remarkably, EGA better exploits the hidden knowl-
edge from wiki and lm1b encoders by obtaining
and average gain of 1.65 points (3 times Adam’s
gain). On a closer look, we observe substantial
relative increases of performance from EGA of up
to 1540% as shown for the Yelp dataset.

Caution must be applied: We interpret these re-
sults with precaution. We cannot firmly conclude
that Adam’s capability of leveraging knowledge
from encoders pretrained on 2 datasets will invari-
ably lead to such a small average gain in accuracy
for any other task or dataset since we may be facing
a ceiling effect (Cohen, 1995). This effect happens
either when the NLP model is too close to a per-
fect score (which is not our case) or when the NLP
model is too close to its maximum capability in
solving a task, which may be our case. It is pos-
sible that the variant of Transformer encoder we
used, when pretrained on only one dataset, is al-
ready close to the maximum score it can achieve;
thus, knowledge from another pretraining dataset
helps but not as much as it would for a more diffi-
cult task where the initial score is small enough to
leave room for improvement.

2 is not always better than 1: We saw the inter-
esting finding that fine-tuning encoders pretrained
on only 1 dataset led to the best results for the
IMDB dataset, for both Adam (via wiki encoders)
and EGA (via lm1b encoders). To provide a plausi-
ble rationale, we manually reviewed IMDB, wiki,
and lm1b instances to find any qualitative patterns.
Our first observation is the similarity in writing
style between IMDB and wiki instances: long texts
with a clear description of an item, entity, or event
supported by facts or arguments and followed by
a conclusion –patterns that Adam may have recov-
ered from wiki encoders. On the other hand, we no-
tice the newspaper writing style in lm1b instances
which somehow differs from those in IMDB; prob-
ably, EGA exploited factuality and cultural patterns

from the news articles in lm1b that helped to clas-
sify IMDB instances since both datasets are con-
temporary with a short time gap. Moreover, we
believe that the different patterns in wiki and lm1b
instances, rather than complementing to each other
to improve on the downstream scores, as in the case
for the SST-2 and yelp data, they are at odds with
each other for the IMDB dataset; however, it is un-
clear exactly in which way. We believe this finding
requires a deeper analysis given the complexity of
the IMDB instances (Otterbacher, 2013).

Future work: We delimited our work to a spe-
cific choice of Transformer encoder, Genetic Al-
gorithm, pretraining data, and downstream task.
Naturally, further experimentation is necessary to
generalize our results, such as studying more com-
plex GAs and hybrid approaches that take advan-
tage of the strengths of both Adam (high scores in
low time) and GAs (ability to exploit different pre-
training data) for fine-tuning more complex NLP
models such as BERT (Devlin et al., 2019); test on
other pretraining datasets, such as the BookCorpus
(Zhu et al., 2015) or C4 (Raffel et al., 2020); and
test the hypotheses proposed in this work on more
complex downstream tasks and datasets to either
confirm our results and elaborate upon them, or to
pinpoint possible ceiling effects.
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A Appendix

A.1 Population-based Analysis
In this subsection, we show an additional analy-
sis at the population level across the last 4 levels,
where populations consist of both wiki and lm1b
encoders, for the SST-2 dataset. Figures 1, 2, 3,
4 show the evolution of accuracy scores through
generations. In each figure, training curve_1, vali-
dation curve_1 correspond to the evolution of one
population. Thus, we show the evolution of 5 pop-
ulations per level where each population is evolved
using a different random seed. In each curve, each
point represents the average accuracy score of one
population for a given generation number.

As we see across all figures, our belief that Trans-
former encoders pretrained on the same dataset,
but using a different random seed for pretraining,
can capture different linguistic or world knowledge
seems to be supported by these plots since at the
beginning of all evolution processes the standard
deviations for each population are very wide, which
means that accuracy scores across each individual
vary to a great extent which seems to imply that
individuals encode different knowledge (some of
them having learned patterns more useful for the
SST-2 data than others) which is reflected in their
different chromosomes.

Also, we observe in Figures 1 and 2 that for Lev-
els 3 and 4, around generation gen = 40, most of

Figure 1: Average accuracy scores at the population
level across generations for Level 3. Bars represent
standard deviations.

Figure 2: Average accuracy scores at the population
level across generations for Level 4. Bars represent
standard deviations.

Figure 3: Average accuracy scores at the population
level across generations for Level 5. Bars represent
standard deviations.
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Figure 4: Average accuracy scores at the population
level across generations for Level 6. Bars represent
standard deviations.

the populations tend to converge to the final aver-
age accuracy, and in several cases the variation is
minimal which means that individuals should share
a large part of their genetic material with each other.
This is a well-known effect in GAs and it tends to
lead to local optima. However, for Levels 5 and 6
where most or all encoders are pretrained, stability
for some populations tends to arrive at the last gen-
erations as there are cases where populations still
see an increase in their average scores by almost
the end of the run; this could mean that a bigger
diversity of both wiki and lm1b encoders is helpful
for avoiding or escaping local minima.

A.2 Genetic Analysis of the Best Individual
The best individual from all our experiments with
the SST-2 dataset comes from Level 4; this en-
coder achieved a validation score of val = 0.6135.
We traced back all its parents up to the first gen-
eration to have an idea of how its chromosome is
formed. Not surprisingly, half of its genetic mate-
rial is formed by weight vectors from wiki encoders
and half from lm1b encoders. This piece of evi-
dence further supports our hypothesis; recombining
knowledge from different types of encoders leads
to optimal individuals. It seems that weight vectors
from different encoder types may encode different
type of linguistic or world knowledge and when
recombined they produce parameters more fit to
the task at hand. We leave this hypothesis to be
tested in future work.

A.3 Robustness to Variability
We measured how robust is each optimization
method to the impact of random seed variation on
the downstream scores; ideally, optimization meth-
ods would provide a robust estimate of the accuracy
which translates into low variability. To measure

this property, we computed the Coefficient of Vari-
ation (CV) (Dodge, 2008) since directly comparing
the standard deviations from Adam and EGA is not
a reliable approach due to the wide gap between
mean accuracy scores from both methods. The co-
efficient of variation is a standardized measure that
takes into account the size of the mean scores as
follows:

CV =
standard_deviation

mean
× 100% (2)

Thus, higher CV values represent a higher de-
gree of variability. We compute coefficients of vari-
ation using means and standard deviations from
Tables 4 and 1 for Adam and EGA, respectively.
We find that while Adam’s CV values range from
0.007% to 0.018%, EGA’s CV values falls in the
0.0009%-0.07% range, both intervals containing
extremely low signs of variation showing that both
methods exhibit comparably high and robust esti-
mates of accuracy.

A.4 Sampling of SST-2

To allow for a faster (and more environmentally
friendly) training on the SST-2 data with EGA, we
investigated if we could reduce its train set size
through a learning curve. The learning curve in
Figure 5 was obtained by evolving 20 randomly
initialized encoders for 100 generations across 5
different random seeds. It shows that the best vali-
dation scores come from using approx. 5% of the
train set (3072 instances).5 Thus, we chose to use
a random sample of size 3072 for our experiments
with EGA and Adam.

A.5 Transformer Model and Training Details

Our target model is the Transformer encoder vari-
ant implemented in the KerasNLP framework
which is roughly the equivalent of a half-size
Transformer encoder from the original Transformer
model in (Vaswani et al., 2017). We chose this vari-
ant mainly for memory consumption reasons when
fine-tuning it with the genetic algorithm. We used
same settings and hyperparameters as in (Watson
et al., 2022) to have a fully reproducible baseline.
Also, for some of our experiments we used the
same dataset for pretraining (WikiText-103 dataset)
and the same dataset for fine-tuning (SST-2) as

5We used up to approx. 88% of the dataset to keep it
balanced between positive and negative labels since we are
optimizing accuracy scores.
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Figure 5: Learning curve. Each point is averaged on 5
different runs. Bars represent standard deviations.

those used in the KerasNLP original implementa-
tion.

More concretely, this Transformer implementa-
tion consists of 3 encoder blocks each with 4 at-
tention heads; feedforward layer size is 512; token
and learnable position embeddings are of dimen-
sion 256; sequence length of 128 tokens, and Word
Piece Tokenizer. Total number of parameters is
almost 9.5 million trainable weights. Pretraining
batch size is 128, fine-tuning batch size is 32, se-
quence length is set to 128, mask rate is set to 0.25,
dropout rate is set to 0.1, epsilon is set to 1e − 5,
pretraining learning rate is 5e−4, fine-tuning learn-
ing rate is 5e− 5, and pretraining epochs is set to
8. There is a parameter which we change from the
original implementation; we increased the number
of fine-tuning epochs to 15 since before the 15th
epoch validation scores go down.

A.6 Hardware and Software Used
We used Tensorflow version 2.10.1, KerasNLP ver-
sion 0.3.1, python version 3.10.9. To run our ex-
periments we used an Nvidia RTX3060 GPU. The
total time that all our experiments took to run was
495.55 hrs. (20.64 days).
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Abstract

Modularity is a paradigm of machine transla-
tion with the potential of bringing forth models
that are large at training time and small during
inference. Within this field of study, modular
approaches, and in particular attention bridges,
have been argued to improve the generalization
capabilities of models by fostering language-
independent representations. In the present pa-
per, we study whether modularity affects trans-
lation quality; as well as how well modular
architectures generalize across different eval-
uation scenarios. For a given computational
budget, we find non-modular architectures to
be always comparable or preferable to all mod-
ular designs we study.

1 Introduction

Machine Translation (MT) has historically been
under two influences that seem a prima facie con-
tradictory. One of the goals of MT research is to
provide means of converting sentences from any
language to any other. On the one hand, gener-
alization capabilities hinge on our systems pro-
ducing language agnostic representations. On the
other hand, MT models ought to be apt at encod-
ing the specifics of source languages (Belinkov
et al., 2017). The former of these trends has deeply
marked this field—the concept of an ‘interlingua’
runs through most of the history of MT research,
from Richens (1956) to Lu et al. (2018). The latter
has recently motivated the development of modular
approaches, where network parameters are specifi-
cally tied to a specific language.

How can we reconcile these two seemingly para-
doxical trends? One promising approach is the
inclusion of fully-shared subnetworks in modu-
lar architectures, and especially bridge compo-
nents: They have been argued to foster language-
independent representations (Zhu et al., 2020) as
well as zero-shot generalization capabilities (Liao
et al., 2021). Our aim is to carefully assess whether

modular architectures in general and bridges do
indeed foster greater generalization capabilities.

We therefore study six architectures, five of
which modular, with a particular focus on how they
generalize—both to unseen translation directions,
and to novel domains. We find that modular sys-
tems still struggle to remain competitive with fully-
shared MT systems in scenarios when not all trans-
lation directions are available—a conclusion that
affects systems with and without fixed-size bridges
equally. While encoder-sharing modular designs
can rival or outperform non-modular settings in
a wide range of scenarios, all other systems we
study struggle in zero-shot and out-of-distribution
conditions, strongly questioning that fully-shared
sub-networks in modular MT systems can improve
their generalization capabilities.

2 Related Work

The full span of multilingual NMT (MNMT) ar-
chitectures rely in the implicit assumption that the
systems leverage the multilingual data by creat-
ing a shared encoding space via sharing: from
fully-shared models (Johnson et al., 2017), to fully-
modular systems, where sharing occurs only at
dataset level (Escolano et al., 2021). In this work,
we assess those two extreme cases, focusing in
the modular NMT systems that incorporate some
parameter-sharing bridging layers. Lu et al. (2018)
introduced an attentional neural interlingua, which
processes language-specific encoder embeddings
to produce language-agnostic representations. Zhu
et al. (2020) proposed a language-aware interlin-
gua that transforms the encoder representation to a
shared semantic space, showcasing practical means
of fostering the semantic consistency of transla-
tions. Vázquez et al. (2019) integrated a shared
inner-attention mechanism, referred to as “atten-
tion bridge”, based on the work of Lin et al. (2017),
to generate fixed-size sentence representations. Fur-
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ther studies by Raganato et al. (2019) and Vázquez
et al. (2020), whose work we specifically build
upon, emphasized the advantages of using mul-
tiple attention heads on the semantic quality of
the translation—as well as challenges, particularly
with translating longer sentences. Boggia et al.
(2023) explored the effects of sharing encoder pa-
rameters vs. increasing the number of languages in
modular MNMT. More recently, Purason and Tät-
tar (2022) used layers shared by language groups
to enhance translation, Mao et al. (2023) proposed
a variable-length bridge that uses a classification
layer to predict its length, and in Pires et al. (2023)
the encoder is built with interspersed fully-shared
and language-specific layers.

3 Experimental Methodology

3.1 Model Variants
All the models we consider are Transformer-based
(Vaswani et al., 2017), and implemented with the
MAMMOTH library (Mickus et al., 2024).1 An
overview of the different modular architectures we
consider is displayed in Figure 1. We ensure that
all datapoints are processed by the same number of
encoder and decoder layers (6 and 6 resp.).

Non-modular baseline. To provide a reasonable
point of comparison with existing approaches, we
consider a simple non-modular architecture where
all parameters are shared across all translation di-
rections. We note these fully-shared models as F .

Fully modular baseline. A second natural point
of comparison is a modular system without bridge;
e.g. Escolano et al. (2021). Such models, noted
N below, contain one 6-layer Transformer encoder
and one 6-layer Transformer decoder per language,
which are then selected for predictions depending
on the desired language pair.

Semi-modular approaches. All other remaining
architectures we will discuss contain both language
specific and language-independent parameters. A
simple means of achieving this consist in using a
single shared encoder for all source languages (ab-
brv. E), which would allow to leverage training
signals from all source languages so as to provide
more robust encoder representations. Conversely,
one can consider employing a single shared de-
coder for al target languages (abbrv. D) in the
hopes of bolstering generation capabilities.

1Configuration files available at github.com/
Helsinki-NLP/mammoth/tree/main/examples/ab-neg/.

Bridges. We also consider models with a “bridge”
layer, i.e., where all parameters are language spe-
cific aside from the last Transformer layer in the
encoder. Such models have been explored by e.g.
Boggia et al. (2023). These models are noted T ,
and contain 5-layer language-specific Transformer
encoders, followed by a shared Transformer layer
serving as a bridge—i.e. they are N -type modular
systems where the parameters of the last layers of
each encoder are tied.

Fixed-size attention bridges. An alternative pro-
posed by Vázquez et al. (2020) consists in using
fixed-size attention bridge (FSAB) designs. FSAB
models, noted L, resemble T models except for the
fact that the fully-shared Transformer layer bridge
is replaced by the structured embedding architec-
ture proposed by Lin et al. (2017):

Y = softmax
(
WQReLU (WKX)⊤

)
·X (1)

with X the input matrix of the shared layer. Models
of the L architecture contain language-specific en-
coders comprising 5 Transformer layers, followed
by one FSAB layer shared across all languages.

3.2 Datasets
We use two MT datasets: the United Nations Par-
allel Corpus (Ziemski et al., 2016, UNPC), which
contains documents in six UN languages (Arabic,
Chinese, English, French, Russian, and Spanish);
and OPUS100 (Zhang et al., 2020), an English-
centric multilingual corpus derived from Tiede-
mann (2012) spanning 100 languages. We ig-
nore all OPUS translation directions not present in
UNPC. Since the UNPC contains over 10M paired
sentences across six languages (Arabic, English,
Spanish, French, Russian, Mandarin Chinese), we
consider the entire released data, rather than the
fully aligned sub-corpus, and hold out 10% of the
data for any evaluation and/or experiments. We
ensure that sentences are unique to a split, i.e., if a
pair of sentences (s1, s2) is present in the test split,
then any pair (s1, s3) involving either of these sen-
tence will also be assigned to the test split. Out of
these 10%, we randomly select 25k sentences per
language pairs to use as test sets. The remaining
90% examples are used for training, with 10k sen-
tences per language pairs set aside for validation.

Test splits for generalization. We assess gener-
alization capabilities in two common setups: zero-
shot translation directions and out-of-distribution
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Figure 1: Overview of considered architectures, focusing on EN setting (using English as a pivot). Layers shaded in
dark gray are shared across all languages; layers shaded in light gray are specific to a source or target language.

(OOD) examples. To evaluate out-of-distribution
performances, we simply train models on one
dataset (UNPC or OPUS) and evaluate it on the
other (resp. OPUS or UNPC). Since bridge compo-
nents are argued to be useful for unseen translation
directions (Liao et al., 2021), we experiment with
different language pivots to artificially create zero-
shot translation directions. We construct three dis-
tinct UNPC training sets: (i) one using all 30 trans-
lation directions available in the UNPC, (“All”);
(ii) one using all 10 directions involving English
as a source or target (“EN”); and (iii) one using all
10 directions involving Arabic as a source or target
(“AR”). This allows us to evaluate our models in
both English-centric and non-English-centric con-
texts as well as in a zero-shot setting.2 Hence, we
refer to EN or AR being pivot languages, when an
experiment is centered around that language.

Training conditions. To enable zero-shot trans-
lation (Vázquez et al., 2019; Artetxe and Schwenk,
2019, cf.), we train our models on auto-encoding
tasks for all 6 languages. UNPC models are trained
on monolingual data derived from the UNPC, and
likewise OPUS models are trained on OPUS mono-
lingual data. We train three seeds of all six model
variants (F , N , E , D, T , L) on the four training
sets (UNPC-All, UNPC-EN UNPC-AR, OPUS-
EN) under a strictly controlled computational bud-
get: All models are exposed to the same number
of datapoints and are trained with 6 AMD MI250X
GPUs. We use the hyperparameters of Boggia et al.
(2023) aside from batch accumulation, set to 8. We
use k = 50 in L models as Vázquez et al. (2020).

4 Results

The primary metric used for evaluating the per-
formance of our models is BLEU (Papineni et al.,
2002; Post, 2018).3 Results are shown in Table 1.

2Since OPUS100 is English-centric, only one variant of
this dataset is considered for training.

3While COMET (Rei et al., 2020) would in principle be
preferable, computing it for all translation directions in every

Choice of architecture. A clear trend emerges
from our results: Across the board, the encoder-
shared models E are found to be the most suc-
cessful, followed by the fully-shared, non-modular
models F . The latter only prevails upon the for-
mer in Arabic-centric scenario. At times, these
architectures outrank other models considered by
large margins of up to 7.5 BLEU points. While
fully modular N models or FSAB-based L models
perform well in the EN-centric scenario, these are
not overwhelmingly better than F .

Choice of pivot language. We experiment with
different pivot languages, EN and AR, to under-
stand their influence on the results. Our observa-
tions indicate that the choice of a pivot language
can significantly impact the outcomes: The results
with AR are always below the corresponding scores
with EN on translation directions studied during
training, whereas AR models yield generally higher
performance in zero-shot conditions than their EN
counterparts. Furthermore, we find tentative evi-
dence that the behavior in EN and AR differs from
that of All: In the latter case, we find a more limited
impact of the architecture being used, with score
varying at most by ±4.2 BLEU points; whereas we
observe a spread of up to ±7.3 BLEU points for the
former. As one would expect, being exposed to all
translation directions during training (All) allows
to improve performances averaged all translation
directions. If we restrict ourselves to directions a
model was exposed to during training, we find that
EN models often outperform All models; whereas
AR models are more in line with the values we see
for All. This would suggest that there is a difficulty
inherent to the translation directions considered;
focusing only on directions that involve English
may inflate performances.

Translation directions (seen vs. unseen). Ex-
panding on what we already briefly touched on,
we systematically find performances in zero-shot

model in our study is prohibitively costly.

36



Translation
directions N F E D T L
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N
PC
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U
N

PC

All (seen) 26.6± 0.5 28.2 ± 1.1 29.0± 0.2 24.8± 0.2 26.6± 0.1 26.4± 0.2

AR
all 18.1± 0.3 24.6± 1.3 23.1 ± 1.7 15.7± 1.8 16.8± 0.4 17.9± 0.1
seen 26.4± 0.1 27.1± 0.9 26.6 ± 0.7 22.0± 1.0 24.9± 0.1 26.2± 0.0
unseen 13.9± 0.3 23.4± 1.4 21.4 ± 2.3 12.5± 2.2 12.8± 0.6 13.7± 0.1

EN
all 19.3± 0.4 22.8 ± 2.9 23.9± 1.0 17.9± 0.4 19.3± 0.1 19.4± 0.1
seen 34.5± 0.2 33.1± 2.6 35.9± 0.1 31.6± 0.9 34.0± 0.2 34.6 ± 0.3
unseen 11.7± 0.6 17.6 ± 3.0 17.9± 1.4 11.0± 1.0 11.9± 0.1 11.8± 0.1

tr
ai

n
on

O
PU

S

EN
all 16.4± 0.2 20.6 ± 0.5 20.9± 0.4 13.6± 1.2 16.8± 0.2 16.3± 0.1
seen 30.8 ± 0.2 30.5± 0.5 31.1± 0.3 23.7± 1.5 30.7± 0.3 30.6± 0.3
unseen 9.1± 0.3 15.6 ± 0.5 15.8± 0.5 8.5± 1.0 9.9± 0.1 9.1± 0.1

te
st

on
O

PU
S

tr
ai

n
on

U
N

PC

All (seen) 17.6± 0.2 19.1 ± 0.8 19.7± 0.2 16.3± 0.2 17.5± 0.2 17.5± 0.3

AR
all 12.3± 0.2 16.5± 0.8 15.4 ± 1.0 10.3± 1.4 11.4± 0.2 12.1± 0.1
seen 17.7± 0.1 18.4± 0.8 17.9 ± 0.6 13.8± 1.0 16.6± 0.1 17.6± 0.1
unseen 9.2± 0.3 15.5± 0.8 13.9 ± 1.3 8.4± 1.6 8.5± 0.2 9.0± 0.1

EN
all 13.4± 0.3 15.9 ± 2.0 17.0± 0.5 12.6± 0.2 13.3± 0.1 13.5± 0.2
seen 19.7± 0.1 19.8 ± 1.4 21.0± 0.0 18.5± 0.7 19.2± 0.1 19.8 ± 0.2
unseen 8.2± 0.3 12.7 ± 2.5 13.6± 0.9 7.7± 0.7 8.4± 0.3 8.2± 0.3

tr
ai

n
on

O
PU

S

EN
all 15.0± 0.2 17.8 ± 0.3 17.9± 0.3 12.4± 1.0 15.5± 0.2 14.8± 0.1
seen 25.1± 0.2 24.6± 0.3 25.1± 0.2 19.7± 1.6 24.9± 0.2 24.9± 0.3
unseen 6.6± 0.2 12.1± 0.3 11.8 ± 0.5 6.3± 0.7 7.7± 0.2 6.4± 0.1

Table 1: Summary of performances, with best and second best values highlighted (avg. of 3 seeds ± std. dev.), and
broken down according to whether the translation direction was seen during training or not (i.e., zero shot).

conditions to remain firmly below what we observe
for translation directions observed during training.
This holds across pivot languages and architectures.
We do not observe that bridges (T or L) provide
benefits in terms of zero-shot performances over
fully modular systems (N ). instead, it would ap-
pear that sharing the encoder (E or F ) is beneficial—
although it is uncertain that this is due to greater
generalization capabilities rather than overall im-
proved performances, the improvement brought
about by E and F models is more substantiated in
zero-shot settings (with a gap of at least 4.1 BLEU
points in zero-shot settings, whereas F can be out-
performed by L and/or N for training directions).

In-distribution vs. out-of-distribution. Com-
paring performances in-distribution and out-of-
distribution does not suggest that bridges mean-
ingfully improve generalization capabilities. Per-
formances of T and L models are in line with what
we observe for the bridge-less N models.

5 Statistical modeling

SHAP analysis & predictors importance Are
our observations statistically significant? To estab-
lish which factors are at play, we rely on SHAP
(Lundberg and Lee, 2017), a library and algorithm
to derive heuristics for Shapley values (Shapley,
1953). We fit a gradient boosting decision tree

Figure 2: Overview of SHAP values, sorted by mean
absolute value. Grey: categorical predictors; red: binary
predictors where the value is true; blue, where it is false.

regression model with CatBoost (Prokhorenkova
et al., 2018) to explain the BLEU scores obtained
on specific language pairs and datasets by all the
models we trained. We use as predictors (i) the
source language (categorical); (ii) the target lan-
guage (categorical), (iii) whether the model was
trained on UNPC (binary); (iv) whether this trans-
lation direction in zero-shot (binary); (v) whether
this test corresponds to an out-of-distribution set-
ting (binary); as well as (vi–xi) which architecture
is used (binary predicates for each of N , F , E , D,
T , and L).

Figure 2 provides a general overview of the
results of this analysis. The exact evaluation
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coef std err t P> |t|
Intercept 11.8312 0.211 56.153 0.000
has bridge 4.4287 0.248 17.851 0.000
shares enc 5.3919 0.248 21.733 0.000
zero shot −7.5567 0.139 −54.277 0.000
OOD 1.9472 0.140 13.917 0.000
from EN 1.9792 0.178 11.099 0.000
from ES 2.7001 0.204 13.235 0.000
from FR 1.5625 0.182 8.578 0.000
from RU 0.5932 0.182 3.257 0.001
from ZH −2.6625 0.182 −14.617 0.000
to EN 9.1120 0.178 51.098 0.000
to ES 7.7651 0.204 38.061 0.000
to FR 4.0147 0.182 22.040 0.000
to RU 2.0937 0.182 11.494 0.000
to ZH −5.2907 0.182 −29.046 0.000
trained on UNPC 4.3278 0.125 34.705 0.000

has bridge×zero shot −4.7733 0.283 −16.876 0.000
has bridge×OOD 0.4169 0.283 1.472 0.141
shares enc×zero shot 0.3607 0.283 1.275 0.202
shares enc×OOD 0.9785 0.283 3.455 0.001

Table 2: OLS coefficients and significance. Intercept:
N -type, not OOD, not zero-shot, from & to AR.

conditions—i.e. the training and testing corpora
and the specific language pairs seen at training and
during the test at hand all, corresponding to predic-
tors (i–v)—have a strong impact on the observed
BLEU scores. We also see that using models of
type F and E more strongly and more positively im-
pacts the BLEU scores we observe than any other
model type. In short, we find that most modular
models fail to bring about results comparable with
what we see for our non-modular baseline F , with
the sole exception of encoder-sharing E .

OLS model & predictors interaction. Is there
evidence that some modular architectures (and
bridges in particular) enhance generalization ca-
pabilities? While SHAP values provide indepen-
dent coefficients for each factor, this question is
at its core one of interrelation—and is thus best
studied through models able to capture potential
interactions between predictors. To that end, we fit
a simple ordinary least squares (OLS) linear model
to predict the BLEU scores of our models using as
predictors (i) whether the architecture contains a
bridge (i.e., models of type T or L); (ii) whether
it shares the encoder across source languages (i.e.,
models of type F or E); (iii) whether the model is
tested in zero-shot; (iv) whether it is tested in an
OOD setting; (v) whether the model was trained on
UNPC; (vi & vii) the source and target languages;
(viii–xi) the interactions between modular design
(i.e., predictors i & ii) and performances in gener-

alization conditions (viz. predictors iii & iv).4

Our model achieves a R2 of 0.763. Predictor co-
efficients and significance are listed in Table 2. As
expected, modular design and training & test condi-
tions (predictors i–vii) are always significant. Zero
shot performances are linked to the strongest nega-
tive coefficient in our model; likewise, translating
from or to ZH also turns out to degrade perfor-
mance somewhat compared to the intercept (AR).
Looking at interactions, we find that models with a
bridge require a clear negative correction in zero-
shot scenarios, opposite to what has been argued
by Liao et al. (2021). Models of type F and E
require a positive correction in OOD settings, sug-
gesting they distinguish themselves further from
other modular architectures. This statistical mod-
eling suggests that bridge-based architectures sig-
nificantly decrease generalization capabilities, as
opposed to other modular (E) and non-modular (F )
designs—in contrast with much of the discourse
about their benefit for language independence and
usefulness in zero-shot conditions (Raganato et al.,
2019; Zhu et al., 2020; Vázquez et al., 2020).

6 Conclusions

In this work, we study the claim that bridge lay-
ers in modular architectures foster greater general-
ization capabilities. Given a carefully controlled
computational budget, bridge architectures never
clearly outperform bridge-less architectures, be
they modular or not. In particular, we find non-
modular architectures exhibit strong competitive-
ness, as they are only outperformed by modular
architectures with language independent encoders
and modular language-specific decoders. Addition-
ally, we note that training conditions, such as the
translation direction accessible to a model during
training, have a significant impact.

These results suggest that current modular ar-
chitectures, especially those using bridging layers,
have limited potential insofar MT is concerned.
In most cases, a default non-modular transformer
fares better or just as well than the most effective
modular system. Our study focused on modular
architectures in a small-scale, well controlled ex-
perimental protocol; we leave questions such as
whether these remarks carry on at a larger scale,
both of model parameter counts and number of
languages concerned, for future work.

4We ignore datapoints from type D models since we are
not aware of specific claims with respect to this architecture.

38



Acknowledgements

This work is part of the FoTran project,
funded by the European Research Coun-
cil (ERC) under the EU’s Horizon 2020 re-
search and innovation program (agreement
№ 771113). We also thank the CSC-IT

Center for Science Ltd., for computational re-
sources and NVIDIA AI Technology Center
(NVAITC) for the expertise in distributed training.

References
Mikel Artetxe and Holger Schwenk. 2019. Mas-

sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transactions
of the Association for Computational Linguistics,
7:597–610.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017. What do neural
machine translation models learn about morphology?
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 861–872, Vancouver, Canada.
Association for Computational Linguistics.

Michele Boggia, Stig-Arne Grönroos, Niki Loppi, Timo-
thee Mickus, Alessandro Raganato, Jörg Tiedemann,
and Raúl Vázquez. 2023. Dozens of translation di-
rections or millions of shared parameters? compar-
ing two types of multilinguality in modular machine
translation. In Proceedings of the 24th Nordic Con-
ference on Computational Linguistics (NoDaLiDa),
pages 238–247, Tórshavn, Faroe Islands. University
of Tartu Library.

Carlos Escolano, Marta R. Costa-jussà, José A. R.
Fonollosa, and Mikel Artetxe. 2021. Multilingual
machine translation: Closing the gap between shared
and language-specific encoder-decoders. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 944–948, Online. Association
for Computational Linguistics.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Junwei Liao, Yu Shi, Ming Gong, Linjun Shou, Hong
Qu, and Michael Zeng. 2021. Improving zero-
shot neural machine translation on language-specific
encoders- decoders. In 2021 International Joint Con-
ference on Neural Networks (IJCNN), pages 1–8.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence

embedding. In International Conference on Learning
Representations.

Yichao Lu, Phillip Keung, Faisal Ladhak, Vikas Bhard-
waj, Shaonan Zhang, and Jason Sun. 2018. A neu-
ral interlingua for multilingual machine translation.
In Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 84–92, Brussels,
Belgium. Association for Computational Linguistics.

Scott M Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Zhuoyuan Mao, Haiyue Song, Raj Dabre, Chenhui Chu,
and Sadao Kurohashi. 2023. Variable-length neu-
ral interlingua representations for zero-shot neural
machine translation.

Timothee Mickus, Stig-Arne Grönroos, Joseph At-
tieh, Michele Boggia, Ona De Gibert, Shaoxiong
Ji, Niki Andreas Loppi, Alessandro Raganato, Raúl
Vázquez, and Jörg Tiedemann. 2024. MAMMOTH:
Massively multilingual modular open translation @
Helsinki. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: System Demonstrations, pages
127–136, St. Julians, Malta. Association for Compu-
tational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Telmo Pessoa Pires, Robin M. Schmidt, Yi-Hsiu Liao,
and Stephan Peitz. 2023. Learning language-specific
layers for multilingual machine translation.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr
Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. 2018. Catboost: unbiased boosting with cate-
gorical features. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates,
Inc.

Taido Purason and Andre Tättar. 2022. Multilingual
neural machine translation with the right amount of
sharing. In Proceedings of the 23rd Annual Con-
ference of the European Association for Machine
Translation, pages 91–100, Ghent, Belgium. Euro-
pean Association for Machine Translation.

Alessandro Raganato, Raúl Vázquez, Mathias Creutz,
and Jörg Tiedemann. 2019. An evaluation of

39



language-agnostic inner-attention-based representa-
tions in machine translation. In Proceedings of the
4th Workshop on Representation Learning for NLP
(RepL4NLP-2019), pages 27–32, Florence, Italy. As-
sociation for Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Richard H. Richens. 1956. Preprogramming for
mechanical translation. Mechanical Translation,
3(1):20–25.

Lloyd S Shapley. 1953. A value for n-person games.
In Harold W. Kuhn and Albert W. Tucker, editors,
Contributions to the Theory of Games II, pages 307–
317. Princeton University Press, Princeton.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Raúl Vázquez, Alessandro Raganato, Mathias Creutz,
and Jörg Tiedemann. 2020. A systematic study
of inner-attention-based sentence representations in
multilingual neural machine translation. Computa-
tional Linguistics, 46(2):387–424.

Raúl Vázquez, Alessandro Raganato, Jörg Tiedemann,
and Mathias Creutz. 2019. Multilingual NMT with a
language-independent attention bridge. In Proceed-
ings of the 4th Workshop on Representation Learning
for NLP (RepL4NLP-2019), pages 33–39, Florence,
Italy. Association for Computational Linguistics.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen-
nrich. 2020. Improving massively multilingual neu-
ral machine translation and zero-shot translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1628–
1639, Online. Association for Computational Linguis-
tics.

Changfeng Zhu, Heng Yu, Shanbo Cheng, and Weihua
Luo. 2020. Language-aware interlingua for multi-
lingual neural machine translation. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1650–1655, On-
line. Association for Computational Linguistics.

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The United Nations parallel cor-
pus v1.0. In Proceedings of the Tenth International

Conference on Language Resources and Evaluation
(LREC’16), pages 3530–3534, Portorož, Slovenia.
European Language Resources Association (ELRA).

40



Proceedings of the Fifth Workshop on Insights from Negative Results in NLP, pages 41–47
June 20, 2024 ©2024 Association for Computational Linguistics

Knowledge Distillation vs. Pretraining from Scratch
under a Fixed (Computation) Budget
Minh Duc Bui∇ Fabian David Schmidt♢

Goran Glavaš♢ Katharina von der Wense∇♠
∇Johannes Gutenberg University Mainz, Germany

♢Center For Artificial Intelligence and Data Science, University of Würzburg, Germany
♠University of Colorado Boulder, USA

{minhducbui, k.vonderwense}@uni-mainz.de
{fabian.schmidt, goran.glavas}@uni-wuerzburg.de

Abstract

Compared to standard language model (LM)
pretraining (i.e., from scratch), Knowledge Dis-
tillation (KD) entails an additional forward pass
through a teacher model that is typically sub-
stantially larger than the target student model.
As such, KD in LM pretraining materially slows
down throughput of pretraining instances vis-
a-vis pretraining from scratch. Scaling laws
of LM pretraining suggest that smaller mod-
els can close the gap to larger counterparts
if trained on more data (i.e., processing more
tokens)—and under a fixed computation bud-
get, smaller models are able be process more
data than larger models. We thus hypothesize
that KD might, in fact, be suboptimal to pretrain-
ing from scratch for obtaining smaller LMs,
when appropriately accounting for the compute
budget. To test this, we compare pretraining
from scratch against several KD strategies for
masked language modeling (MLM) in a fair
experimental setup, with respect to amount of
computation as well as pretraining data. Down-
stream results on GLUE, however, do not con-
firm our hypothesis: while pretraining from
scratch performs comparably to ordinary KD
under a fixed computation budget, more sophis-
ticated KD strategies, namely TinyBERT (Jiao
et al., 2020) and MiniLM (Wang et al., 2023),
outperform it by a notable margin. We further
find that KD yields larger gains over pretraining
from scratch when the data must be repeated
under the fixed computation budget.1

1 Introduction

Knowledge distillation (KD; Hinton et al., 2015;
Jiao et al., 2020) during LM pretraining has
emerged as the primary mean of compressing the
capabilities of a large pretrained teacher model
into a task agnostic smaller student model. KD is
praised for yielding high-performing task agnostic
small models, mitigating the need for pretraining

1Code is available at https://github.com/
MinhDucBui/revisiting_distillation.

Identical
Name Architect. Compute

DistilBERT (Sanh et al., 2020) No No
TinyBERT (Jiao et al., 2020) Yes No
MobileBERT (Sun et al., 2020) No No
MiniLM (Wang et al., 2020) No No
Our Work Yes Yes

Table 1: Assessing the fairness of evaluation setups
in previous works for task-agnostic masked language
models, trained with KD and without KD.

(small models) from scratch, which is typically
considered more expensive. The body of exist-
ing KD work for MLM (Jiao et al., 2020; Wang
et al., 2023), however, typically does not com-
pare KD against pretraining from scratch in a fair
setup: (i) with the same target models (exactly the
same architecture) and (ii) under the same compu-
tation budget. Compared to just training the target
model from scratch, KD comes with a computational
overhead of forward passes through the typically
considerably larger teacher model. This, under
the same computation budget, allows pretraining
from scratch to consume more data (i.e., more to-
kens) than KD, which leads to the central research
question of this work: in a fair setup where both
are given equal overall computation budget, is KD
still more effective than pretraining from scratch
(No-KD)? We hypothesize that, under a fair evalua-
tion setup, No-KD may be as effective as KD, render-
ing KD inconsequential. Our reasoning is based on
two observations:

1) Fair KD Comparison. A fair comparison, in
which both setups are given identical computa-
tion budgets (as well as identical target models)
eludes existing work on KD. Jiao et al. (2020) com-
pare their model to BERTTiny (Turc et al., 2019),
which has the same architecture but employs sig-
nificantly different training resources than their
TinyBERTTiny, preventing a fair comparison. Simi-
larly, Sanh et al. (2020) compare their distilled stu-
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dent solely against the teacher, whereas Sun et al.
(2020); Wang et al. (2020) only add comparison
against larger pretrained models and competing KD
strategies. Even the body of work that focuses on
comparing different KD strategies has only recently
sought to standardize training and thus enable fair
comparisons (Lu et al., 2022; Wang et al., 2023).

2) Scaling Laws. Scaling laws (Kaplan et al.,
2020; Hoffmann et al., 2022), reveal that, under
a fixed computation budget, only a marginal cor-
relation exists between the LM size and it’s per-
formance: smaller models compensate their lower
learning efficiency with the ability to process more
tokens within the same budget. While there are
ongoing refinements to the scaling law (Hoffmann
et al., 2022), it has been consistently reaffirmed
by several studies (Geiping and Goldstein, 2023;
Bansal et al., 2022; Clark et al., 2022). For in-
stance, Geiping and Goldstein (2023) showcases
this behavior by training multiple BERT models
with varying architecture sizes for a fix 24 hour
duration, resulting in similar loss values across all
sizes.

Contribution Motivated by the recent findings
in the realm of scaling laws and recognizing the ab-
sence of a fair comparison between KD and No-KD,
our primary contribution lies in the comparison of
No-KD against KD strategies for MLM while ensur-
ing a fair setup with regards to compute budget and
pretraining data. We initially assess No-KD in an
optimal setup, where unlimited pretraining tokens
are available within a fixed compute budget. Ad-
ditionally, we examine the scenario when data is
constrained within a fixed compute budget.

Our results reveal that, in the optimal setting,
No-KD performs indeed comparably to vanilla-KD,
exhibiting an average improvement over vanilla-KD
of 0.4 and 0.1 points for 6-, and 12-layer models on
GLUE. However, No-KD falls short of surpassing
more advanced KD strategies, exemplified by the
comparison with TinyBERT and MiniLM. When
available data is limited within the fixed compute
budget, KD strategies outperform No-KD by an even
larger margin: No-KD, though faster, needs more
epochs, whereas KD strategies extract more infor-
mation from limited data.

2 Distillation Strategies

Vanilla-KD Vanilla-KD for MLM pretraining is
set up as follows. A small MLM student is trained

to mimick the predictions for a particular train-
ing instance of a large pretrained MLM teacher:
The distillation objective is to minimize the soft
cross-entropy between the logits zT of the MLM
teacher and the logits zS of the MLM student, with
a temperature factor t: Lpred = CE(zT /t, zS/t).
Following Hinton et al. (2015), the final training
loss equally combines Lpred with the MLM loss
LCE during pretraining.

TinyBERT Jiao et al. (2020) distill knowledge by
minimizing the mean-squared error (MSE) between
latent representations of the MLM student S and
the MLM teacher T by model layers as follows.
First, the embedding matrices of the student (ES)
and the teacher (ET) are aligned by minimizing
the loss Lembd = MSE(ESWe,E

T ). The authors
further fit the unnormalized attention scores per
head h of the MLM student S to the MLM teacher
T by optimizing Latt = 1/h

∑h
i=1 MSE(A

S
i ,A

T
i ).

Lastly, the output hidden states HS of transformer
layers of the student are also regressed onto the
corresponding teacher output representations HT

by optimizing Lhid = MSE(HSWh,H
T ).2

MiniLM Wang et al. (2020) also mimic the self-
attention modules of the MLM teacher. Un-
like TinyBert, MiniLM focuses on the last at-
tention module. Wang et al. (2020) minimize
the KL-divergence between the self-attention
distributions of the MLM teacher and the
MLM student. They further minimize the
KL-divergence between the value relations of
the MLM teacher T and MLM student S, i.e.
LV R = 1

Ah|x|
∑Ah

a=1

∑|x|
t=1DKL(VRT ||VRS).

The value-relation denotes the outer product of
values V across heads in the last attention module,
i.e. VR = softmax(VVT√

d
).

3 Experiment Setup

Model Architectures We experiment with two
different teacher and student sizes: First, we
use a 12-layer pretrained BERTbase (Devlin et al.,
2019) model (L=12, H=768, A=12, Total Parame-
ters=110M) as the teacher and a randomly initial-
ized 6-layer BERT6 model (L=6, H=768, A=12, To-
tal Parameters=67M) as the student. We then scale
the setting up to a pretrained BERTLarge (L=24,

2The distillation of embeddings E and output hidden states
H is learned up to projection matrices We;h matrices to
bridge varying dimensionalities of representations across ar-
chitectures.
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Total Token QNLI SST-2 MNLI MRPC QQP RTE CoLA Avg ∆
Throughput (Acc) (Acc) (Acc) (F1) (Acc) (Acc) (Mcc)

6-Layer: Unlimited Pretraining Tokens within Fixed Compute Budget

No-KD6 4.6B 86.5 89.8 79.2 87.3 90.1 60.7 47.3 77.3 –
Vanilla-KD6 2.6B 87.3 89.2 78.8 87.1 89.7 61.7 44.8 76.9 −0.4
MiniLM6 2.6B 88.5 90.6 81.7 90.0 90.3 64.3 43.9 78.5 +1.2
TinyBERT6 2.6B 89.5 91.0 82.2 90.3 90.4 67.2 40.8 78.8 +1.5

12-Layer: Unlimited Pretraining Tokens within Fixed Compute Budget

No-KD12 4.6B 87.8 90.1 80.6 86.5 90.3 60.3 51.1 78.1 –
Vanilla-KD12 2.6B 86.3 90.5 79.8 88.8 89.9 62.1 48.6 78.0 −0.1
MiniLM12 2.6B 90.0 91.2 83.3 90.1 90.9 69.0 49.1 80.5 +1.4
TinyBERT12 2.6B 89.5 91.4 82.0 90.8 90.6 65.5 41.1 78.7 +0.6

6-Layer: Limited Pretraining Tokens within Fixed (Increased) Compute Budget

No-KD6 27.9B 88.8 91.2 81.3 88.0 90.4 59.6 50.5 78.5 –
Vanilla-KD6 15.4B 86.9 91.1 81.1 89.5 90.3 61.7 58.3 79.8 +1.3
MiniLM6 15.6B 90.0 91.5 83.0 90.3 90.6 65.7 50.7 80.3 +1.8
TinyBERT6 15.6B 90.5 92.3 83.3 90.2 90.8 67.5 51.8 80.9 +2.4

Table 2: Upper part: optimal scenario for No-KD – unlimited pretraining tokens within a fixed compute budget. Lower
part: limited data within a fixed compute budget. We present the performance results on the GLUE development
set, maintaining a consistent pretraining wall-clock time across all models within each group. The column Avg
represents the average performance across all tasks, while ∆ quantifies the average difference between No-KDxx and
the other distillation strategies.

H=1024, A=16, Total Parameters=340M) teacher
and a randomly initialized 12-layer BERT12 stu-
dent. To speed up the training pipeline and con-
vergence, we use the implementation of Izsak et al.
(2021) for the models.

Data We follow BERT (Devlin et al., 2019) and
pretrain all models on the Toronto BooksCorpus
(Zhu et al., 2015) and English Wikipedia.3 After
MLM pretraining, we finetune and evaluate the
models on the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018),
a collection of diverse natural language understand-
ing tasks.4

Pretraining We first pretrain a BERT6 model
from scratch (without KD). This model is denoted
as No-KD6. We further apply the KD strategies (cf.
§2), for which BERTbase (BERTlarge) is the MLM
teacher for the 6-layer (12-layer) MLM student.
The resulting 6-layer models are indicated with a
subscript 6, while the 12-layer models are marked
with a subscript 12. Notably, we only employ the
last layer for layer-wise distillation, as we confirm
the findings of Wang et al. (2023) that distilling
knowledge of multiple layers does not yield con-

3In November 2023, we crawled the English Wikipedia
using Attardi (2015). The official BookCorpus is no longer
accessible; however, it was re-crawled by Kobayashi (2018).

4We refer to Appendix A.3 for more information about the
GLUE datasets.

sistent performance improvements. We refer to
Appendix A.2 for additional hyperparameter, hard-
ware details and wall-clock training time.

Downstream Finetuning We perform a grid
search over batch sizes {16, 32} and learning rates
{1e-5, 3e-5, 5e-5, 8e-5} to identify the ideal hyper-
parameters for each task on the GLUE benchmark.
We train all configurations for 5 epochs. We utilize
a polynomial learning rate schedule and a maxi-
mum sequence of 128.

4 Results

4.1 Setting: Unlimited Data with Fixed
Compute

We assess No-KD for a single epoch and fix the re-
sulting training wall-clock time for the distillation
strategies. Within this compute budget, we train on
unlimited pretraining tokens without the need for
sample repetition. We report our main results in
the upper segment of Table 2.

Low KD Token Throughput We find that the to-
ken throughput of No-KD6 and No-KD12 is approxi-
mately 1.8 times greater than that of the distillation
models. This observation underscores that the pres-
ence of a teacher model greatly reduces the speed
of pretraining.
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Performance of 6-layer Students We observe
that No-KD6 surpasses Vanilla-KD6 by an av-
erage of 0.4 points. This result indicates that
Vanilla-KD6 does not exceed pretraining from
scratch in a fair setting. However, more advanced
KD strategies exhibit notable performance gains
over No-KD. On average, TinyBERT6 outperforms
No-KD6 by 1.5 points, while MiniLM6 achieves a 1.2
point advantage. These findings suggest that pre-
training from scratch falls short in outperforming
sophisticated distillation strategies in a fair setup,
even when exposed to a higher volume of tokens.
The only exception to this trend is CoLA (Corpus
of Linguistic Acceptability) (Warstadt et al., 2019),
on which No-KD6 excels.

Performance of 12-layer Students We find the
same pattern when we double the number of trans-
former layers in MLM students: Vanilla-KD12
fails to outperform No-KD12, yet it is surpassed by
MiniLM12 by an average of 1.4 points. Notably,
No-KD12 once again exhibits superior performance
on the CoLA task compared to other strategies.

CoLA Performance No-KD6 demonstrates supe-
rior performance on CoLA, surpassing the next
most effective strategy by 2.5 and 2.0 points for
6- and 12-layer models, respectively. We hypothe-
size that CoLA benefits significantly from masked
language modelling, as evidenced by the improved
performance of Vanilla-KD on CoLA compared to
other distillation strategies, aligning with findings
by Wang et al. (2023). Another contributing factor
could be the scalability of CoLA with respect to
tokens encountered during pretraining. This obser-
vation contradicts the results of Liu et al. (2021),
who suggest that CoLA can be learned relatively
quickly compared to other downstream tasks. How-
ever, it aligns with the conclusions of Geiping and
Goldstein (2023), who also note that their BERT
version, exposed to less data, exhibits subpar per-
formance on CoLA.

4.2 Setting: Limited Data with Fixed Compute

To extend our findings, we increase the compute
budget while retaining a fixed dataset size. We eval-
uate this setup with 6-layer MLM students and the
12-layer MLM teacher. The analysis provides an
estimate of the viability of No-KD when data repeti-
tion is necessary within the fixed compute budget.
The results are presented in the lower section of
Table 2.

The No-KD6 model is underperforming, com-
pared to all distillation strategies, including
Vanilla-KD6 by 1.3 points. The performance gap
widens even more when compared to MiniLM6 and
TinyBERT6, with a substantial difference of 1.8 and
2.4 points on average. We attribute this to the
fact that while No-KD benefits from exposure to
a larger number of tokens, it also necessitates a
larger dataset for effective scaling. Although this
requirement can be met in high-resource languages
with up-to-date datasets (Kudugunta et al., 2023),
it presents a significant challenge in mid to low-
resource scenarios. Additionally, No-KD6 is now be-
ing outperformed even on CoLA. These results sug-
gest that CoLA’s performance indeed needs to pro-
cess a certain quantity of tokens during pretaining
to scale effectively, regardless of additional token
repetitions: e.g., the performance of Vanilla-KD6
increases by 13.5 points if scaled from 2.6B unique
to 15.4B non-unique pretraining tokens. Interest-
ingly, our findings reveal that Vanilla-KD6 ex-
hibits the best performance on CoLA, underscoring
the advantageous impact of masked language mod-
elling on this particular dataset.

5 Discussion

While our study provides insights into a fair eval-
uation of No-KD and KD for encoder-only mod-
els of moderate sizes, revealing negative results
for No-KD, it may not cover the full spectrum
of model sizes and architectures. For instance,
Jha et al. (2023) show that for large decoder-only
language models, No-KD performs comparably to
Vanilla-KD, aligning with our findings. However,
advanced KD strategies like MiniLM exhibit poorer
performance than No-KD and Vanilla-KD, chal-
lenging both our results and common beliefs about
KD regarding large decoder models. This dispar-
ity underscores the need for further investigation
into a fair KD evaluation across a range of archi-
tectures and scales. Additionally, we recommend
investigating the impact of the teacher budget on
performance in the fair setting, a consideration not
closely examined in our current work.

6 Conclusion

In this work, we investigate our hypothesis that,
provided a fair training scenario, model pretrain-
ing from scratch yields similar results as KD during
pretraining. Our rationale is grounded in recent
advancements in scaling laws for language models
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and that the literature lacks a fair comparison be-
tween No-KD and KD. Our findings demonstrate that
our initial assumption does not hold true: while, in
an optimal setting for No-KD, No-KD performs on
par with ordinary KD, it falls short when compared
to more sophisticated KD strategies.

Limitations

Firstly, we acknowledge that assessing the compute
budget based on training wall-clock time comes
with inherent limitations. As outline in Kaddour
et al. (2023), wall-clock time can fluctuate even on
identical hardware. This fluctuation may arise from
factors such as the utilization of non-deterministic
operations or hidden background processes. Nev-
ertheless, we only see negligible variations across
different runs for the same training pipeline.

Another limitation of our work pertains to data
size. Exploring larger pretraining corpora than ours
might be worthwhile, although we note that even
within our current data scale, KD consistently out-
performs No-KD by a significant margin. Even with
potential increases in data size, KD remains valuable
as it provides a stronger starting point compared to
No-KD.

Lastly, we acknowledge that the pretraining cor-
pus is the same as what the teacher used. This
shared corpus might influence KD strategies either
positively or negatively.
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A Appendix

A.1 Implementation Details
We use the code base from Izsak et al. (2021) for
both pretraining and finetuning of No-KD models.
In the case of KD models, we utilize the code base in-
troduced by Wang et al. (2023), which itself builds
upon the work of Izsak et al. (2021). Our code is
available at https://github.com/MinhDucBui/
revisiting_distillation.

A.2 Pretraining Details
Our pretraining pipeline employs a batch size of
1024, employing gradient accumulation with a
batch size of 256. We adopt a time-based learning
rate schedule with a linear curve. The peak learning
rate is set to 5e-4 for distillation strategies and 1e-3
for No-KD. We opt for a warmup proportion of 0.06
for both scenarios. Utilizing the AdamW optimizer
with (β1, β2) = (0.9, 0.98) and ϵ = 1e − 6, we
conduct training with mixed precision techniques.

We measure compute budget by wall-clock time.
All experiments are conducted on NVIDIA A100.
Training our 6-layer model for a single epoch re-
quires around 4 hours of wall-clock training time,
while the 12-layer model demands approximately
11 hours. Scaling up the 6-layer model to 27.9B
tokens extends the training duration to about 24
hours. Fine-tuning on GLUE with a single A100
GPU, coupled with grid-hyperparameter search,
consumes up to 50 hours for the 6-layer models
and nearly 100 hours for the 12-layer variants.

A.3 GLUE Details
We provide a brief overview of each dataset within
GLUE. For additional information regarding each
data split, evaluation metric and more, see Wang
et al. (2018).

CoLA The Corpus of Linguistic Acceptability
(Warstadt et al., 2019) comprises English accept-
ability judgments sourced from books and journal
articles on linguistic theory.

SST-2 The Stanford Sentiment Treebank (Socher
et al., 2013) includes sentences extracted from
movie reviews, along with human annotations of
their binary sentiment.

MRPC The Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) consists of sen-
tence pairs automatically extracted from online
news sources, with human annotations indicating
whether the sentences are semantically equivalent.

QQP The Quora Question Pairs dataset is a com-
pilation of question pairs from the community
question-answering website. The objective is to
determine whether a pair of questions are semanti-
cally equivalent.

STS-B The Semantic Textual Similarity Bench-
mark (Cer et al., 2017) contains sentence pairs with
a human annotated similarity score ranging from 1
to 5.

MNLI The Multi-Genre Natural Language In-
ference Corpus (Williams et al., 2018) is a crowd-
sourced collection of sentence pairs with textual
entailment annotations. The task involves predict-
ing whether a premise sentence entails, contradicts,
or is neutral with respect to a hypothesis.

QNLI The Stanford Question Answering Dataset
(Rajpurkar et al., 2016) is a question-answering
dataset comprising question-paragraph pairs, with
the task of determining whether the context sen-
tence contains the answer to the question.

RTE The Recognizing Textual Entailment (RTE)
datasets originate from annual textual entailment
challenges. The dataset is standardized to a two-
class split, collapsing neutral and contradiction into
"not entailment" for consistency.
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Abstract

We explore threshold vocabulary trimming in
Byte-Pair Encoding subword tokenization, a
tokenization postprocessing step that replaces
rare subwords with their component subwords.
The technique is available in popular tokeniza-
tion libraries but has not been subjected to rig-
orous scientific scrutiny. While the removal
of rare subwords is suggested as best practice
in model implementations, both as a means to
reduce model size and for improving model per-
formance through robustness, our experiments
indicate that, across a large space of hyperpa-
rameter settings, vocabulary trimming fails to
consistently improve model performance, and
is even prone to incurring heavy degradation.

1 Introduction

Subword tokenization is an important process in
modern neural language modeling, as it enables
models to represent any possible word over a
known alphabet while keeping the vocabulary size
small. One of the most common subword tok-
enization methods is Byte-Pair Encoding (BPE;
Gage, 1994; Sennrich et al., 2016), a greedy, sta-
tistical subword tokenization method. BPE builds
its vocabulary and tokenizes a corpus by iteratively
replacing the most frequently co-occurring token
pair with a single, merged token. An unfortunate
side-effect of this process is the existence of “inter-
mediate” subwords—subwords that appear during
the process of forming longer subwords, but rarely
appear as output tokens in the final sequence.

Vocabulary trimming is a tokenization post-
processing step where subwords that appear fewer
than a prescribed number of times in a given corpus
are replaced with their component subwords, with
the intent of removing rare tokens for which the
model cannot learn a robust representation (Sen-
nrich et al., 2017; Sennrich and Zhang, 2019).

Let B = (VB,MB) be a BPE tokenizer trained
on corpus C with character vocabulary Σ. VB ⊂ Σ+

is the subword vocabulary and MB ⊂ VB × VB is
a set of merges such that ∀v ∈ VB \ Σ, there exists
a unique (l, r) ∈ MB such that lr = v. And, let
cv be the number of times a token v appears in the
tokenized corpus and T ≥ 0 be a threshold. Then,
XB,T = {v ∈ VB \ Σ | cv ≤ T} is the set of non-
atomic subword tokens that appear at most T times
in the tokenized corpus and decXB,T : VB → V+

B is
a recursive decomposition function:

dec
XB,T

(v) =

{
v if v /∈ XB,T
decXB,T(lv) ◦ decXB,T(rv) otherwise.

Given a B-tokenized sequence t1, t2, . . . , tn, a
trimmed BPE tokenizer produces a new sequence
decXB,T(t1), decXB,T(t2), . . . ,decXB,T(tn).

We perform a comprehensive study to under-
stand the actual effect of vocabulary trimming on
the performance of machine translation systems. In
general, we find that vocabulary trimming has no
consistent positive effect on model quality, and in
many cases can substantially degrade it.
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Vocabulary
(Bs,Bt)

Thresholds
(Ts,Tt)

BLEU COMET
Effective

Vocabulary
(B̂s, B̂t)

Sequence
Length

(6k, 6k)

Baseline 34.05 79.52 (6.1k, 6.0k) 23.30/22.12
(100, 100) −0.28 +0.06 (5.3k, 4.2k) +1.4%/+4.2%
(100, 150) −0.66 −0.90 (5.3k, 2.9k) +1.4%/+10.6%
(100, 200) −0.41 −0.45 (5.3k, 2.3k) +1.4%/+15.6%
(150, 100) −0.27 −0.96 (3.7k, 4.2k) +7.5%/+4.2%
(150, 150) −0.28 +0.03 (3.7k, 2.9k) +7.5%/+10.6%
(150, 200) −0.22 +0.11 (3.7k, 2.3k) +7.5%/+15.6%
(200, 100) −0.22 −0.02 (2.9k, 4.2k) +13.1%/+4.2%
(200, 150) −0.12 −0.04 (2.9k, 2.9k) +13.1%/+10.6%
(200, 200) −0.30 −0.05 (2.9k, 2.3k) +13.1%/+15.6%

(8k, 8k)

Baseline 33.63 79.26 (8.0k, 8.0k) 22.47/21.51
(100, 100) +0.16 +0.54 (4.8k, 3.7k) +7.3%/+9.4%
(100, 150) −0.02 +0.38 (4.8k, 2.6k) +7.3%/+16.7%
(100, 200) +0.32 +0.35 (4.8k, 2.1k) +7.3%/+22.0%
(150, 100) +0.24 +0.39 (3.3k, 3.7k) +14.7%/+9.4%
(150, 150) −0.01 +0.20 (3.3k, 2.6k) +14.7%/+16.7%
(150, 200) +0.05 +0.11 (3.3k, 2.1k) +14.7%/+22.0%
(200, 100) +0.27 +0.31 (2.6k, 3.7k) +21.3%/+9.4%
(200, 150) −0.03 +0.13 (2.6k, 2.6k) +21.3%/+16.7%
(200, 200) +0.18 +0.30 (2.6k, 2.1k) +21.3%/+22.0%

(10k, 10k)

Baseline 33.56 79.20 (10.0k, 9.9k) 21.93/21.12
(100, 100) +0.37 +0.25 (4.4k, 3.4k) +12.3%/+13.2%
(100, 150) +0.30 +0.25 (4.4k, 2.4k) +12.3%/+20.9%
(100, 200) +0.14 +0.24 (4.4k, 1.9k) +12.3%/+26.6%
(150, 100) +0.14 +0.26 (3.1k, 3.4k) +20.1%/+13.2%
(150, 150) +0.23 +0.22 (3.1k, 2.4k) +20.1%/+20.9%
(150, 200) +0.24 +0.48 (3.1k, 1.9k) +20.1%/+26.6%
(200, 100) +0.31 +0.22 (2.3k, 3.4k) +27.3%/+13.2%
(200, 150) +0.18 +0.47 (2.3k, 2.4k) +27.3%/+20.9%
(200, 200) +0.18 +0.45 (2.3k, 1.9k) +27.3%/+26.6%

Vocabulary
Bj

Thresholds
(Ts,Tt)

BLEU COMET
Effective

Vocabulary
(B̂s, B̂t)

Sequence
Length

7k

Baseline 34.02 79.52 (6.5k, 4.9k) 24.11/23.25
(100, 100) −0.02 +0.14 (4.2k, 3.7k) +1.8%/+1.1%
(100, 150) −0.15 −0.04 (4.2k, 3.3k) +1.8%/+2.6%
(100, 200) −0.54 −0.48 (4.2k, 2.7k) +1.8%/+6.1%
(150, 100) −0.26 −0.07 (3.8k, 3.7k) +3.2%/+1.1%
(150, 150) −0.19 +0.01 (3.8k, 3.3k) +3.2%/+2.6%
(150, 200) −0.45 −0.48 (3.8k, 2.7k) +3.2%/+6.1%
(200, 100) −0.09 +0.08 (3.1k, 3.7k) +6.9%/+1.1%
(200, 150) −0.09 +0.19 (3.1k, 3.3k) +6.9%/+2.6%
(200, 200) = +0.21 (3.1k, 2.7k) +6.9%/+6.1%

10k

Baseline 34.02 79.46 (8.8k, 6.6k) 22.99/22.25
(100, 100) +0.15 +0.15 (5.1k, 4.3k) +3.4%/+3.1%
(100, 150) −0.10 +0.10 (5.1k, 3.0k) +3.4%/+9.5%
(100, 200) −0.17 +0.19 (5.1k, 2.3k) +3.4%/+14.5%
(150, 100) −0.17 +0.11 (3.6k, 4.3k) +10.2%/+3.1%
(150, 150) −0.20 +0.24 (3.6k, 3.0k) +10.2%/+9.5%
(150, 200) −0.23 +0.10 (3.6k, 2.3k) +10.2%/+14.5%
(200, 100) −0.12 +0.07 (2.8k, 4.3k) +15.9%/+3.1%
(200, 150) −0.11 +0.14 (2.8k, 3.0k) +15.9%/+9.5%
(200, 200) −0.17 +0.04 (2.8k, 2.3k) +15.9%/+14.5%

14k

Baseline 33.94 79.47 (12.0k, 8.9k) 22.09/21.56
(100, 100) −0.39 −0.37 (4.6k, 3.8k) +10.4%/+8.9%
(100, 150) −0.20 −0.14 (4.6k, 2.6k) +10.4%/+16.0%
(100, 200) −0.30 −0.23 (4.6k, 2.0k) +10.4%/+21.7%
(150, 100) −0.13 +0.03 (3.1k, 3.8k) +18.7%/+8.9%
(150, 150) −0.44 −0.23 (3.1k, 2.6k) +18.7%/+16.0%
(150, 200) −0.22 +0.03 (3.1k, 2.0k) +18.7%/+21.7%
(200, 100) −0.21 +0.03 (2.4k, 3.8k) +25.5%/+8.9%
(200, 150) −0.41 −0.20 (2.4k, 2.6k) +25.5%/+16.0%
(200, 200) −0.26 +0.03 (2.4k, 2.0k) +25.5%/+21.7%

Table 1: A subset of experimental results for the split- and joint-vocabulary settings. For each BPE baseline and
its trimmed counterparts, we report BLEU (Papineni et al., 2002) and COMET (Rei et al., 2020) (relative to the
baseline), the effective vocabulary size (B̂s, B̂t), which is the size of the resulting vocabularies after trimming with
the given thresholds, and sequence length, the average tokens-per-sentence in the tokenized test corpora (and the
relative percent increase for the trimmed models). For both BLEU and COMET, the worst performing model in
each setting is double underlined and the best performing model is underlined.

2 Experiments

To determine the effect of vocabulary trimming,
we use the IWSLT14 German→English translation
task (Cettolo et al., 2014). For all experiments, we
use the same underlying transformer-iwslt
architecture from fairseq (Ott et al., 2019), and
only vary the embedding and decoding layers of
the model by changing the tokenizer’s source and
target vocabulary sizes, Bs and Bt (or Bj for the
joint-vocabulary setting), and source and target
thresholds, Ts and Tt, respectively. For the joint-
vocabulary setting, a single tokenizer was formed
by setting a vocabulary size and training the tok-
enizer on the concatenation of the source and target
corpora. This baseline tokenizer was used to form
separate source and target trimmed tokenizers.

As seen in Table 1, which contains a subset of
our experimental results, while subword trimming
reduces parameter count (by shrinking the embed-
ding and decoding layers), it does not consistently
improve performance and it causes an increase in
average tokenized sequence length. In a sweep test,
we found (6k, 6k) to be the best performing split-
vocabulary baseline and 7k and 10k to be the best
performing joint-vocabulary baselines. For each
of these configurations, trimming nearly always

decreases BLEU, sometimes dramatically.
On the other hand, (10k, 10k) was found to

be the worst performing split-vocabulary baseline.
Trimming this baseline increased BLEU, but not
enough to match the better performing baseline
models. For another baseline, (8k, 8k), trimming
did not consistently improve or degrade BLEU.

COMET shows a slight positive trend in most
settings. In all but one case, trimming with a
threshold of (100, 100) lead to an improvement
in over the baseline. Curiously, in the 10k joint-
vocabulary setting, the trimmed models all have
higher COMET scores than the baseline, while all
but one have lower BLEU scores.

We conclude that vocabulary trimming should
be done with caution, as it does not consistently
improve performance, can heavily degrade perfor-
mance, and comes at the cost of longer sequence
lengths. This conclusion is based on the results
from Table 1, as well as our much more expansive
set of experimental results not listed here, which
include many more ablation studies and a replica-
tion on the much larger Europarl English→French
dataset (Koehn, 2005).

The complete results and code to reproduce them
will be made public in our forthcoming full article.
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Abstract

Few-shot learning aims to learn representations
that can tackle novel tasks given a small number
of examples. Recent studies show that cross-
modal learning can improve representations for
few-shot classification. More specifically, lan-
guage is a rich modality that can be used to
guide visual learning. In this work, we ex-
periment with a multi-modal architecture for
few-shot learning that consists of three compo-
nents: a classifier, an auxiliary network, and a
bridge network. While the classifier performs
the main classification task, the auxiliary net-
work learns to predict language representations
from the same input, and the bridge network
transforms high-level features of the auxiliary
network into modulation parameters for lay-
ers of the few-shot classifier using conditional
batch normalization. The bridge should encour-
age a form of lightweight semantic alignment
between language and vision which could be
useful for the classifier. However, after eval-
uating the proposed approach on two popular
few-shot classification benchmarks we find that
a) the improvements do not reproduce across
benchmarks, and b) when they do, the improve-
ments are due to the additional compute and pa-
rameters introduced by the bridge network. We
contribute insights and recommendations for
future work in multi-modal meta-learning, es-
pecially when using language representations.

1 Introduction

It is widely recognized that humans can learn new
concepts based on very little supervision, i.e. with
few examples (or “shots”), and generalize these
concepts to unseen data (Lake et al., 2011). Re-
cent advances in deep learning on the other hand
have mostly relied on datasets with large amounts
of labeled examples, primarily due to overfitting

*Equal contribution.
†Work done while interning at Mila.

Figure 1: Architectural overview of the method we ex-
perimented with. It consists of three components: a
classifier, an auxiliary network, and a bridge network.
The few-shot classifier and auxiliary network receive
the same input example. The bridge network transforms
high-level features of the auxiliary network into mod-
ulation parameters for layers of the few-shot classifier
through conditional batch normalization.

concerns in low data regimes. Although the de-
velopment of better data augmentation and regu-
larization techniques can alleviate these concerns,
many researchers now assume that future break-
throughs in low data regimes will emerge from
either transferring generic models pretrained on
very large datasets with unsupervised objectives
(Devlin et al., 2019; Brown et al., 2020), or from
meta-learning, i.e. “learning-to-learn”. Here, we
study the problem of learning-to-learn in few shots
by using an embedding space in which we perform
classification using a similarity metric. In this meta-
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learning setting, a model is trained on a handful of
labeled examples at a time under the assumption
that it will learn how to correctly project examples
of different classes and generalize this knowledge
to unseen labels at test time.

Although this setting is often used to illustrate
the remaining gap between human capabilities and
machine learning, we could argue that the lack of
context poses a serious disadvantage to machine
learning models. Indeed, these models typically
work based on a single-pass analysis while humans
can first look at and understand contextual informa-
tion before trying to interpret new classes (Swing-
ley, 2010). It has been observed many times in the
past that training models with contextual informa-
tion such as auxiliary modalities can help build a
more robust task-independent feature space (Ruder,
2017; Elliott et al., 2016; Radford et al., 2021).
Auxiliary tasks however often require large support
datasets with good label distributions and a deli-
cate adjustment of network capacity to really help
improve performance on the main task (Alonso
and Plank, 2016). Multi-modal information can be
difficult to process using a simple backbone archi-
tecture due to the varied structure and high-level
nature of some typically used modalities, although
recent Transformer-based works have shown it’s
possible, albeit costly (Jaegle et al., 2021). We re-
fer to the Appendix A for a more comprehensive
study of the related work.

We propose studying whether multitask learning
with multi-modal objectives could be beneficial for
few-shot learning even with commonly-used low-
capacity feature extraction backbones, and with-
out weight sharing between the main and auxiliary
tasks. We study a way to condition multiple layers
of our main feature extractor using an embedding
produced by an entirely separate auxiliary network
working on the same input data. The conditioning
is applied to normalization layer parameters using
a bridge network and it helps specialize the repre-
sentations produced by the main feature extractor
without affecting its architecture. Our idea here is
to mimic the way humans can leverage context to
help solve the recognition problem by combining
low-level and high-level cues. In other words, we
allow the main feature extractor to decide ahead of
time what it should focus on based on task-level
contextual knowledge. The proposed model ar-
chitecture is illustrated in Figure 1. In contrast
with previous works that also studied feature ex-
traction conditioning and multi-modal learning, our

approach is simple and can be applied to any fea-
ture extractor with batch normalization layers. The
bridged-parallel-network design we propose also
simplifies the feature alignment process since both
branches process the same input data. Finally, the
need for only a single input modality at test time
leads to a more practical design for downstream
applications.

However, after evaluating the proposed approach
on two popular few-shot classification benchmarks
we find that a) the improvements do not reproduce
across benchmarks, and b) when they do, the im-
provements are due to the additional compute and
parameters introduced by the bridge network. We
contribute insights and recommendations for fu-
ture work in multi-modal meta-learning, especially
when using language representations.

2 Proposed method

In this section, we formulate conditional batch nor-
malization in the context of few-shot learning. We
propose a model, SimpAux, with two feature ex-
tractors that predict high-level (language-based)
attributes of images as well as their semantic class.
The embeddings of the attribute prediction pipeline
(or “auxiliary” pipeline) are used to condition the
batch normalization layers of the main visual fea-
ture extractor, which is based on a ProtoNet archi-
tecture (Snell et al., 2017). More specifically, we
use ProtoNet++ improvement introduced in Ore-
shkin et al. (2018), with a Resnet-12 (He et al.,
2016), which is a common choice in few-shot learn-
ing settings (e.g. Oreshkin et al., 2018; Jiang et al.,
2019). The conditioning happens through a bridge
connection composed of dense layers that translates
the auxiliary embedding into batch normalization
statistics. These three components are shown in
Figure 1 and are described in the following subsec-
tions. Note that we use the same input modality
(imagery) for the auxiliary and main feature extrac-
tors. However, our method is not limited to this
modality: it was primarily chosen for compatibil-
ity with existing datasets. We refer the reader to
Appendix B for a review of the fundamental ideas
required to better understand our proposed few-shot
learning solution from a technical standpoint.

2.1 Auxiliary visual processing

The auxiliary network in our proposed approach
is agnostic of the main network’s architecture and
task. To simplify comparisons with a wider num-
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ber of few-shot learning methods and to improve
practicality, we formulate this network as a sec-
ond visual processing pipeline that converts the
same images fed to the main network into different
embeddings. The multi-modal nature of our over-
all design comes from the supervised task used to
learn the auxiliary network’s embeddings: its goal
is to predict language-based information from the
images. More specifically, we experimented with
predicting a) Attributes, available in datasets such
as CUB-200-2011 (Wah et al., 2011), with cross-
entropy, soft F1, or multi-label soft margin loss
functions, and b) caption embeddings, with cosine
similarity loss on the sentence embeddings emitted
by SentenceBERT (Reimers and Gurevych, 2019).
We ended up using multi-label soft margin loss as
it was simpler and the other approaches did not
provide significant improvements. However, for
the datasets for which attributes were not available,
we resorted to the sentence embeddings approach.
As for the auxiliary model architecture itself, we
also use a ResNet-12 as we do for the classifier.

2.2 Conditioning bridge

The role of the conditioning bridge is to transform
the embeddings generated by the auxiliary network
into an array of γ and β parameters that can be
used in the various batch normalization layers of
the main network. In contrast with late representa-
tion fusion strategies, e.g. the one of De Vries et al.
(2017), this strategy allows for the early modula-
tion of the main feature extraction pipeline with the
high-level semantic information extracted from the
auxiliary pipeline. Our hypothesis is that this infor-
mation provides adequate context to dynamically
adapt the main feature extractor while keeping its
original architecture intact (and thus simple).

Since the distribution of the input representation
varies at each layer of that network, the normal-
ization parameters also need to be unique for each
layer. We define our bridge as a multilayer percep-
tron (MLP) with a fixed intermediate representation
size and an output size that corresponds to twice
the total size of batch normalization layers in the
main network (to account for both γ and β).

3 Experimental results

We evaluate SimpAux against the baseline,
ProtoNet++, (the improved version of Pro-
toNets suggested in Oreshkin et al. (2018))
on two popular few-shot learning benchmarks,

CUB-200-2011 (Wah et al., 2011) and mini-
ImageNet (Vinyals et al., 2016) in 5-shot learning
settings, using attributes for CUB and embeddings
on synthetic captions for Mini-Imagenet for the
auxiliary visual processing network. We refer to
Appendix C for additional implementation details.

Table 1 shows the results of ProtoNet++ and
SimpAux on CUB 5-shot. Our model clearly out-
performs the baseline by a margin of around 1.5
points in accuracy.

Model Accuracy (%)
ProtoNet++ 88.5± 0.5
SimpAux 90.0± 0.7

Table 1: Accuracy on CUB. Each model was trained
with five random seeds. Reported is the mean accuracy
with 95% confidence intervals on 600 randomly gener-
ated test episodes.

These positive results on CUB showed the
promise of the proposed approach. However, in
the case of Mini-Imagenet 5-shot, in Table 2 we
can see the results of ProtoNet++ and SimpAux on
Mini-Imagenet. In this case, the baseline slightly
outperforms the proposed method, but recall that
here we are using synthetic captions.

Model Accuracy (%)
ProtoNet++ 75.4± 0.4
SimpAux 74.9± 0.1

Table 2: Accuracy on mini-ImageNet. Each model
was trained with five random seeds. Reported is the
mean accuracy with 95% confidence intervals on 600
randomly generated test episodes.

Finally, to test the hypothesis that the reason why
our approach outperforms the baseline in CUB but
not in ImageNet is the quality of the captions, we
design an ablation study. We introduce a varia-
tion of SimpAux in which we use the exact same
bridge network, but without input from the auxil-
iary network, to see whether the improvements are
actually coming from the captions information or
the additional compute and parameters from the
bridge network. We find that there is no signifi-
cant improvement over this variant when using the
captions, suggesting that the improvement comes
from the additional compute and the parameters
provided by the bridge network.
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4 Discussion and recommendations

From the experimental results, we conclude that
a) the improvements provided by SimpAux do not
reproduce across benchmarks, and b) when these
improvements do indeed take place, they seem to
be due to the additional compute and parameters
provided by the bridge network.We hypothesize
three non-mutually exclusive reasons why image
captioning as auxiliary task modulation via con-
ditional batch normalization did not consistently
improve the results: 1) a lack of quality of the im-
age captions, attributes, or caption embeddings, 2)
the limited impact of the conditional batch normal-
ization approach, and 3) the difficulty of learning
the auxiliary task. While improving the quality of
captions, attributes and caption embeddings with
better annotations or more powerful models could
alleviate 1), the following recommendations and
observations look at other aspects involved in this
work.

Caution when evaluating systems with auxiliary
multi-modal information. Training models with
contextual information such as auxiliary modali-
ties have been shown to build a more robust task-
independent feature space (Ruder, 2017; Elliott
et al., 2016; Radford et al., 2021). However, spu-
rious improvements with multi-modal data are not
new. For instance, Elliott (2018) empirically raises
doubts about whether existing multi-modal trans-
lation systems, combining visual and textual data,
actually make use of the visual information. Simi-
larly, we have seen the other way around: it is per-
fectly possible to outperform a unimodal baseline
with a multi-modal one without actually making
use of the textual information; SimpAux’s improve-
ments in CUB were due to the additional parame-
ters introduced by the bridge network. Thus, we
recommend extra care when concluding that multi-
modal information helps in a certain task, which is
definitely possible but could be due to other factors.

Importance of implementation details. We ex-
perimented with different activation functions, in-
cluding ReLU (Agarap, 2018), SELU (Klambauer
et al., 2017), and SiLU (Hendrycks and Gimpel,
2016; Ramachandran et al., 2017). We found
that SiLU consistently yielded slightly better re-
sults across benchmarks and settings. Ensuring
that weight decay was not applied to bias parame-
ters, which is not the default behavior in PyTorch
(Paszke et al., 2019), also turned out to be key to re-

producing few-shot works originally implemented
in Tensorflow (Abadi et al., 2015).

Hyperparameter search. In the hyperparameter
search, we generally observed consistent results.
However, we also observed a few outliers, which
can be particularly extreme under certain settings
in few-shot learning, and if used as empirical evi-
dence, could totally change the conclusions. Thus,
we reiterate the need for reporting averages and
variances instead of the results of a single run, and
also recommend caution at extracting certain con-
clusions when performing large-scale hyperparam-
eter searches, as noted by Picard (2021).

Advantages of the proposed architecture.
Our network architecture decouples task-specific
branches: its bridge acts as a gate that selects rele-
vant hints from the auxiliary network to influence
the classification network. It is simpler than previ-
ous works that also studied feature extraction condi-
tioning and multi-modal learning, and by design it
requires a single input modality at test time, which
simplifies practical deployments. SimpAux’s ar-
chitectural considerations are orthogonal to other
few-shot learning research lines, and could be com-
bined with them. Thus, we believe that, despite
the limited success in the meta-learning setting,
these architectural advantages could be a source of
inspiration for future work.

Language-informed representations and few-
shot learning. Without episodic learning, Rad-
ford et al. (2021) showed that language-informed
visual representations can be successfully learned
with large-scale supervised contrastive pretraining.
Their approach, CLIP, obtains high-performance
at zero-shot classification. Leveraging their pre-
trained encoders could be interesting in the context
of bootstrapping episodic learning with auxiliary
tasks. It would however be difficult to guarantee
that the classes used in few-shot settings have not
been observed by CLIP during pretraining.

5 Conclusion

In this work, we have studied a new multi-modal
architecture for few-shot learning consisting of an
image classifier, an auxiliary network trained with
image captions, and a modulating network based
on conditional batch normalization to connect the
two. While initially promising, we have observed
the limits of this approach and how these limits
could inform future research.
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A Related Work

Network conditioning. Normalization layers have
been used many times in the past as a means to
influence the behavior of deep feature extractors.
For example, early works in arbitrary style transfer
studied how modulating instance normalization pa-
rameters could align representations across styles
that are not already known at run time (Huang and
Belongie, 2017; Ghiasi et al., 2017). The flexibil-
ity gained by this modulation strategy has been
adopted to tackle many other problems where fea-
ture extractors must dynamically change their be-
havior at run-time. For example, De Vries et al.
(2017) and Perez et al. (2017) use conditional nor-
malization layers to manipulate feature extractors

in a selective manner for visual question answer-
ing and reasoning tasks. In the few-shot learning
literature, Oreshkin et al. (2018) apply a form of
normalization conditioning for task-dynamic fea-
ture extraction. In their case, instances are first
encoded with an “unconditioned” feature extractor,
and the resulting embeddings are used to condition
the same feature extractor in a subsequent pass. In
contrast, we base our conditioning on auxiliary la-
bels and formulate a single-pass inference process.
We also do not impose any constraints on the archi-
tecture of the main or auxiliary networks, meaning
one can be much smaller than the other if required
by the limited size of the dataset.

Note that there are also alternative conditioning
strategies for few-shot learning paradigms that do
not involve normalization layers. For example, em-
beddings can be directly modulated by a second
network stage that analyzes the contextual infor-
mation from the task (Ye et al., 2020; Qiao et al.,
2019). Popular feature extractor architectures can
also be slightly modified by adding conditionally
shifted neurons to adapt representations using con-
text at prediction time (Munkhdalai et al., 2018).
Alternatively, the entire parameter set of various
convolutional layers inside the feature extractor
can be inferred at prediction time using a parallel
network (Bertinetto et al., 2016, 2018; Zhao et al.,
2018). A recent approach has also been proposed
by Chen et al. (2022) to adapt large-scale multi-
modal transformer-based backbones. The down-
side to these solutions is the dependency on large
networks that must learn complex modulation oper-
ations from the task context, or the use of a memory
bank on which an attention mechanism can oper-
ate. In contrast, normalization conditioning is a
more lightweight approach that is easier to learn in
small data regimes due to the reduced complexity
of the modulation factors (i.e. the normalization
statistics).

Recent trends in few-shot learning. There have
been far too many strategies proposed to tackle few-
shot learning for us to inventory them here. For a
survey and a modern taxonomy, we refer the reader
to the work of Wang et al. (2020). Instead, we note
that many researchers over the years have high-
lighted the lack of a universal evaluation methodol-
ogy for these methods. Recent independent efforts
have shown that many “state-of-the-art” solutions
are actually quite fragile and can be outperformed
by simple baselines when evaluated and compared
properly (Chen et al., 2019; Dhillon et al., 2019;
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Tian et al., 2020). All of these works found that
simple CNN backbones trained using a cross en-
tropy loss and then optionally fine-tuned on test
time queries can deliver competitive performance
with respect to recent models. Transductive learn-
ing using test time queries in particular has been
recently re-explored as an effective solution for
few-shot learning (Dhillon et al., 2019; Ziko et al.,
2020). Such findings highlight that more research
effort should be spent on model-agnostic robust-
ness improvements and less on the introduction or
tuning of new model architectures as well as their
training regimes. Our work falls in line with this
idea while also promoting the use of multi-modal
labels for improved few-shot learning.

As for multi-modal few-shot learning itself: it is
not a new approach to the problem, but it is also not
a popular one, as typical benchmarks only focus on
using only imagery as input. Nonetheless, multi-
ple strategies have been proposed to help deal with
data scarcity in few-shot learning. For example,
Pahde et al. (2019) feed image captions to a gen-
erative model during training to obtain additional
images of the target classes. Their method however
relies on several pre-trained and notably hard-to-
train model components. Xing et al. (2019) and
Schwartz et al. (2019) also leverage caption data
but instead combine visual and semantic represen-
tations to improve class discrimination in metric
space. In contrast to our work, they rely on paral-
lel feature extraction pipelines that are combined
in a “late fusion” fashion, whereas we propose a
way to modulate the entirety of any visual pipeline
architecture with semantic information. Vuorio
et al. (2019) applies a similar modulation idea to
the model-agnostic, meta-learning (MAML) frame-
work of Finn et al. (2017). In their case, they rely
on the modulation layers proposed by Perez et al.
(2017) to condition their main task network. Tseng
et al. (2020) follow the same strategy to deal with
domain generalization issues in few-shot learning.
In comparison, our proposed auxiliary network is
trained in a supervised cross-modal setting where
its embeddings are used to modulate our main net-
work. Also, since we apply modulation through
batch normalization, our approach can handle data
samples that do not possess auxiliary labels or cap-
tions.

B Background

Here, we review some of the fundamental ideas re-
quired to understand our proposed few-shot learn-
ing solution.

B.1 Episodic few-shot learning and ProtoNets
In episodic few-shot learning, an “episode” is repre-
sented as an N -way, K-shot classification problem
where N is the number of examples per class and
K the number of unique class labels. During train-
ing, the data in each episode is provided as a sup-
port set S = {(x1,1,y1), ..., (xN,K ,yN )} where
xi,j ∈ RD is the i-th instance of the j-th class, and
yj ∈ {0, 1}K is its corresponding one-hot labeling
vector. The goal in each episode is to optimize a
function f that classifies new instances provided
through a “query” set Q which contains instances
of the same classes as S. This task is difficult be-
cause N is typically very small (e.g. 1 to 10), the
classes change every episode, and the actual test set
used to evaluate a model does not contain classes
that were seen in support sets during training.

We build our solution on top of Prototypical Net-
works (ProtoNets; Snell et al., 2017), as it is now
accepted as a good yet simple baseline. Accord-
ing to (Chen et al., 2019), it is more robust than
other recent few-shot learning approaches and it
generalizes well across various dataset domains.
ProtoNets tackle few-shot learning by learning an
embedding space where each class is represented
by a cluster, or prototype. A prototype ck ∈ RM

for a class k is simply defined as the mean of the
instance embeddings that belong to k, that is:

ck =
1

Sk

∑

(xi,j ,yi)∈Sk

f(xi,j), (1)

where Sk is the support subset of all instances that
belong to class k, and f is a learned function. Next,
the probability of assigning a new instance x to a
class k is computed via the softmax of the distance
to all class prototypes:

p(y = k|x) = exp−d(f(x), ck)∑
k′ exp−d(f(x), ck′)

, (2)

for any given distance function d : RM × RM 7→
[0,+∞).

B.2 Batch normalization and conditioning
Batch normalization was proposed by (Ioffe and
Szegedy, 2015) as a solution to speed up training

58



by reducing the problem of coordinating weight
updates across the different layers of a model. In
short, batch normalization performs a reparame-
terization on the intermediate representations of a
model so that assumptions regarding their spread
and distribution in subsequent layers will be less
affected by stochastic updates. More specifically,
given a batch of n feature maps B = {z1, ...,zn}
with C channels each, batch normalization per-
forms channel-wise reparameterization using

BN(zl,c|B,γ,β) = γc ·
zl,c − µc

σ2
c + ϵ

+ βc, (3)

where γ and β are vectors of learned channel-wise
parameters, ϵ is a constant used for numerical sta-
bility, and µc and σ2

c are the mean and variation
values computed across batch and spatial dimen-
sions of B.

Many researchers now recognize that batch nor-
malization has beneficial side-effects on the land-
scape of the optimization problem (Goodfellow
et al., 2016; Santurkar et al., 2018). These benefits
have lead to the rapid adoption of this technique
across the majority of new and popular model ar-
chitectures. Consequently, the important role and
ubiquitous nature of batch normalization make it
an interesting target for the conditioning of models
using auxiliary data. This idea was first introduced
by De Vries et al. (2017): they inject visual con-
cepts from natural language in a visual processing
pipeline for VQA by manipulating batch normaliza-
tion parameters. These parameters are influenced
by the embeddings produced with a recurrent net-
work. One advantage of this approach is that it can
help learn how to dynamically specialize a model
at test time without drastically increasing its overall
number of learnable parameters. This advantage is
very interesting in the context of few-shot learning
where only small datasets prone to overfitting are
considered.

C Other implementation details

Our ProtoNet backbone is the improved version of
the original method (coined ProtoNet++) suggested
by Oreshkin et al. (2018) that includes residual
connections between convolution layers (Resnet-
12). We implement the models and data loaders
with PyTorch (Paszke et al., 2019) and Torchmeta
(Deleu et al., 2019), a meta-learning library. We
experimented with different activation functions,
and SiLU (Ramachandran et al., 2017) yielded the
best results.

In our experiments, we use the CUB-
200-2011 (Wah et al., 2011) and mini-
ImageNet (Vinyals et al., 2016) datasets.
For CUB, we use the split of Chen et al. (2019)
and also experiment with the captions collected
by Reed et al. (2016). For mini-ImageNet, we
use the setting proposed by Ravi and Larochelle
(2016), with synthetic captions generated using
an open-source implementation of a Transformer
(Vaswani et al., 2017) for image captioning.1

Our implementation is publicly available on
Github.2

1https://github.com/saahiluppal/catr
2https://github.com/jordiae/simpaux-release
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Abstract

While Transformer-based neural machine trans-
lation (NMT) is very effective in high-resource
settings, many languages lack the necessary
large parallel corpora to benefit from it. In the
context of low-resource (LR) MT between two
closely-related languages, a natural intuition
is to seek benefits from structural “shortcuts”,
such as copying subwords from the source to
the target, given that such language pairs often
share a considerable number of identical words,
cognates, and borrowings. We test Pointer-
Generator Networks for this purpose for six
language pairs over a variety of resource ranges,
and find weak improvements for most settings
(< 1 BLEU). However, analysis shows that
PGNs do not show greater improvements for
closely-related vs. more distant language pairs,
or for lower resource ranges, and that the mod-
els do not exhibit the expected usage of the
mechanism for shared subwords. Our discus-
sion of the reasons for this behaviour highlights
several general challenges for LR NMT, such
as modern tokenization strategies, noisy real-
world conditions, and linguistic complexities.
We call for better scrutiny of linguistically mo-
tivated improvements to NMT given the black-
box nature of Transformer models, as well as
for a focus on the above problems in the field.

1 Introduction and Motivation

While state-of-the-art (SOTA) Transformer mod-
els (Vaswani et al., 2017) for NMT work well for
high-resource language pairs, their performance
degrades in low-resource situations (Koehn and
Knowles, 2017; Sennrich and Zhang, 2019; Kim
et al., 2020; Haddow et al., 2022); this means
that most languages in the world cannot benefit
from mainstream advances and models (Joshi et al.,
2020). There is therefore a clear appeal to develop-
ing simple architectural mechanisms for these mod-
els that are targeted at yielding improvements in
data-scarce scenarios, while interfering minimally

Figure 1: Translation equivalents for Bhojpuri (top) and
Hindi (bottom), demonstrating subword overlap.

with mainstream preprocessing, tokenization, and
training pipelines.

In the context of a low-resource language (LRL),
we are often interested in translation to and from
a closely related HRL, which possibly has linguis-
tic genealogical, regional, and cultural ties with
the LRL,1 in order to make the abundant content
in HRLs available in related LRLs. We expect
that closely related languages share considerable
overlap at the subword level from cognates, bor-
rowings and shared vocabulary (see examples in
Figure 1). Given the absence of large parallel cor-
pora for our language pair, we aim to leverage this
shared knowledge across source and target, intu-
itively, to provide “easier” routes for our MT model
from source to target sentence.

Pointer Generator Networks (PGNs; See et al.
(2017)) are a mechanism which allow the model,
for every output token produced, to either copy
some token from the input (“point”) or “generate”
a token as per usual from the vocabulary. PGNs
have been used for a variety of problems, described
in Section 2, often targeted at repeated spans of text
in the input and output; however, as we far as we
know, this is the first work to study its applicability
to LR NMT. In this case, we hypothesise that the
pointing mechanism will show advantages for rare
shared subwords, for which the best strategy may
be to copy them to the output.

We introduce a PGN mechanism into a
Transformer-based NMT architecture, and test

1This is the case, for example, for several languages of
the Arabic continuum, all closely related to relatively high-
resource Modern Standard Arabic, and languages of the Turkic
and Indic language continua.
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its performance for 6 language pairs over 4
low-resource training ranges. We work with
Hindi-Bhojpuri (hi-bh), Spanish-Catalan (es-ca),
and French-Occitan (fr-oc), representing closely-
related pairs, Hindi-Marathi (hi-mr), a relatively
more distant pair,2 and Spanish-English (es-en) and
French-German (fr-de), representing further distant
pairs. We expect that PGN will help most for (1)
lower-resource scenarios (2) more closely-related
language pairs (3) sentence pairs with higher sub-
word overlap. While PGN shows improvements
in certain settings, our comparative analysis of the
benefits of PGNs across the three dimensions above
shows clear lack of evidence for the these hypothe-
ses. Further, our visualizations of the PGN mech-
anism also indicate that observed benefits do not
come from intended sources. We discuss various
factors that contribute to this failure, highlighting
fundamental challenges for LR NMT, such as noisy
datasets, mainstream tokenization practices best
suited for high-resource scenarios, as well as lin-
guistic and orthographic complexities that may ob-
fuscate underlying source-target similarities.3

2 Related Work

Pointer Networks were introduced to solve prob-
lems that involved permuting the input, such as
the Traveling Salesman Problem and the complex
hull problem (Vinyals et al., 2015). Their use in
NLP has been largely been for monolingual sum-
marization, where the target may naturally contain
identical spans from the source. Cheng and Lap-
ata (2016) present a complex hierarchical LSTM-
based model for summarization, which directly
extracts sentences from the text and words from
sentences. Gulcehre et al. (2016) use pointer net-
works in RNN-based sequence-to-sequence mod-
els for summarization and machine translation,
training their model explicitly to use the point-
ing mechanism for uncommon words. Gu et al.
(2016) and See et al. (2017) also incorporate vari-
ants of pointer-generator networks into RNN-based

2Hindi, Bhojpuri, and Marathi belong to the Indic branch
of the Indo-European family. Hindi and Bhojpuri further
belong to the Shaurasenic sub-branch and are closer lexi-
cally and grammatically to each other and other languages
on or close to the Hindi Belt such as Punjabi, Rajasthani,
Haryanvi, and Maithili, than Hindi is to Marathic languages
and dialects; this is supported by lexical and other studies of
cross-lingual similarity (Sengupta and Saha, 2015; Mundotiya
et al., 2021; Bafna et al., 2022). See Glottolog (https:
//glottolog.org/resource/languoid/id/cont1248) for
the phylogenetic tree.

3https://github.com/niyatibafna/pgns-for-lrmt

sequence-to-sequence learning for summarization.
Prabhu and Kann (2020) applied PGNs to the task
of grapheme-to-phoneme conversion via an explicit
source-target mapping. Zhang et al. (2021) pro-
posed a pointer-disambiguator-copier (PDC) sys-
tem for dictionary-enhanced high-resource NMT,
using source word translations as potential candi-
dates for the copying mechanism, with a disam-
biguator component to select appropriate senses.

Our work is the first to examine the applicability
of PGNs as facilitators in the low-resource MT
scenario, looking to exploit linguistic relationships
between the source and target in the absence of
external resources. We work with Transformer-
based NMT, and make no changes to standard BPE
tokenization schemes or training objectives (unlike
Gulcehre et al. (2016) and Zhang et al. (2021)).
This is so that our findings are most relevant in
today’s paradigm of generalized strategies for end-
to-end multilingual MT; our mechanism can be
easily plugged into and trained with any modern
(multilingual) MT pipeline.

3 Model

The PGN model provides two routes to the model
for predicting any target token: copying from the
source or generating from the vocabulary (Prabhu
and Kann, 2020). Copy and generate distributions
at step t are mixed using a learned parameter ptcopy,
to obtain the final probability distribution P t for
the target token.

ptcopy = σ(WT (ct ⊕ dt ⊕ st) + B)
Pt = ptcopy · Pt

c + (1− ptcopy) · Pt
g

Here, ct is the context vector, calculated as
ct = (at)T et, where at represents cross-attention
vector, and et contains the encoder hidden states.
dt and st contain the decoder’s final hidden states
and input respectively, ⊕ denotes concatenation,
and W and B are learned weights and a bias vec-
tor respectively. Pt

c and Pt
g represent the copy and

generate distributions (softmaxed logits) respec-
tively at step t. We use cross-attention weights
over source tokens for the copy logits, and standard
decoder outputs for generate logits.

4 Experiments

Datasets and languages We used the WikiMa-
trix (wm) corpus (Schwenk et al., 2019) for es-en,
es-ca, fr-de and fr-oc. For es-ca, we also re-
port results on synthetic Europarl (ep) parallel data
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(Koehn, 2005).4 For hi-mr, we used the CVIT-
PIB corpus (Philip et al., 2021), and for the low-
resource pair hi-bh, we use the NLLB corpus
(Schwenk et al., 2021; Team et al., 2022; Heffer-
nan et al., 2022). See Table 1 for dataset heuristics.
Note the higher per token overlap as expected for
our closely-related group as compared to the oth-
ers. The hi-bh sentences are extremely short, and
share fewer tokens than expected: in this case, this
reflects badly parallel data.5

Experimental Settings For all language pairs,
we performed experiments on dataset subsets of 5k,
15k, 30k, and 60k sentences and test sets of 5000
sentences, trained until convergence, with tokenizer
size 16000. We computed baseline results (NMT)
on standard encoder-decoder NMT. All PGN and
NMT models use 6 encoder and decoder layers, 4
attention heads, and a hidden size of 512.

5 Results and Discussion

Improvement patterns See results in Table 2.6

Our results are not directly comparable to those
in the literature due to differences mentioned in
Section 2 and the size of training bitext (2M in
(Gulcehre et al., 2016), 1M in Zhang et al. (2021)
vs. our maximum resource setting of 0.06M ).7 We
see weak improvements in a majority of settings;
however, counter to intuition, PGN does not show
a clear advantage for closely-related as compared
to more distant pairs, or for lower-resource settings.

Controlled test sets We test the motivating hy-
pothesis that PGN models is likely to benefit sen-
tence pairs with higher subword overlap. We rank
sentence pairs in our test set by percentage of
shared subwords in source and target, and construct
test subsets with low and high shared-subword den-
sity from the top and bottom 500 sentences respec-
tively. However, in Table 3, we see that in fact that
PGN performs slightly worse than NMT on both
extremes, indicating that observed benefits over the
entire test set do not come from subword overlap.

Usage of the copy mechanism We record val-
ues of pcopy to track the model’s usage of the copy

4The Europarl dataset was automatically translated into
Catalan; taken from https://github.com/Softcatala/
Europarl-catalan.

5See Appendix A for more details on datasets.
6We report spBLEU since our approach attempts to benefit

performance on shared subwords.
7For a rough idea: Zhang et al. (2021) report gains in MT

of 1.5− 2.5 BLEU.

mechanism. While pcopy values are relatively high8

for copied subwords, numerals, and proper nouns,
we often see that they they are also high for seem-
ingly random subwords.9 We also do not see a rela-
tionship between the pcopy value of a target token
and the entropy of the cross-attention distribution
for that token.

A reasonable intuition about PGN training gen-
eralization is that in the absence of any informa-
tion, the model will default to copying, since this
is likely to do better on average than guesses over
the entire vocabulary, and that eventually, it will
learn to generate language-specific subwords, mem-
orising the relevant strategy for given subwords in
encoder states (used to calculate pcopy as shown in
Section 3). However, our visualizations of cross-
attention and pcopy usage throughout training show
no evidence of this generalization strategy. It’s pos-
sible that since initial cross-attention distributions
are noisy, and most subwords are not direct copies,
the model is discouraged from copying early on;
it’s also possible that the model finds it easier or
trivial to encode copied source-target equivalents
via the “generate” mechanism and does not need
an explicit copier, given that it must additionally
learn which subwords should be copied. We dis-
cuss potential reasons for this below. In general, it
appears that the model uses the copy mechanism to
encode a task that is not easily interpretable, possi-
bly resulting in the observed small improvements
over some datasets.

Tokenization In theory, the copier would learn
best if the tokenizer behaved in a morphologically
principled manner.10 However, BPE tokenization
generally results in subword splits that may not
reflect shared stems in word equivalents (Ataman
and Federico, 2018).11

A natural idea here may be an investigation of
morphologically inspired tokenizers (Pan et al.,
2020; Ortega et al., 2020; Chen and Fazio, 2021).

8Note that it is difficult to comment on absolute values of
pcopy . The copying distribution is normalized over the sen-
tence length whereas generate distributions are normalized
over the vocabulary; even low values of pcopy will consider-
ably affect the mixed distribution.

9See Appendix C for visualizations of this behaviour.
Examples with counter-intuitively high values of pcopy:
quiero-vull (es-ca), behad-atishay (hi-mr).

10e.g. given khaya-khalla (ate) in Hindi and Marathi,
we ideally want kha ##ya and kha ##lla. This will allow
the common stem kha to be copied over, while the language
specific inflection subwords can be generated.

11e.g. our trained tokenizer contains both propuesto (es)
and proposat (ca) instead of sharing the subword prop.
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hi-mr hi-bh es-en es-ca (ep) es-ca (wm) fr-de fr-oc

Avg. common tokens per sent pair 2.51 1.29 2.81 6.77 7.17 1.76 5.06
Avg. common tokens per target token 0.12 0.16 0.13 0.26 0.29 0.10 0.22
Avg. source sentence length 28.54 6.34 23.43 26.86 25.38 19.10 24.09
Avg. target sentence length 20.82 7.98 20.77 26.26 24.64 16.93 23.43

Table 1: Statistics on commons source-target tokens in our datasets. wm: WikiMatrix, ep: Europarl.

5K 15K 30K 60K Avg. ∆

hi-mr NMT 3.4 7.4 11.9 16.3
PGN 3.4 7.9 12.6 18.4 +0.8

hi-bh NMT 5.6 6.1 9.7 15.8
PGN 4.0 8.3 11.4 12.7 -0.2

es-en NMT 9.8 30.4 38.3 41.7
PGN 9.4 30.0 38.5 42.2 0.0

es-ca(wm) NMT 35.4 50.9 54.3 56.4
PGN 34.7 51.2 54.1 57.1 0.0

es-ca(ep) NMT 62.6 70.6 73.2 73.6
PGN 62.5 71.6 74.0 74.2 +0.6

fr-de NMT 3.5 10.8 19.5 27.2
PGN 3.7 11.1 20.1 27.2 +0.3

fr-oc NMT 24.7 42.2 45.5 48.7
PGN 24.8 43.4 46.4 48.5 +0.5

Table 2: spBLEU across dataset sizes (#sents). Closely-related pairs are underlined. wm: WikiMatrix, ep: Europarl.

hi-mr hi-bh es-en es-ca fr-de fr-oc
Avg.
∆

L NMT 7.6 10.4 26.6 44.9 11.9 35.5
PGN 8.2 13.5 24.4 44.6 10.3 35.3 -0.7

H NMT 28.9 22.1 69.8 72.4 52.2 65.2
PGN 29.3 18.3 69.9 71.6 51.6 64.3 -1.0

Table 3: spBLEU scores on test sets with low (L) and
high (H) density of shared source-target subwords.

However, we generally see inconclusive, at best
marginal, benefits of such tokenizers over BPE
in modern neural MT (Macháček et al., 2018;
Domingo et al., 2019; Mielke et al., 2021), espe-
cially those relying on unsupervised morphological
segmentation, e.g., with Morfessor (Creutz and
Lagus, 2007) in the absence of morphological anal-
ysers. These ideas have not been incorporated into
mainstream tokenization strategies.

Recent work attempts to solve this general prob-
lem by looking at maximisation of shared subwords
in multilingual tokenizers (Chung et al., 2020;
Zheng et al., 2021; Liang et al., 2023); it’s pos-
sible that such strategies will dovetail well with
PGN mechanisms if widely adopted in the future.

Linguistic complexities While closely-related
language show high (subword) vocabulary overlap,
word equivalences may be obscured by sound
change and orthographic systems; if these changes
are word-internal, then even an ideal tokenizer
will see different stems/tokens in the source and

target.12 Further, we may see that a word that has
a cognate in its sister language is translated to a
non-cognate, due to semantic drift, or differences
in idiom or usage norms in the two languages,
e.g. kitaab-pustak (hi-mr), resulting in non-
identical subword equivalences. These phenomena
are often unpredictable and unsystematic; even if
not, they are not trivial to model into tokenization
or architectural strategies for MT.

See Appendix B for experiments with mi-
nor variants of our approach dealing with
pretrained encoder/decoder initialization, tokenizer
size, choice of attention head, and identical
source-target settings.

6 Challenges for LR NMT

Incorporating knowledge of linguistic relationships
among closely related data-imbalanced language
pairs offers a natural strategy for mitigating data
scarcity in mainstream NMT between regional lan-
guages, and it is crucial to understand the chal-
lenges in this realm. We show that while the PGN
mechanism offers an intuitive theoretical shortcut
for translation between closely related languages,
its performance in practice is limited, potentially
by the combined effect of noisy real-world datasets
containing non-literal translations, the behaviour of

12e.g. vishwas-biswas (hi-bh, sound change),
website-Webseite (en-de, orthographic system)
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standard tokenizers, as well as linguistic complexi-
ties beyond simplified ideas of shared vocabulary
and cognates. These are inevitable hurdles to any
project that attempts to use structural linguistic
knowledge to benefit NMT performance.

Further, we show that despite showing benefits
in certain settings over the entire test set, the PGN
mechanism does not perform as expected on tar-
get phenomena. The generalization mechanisms of
blackbox Transformer-models are not well under-
stood and may not be easily guided by linguistic
intuition: we underline the importance of verifying
that improvements are coming from the intended
places rather than good starts or extra parameters.

Finally, our analysis hints that PGN-like short-
cuts may not be worth offering in the first place:
“easy” equivalences, a natural target of linguistic
interventions, may not be the bottleneck for LR
NMT. Instead, it is more likely that the true bottle-
necks are handling precisely the above challenges,
i.e. non-systematic differences, one-off phenom-
ena, and real-world noise in low-resource condi-
tions.

7 Limitations

While we show that our particular flavour of NMT
incorporating PGNs does not provide fundamental
benefits for low-resource NMT, this is naturally
not to say that an improved variant of this idea
would not work better. There are several potential
ways forward arising from our discussion of the
reasons for the failure of our method in Section 5:
for example, using morphological segmentation for
tokenization to increase subword overlap, or using
priors for pcopy so that it is encouraged for shared
subwords. Previous work provides different kinds
of help to the copier: for example, (Gulcehre et al.,
2016) explicitly train the copier to copy unknown
words with a separate training objective. However,
as we mention in Section 1, our motivation lay in
designing a simple architectural mechanism that
can be easily integrated into mainstream (multilin-
gual) NMT pipelines to make them more capable
for low-resource MT, without requiring much ad-
ditional language-pair specific attention to training
paradigms or tools such as morphological analy-
sers and bilingual lexicons, which are in any case
of poor quality for low-resource languages. We
restrict our negative result to the scope set up by
this motivation.

Further, our results are limited to the 6 language

pairs that we experimented on. While we simu-
late identical low-resource conditions for all our
language pairs, we clearly see the difference in
absolute performances on hi-mr or hi-bh as com-
pared to the high-resource language pairs: the data
for the latter are simply of much better quality. This
demonstrates the need to experiment and present
further results on non-simulated truly low-resource
conditions, such as the hi-bh language pair stud-
ied here. Finally, this discussion is only relevant
to translation between closely-related languages
that share a script (although this is the predominant
case), allowing for lexical similarity to be reflected
by shared subwords.

8 Conclusion

In this work, we investigate the applicability of
Pointer-Generator Networks in NMT, hypothesiz-
ing that an explicit copy mechanism will pro-
vide benefits for low-resource translation between
closely related languages. We show that while
we do observe weak improvements, these are not
higher for closer-related languages, sentence pairs
with higher overlap, or lower resource ranges, con-
trary to intuition. Our discussion of potential rea-
sons for the failure of this approach highlights
several general challenges for low-resource NMT,
such as mainstream tokenization strategies, noisy
data, and non-systematic linguistic differences.
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A Notes on Datasets

The Hindi-Marathi WikiMatrix dataset (Schwenk
et al., 2021) has only 11k sentences so we use
CVIT-PIB (Philip et al., 2021) instead. The CVIT-
PIB corpus is automatically aligned using an itera-
tive process that depends on neural machine trans-
lation into a pivot language and filtering heuristics.
Eyeballing the data, we observe a considerable
number of non-parallel or even entirely unrelated
sentences simply containing some words in com-
mon - in general, this corpus is much more likely
to contain rough paraphrases as opposed to literal
translations.

For Hindi-Bhojpuri, NLLB seems to be the
only available parallel text data for now (Tiede-
mann, 2012); this corpus has also been automat-
ically crawled (Team et al., 2022). The Hindi-
Bhojpuri NLLB dataset contains extremely short
sentences as shown in Table 1; similarly to above,
we observe a high level of noise and non-parallel
data. Such datasets naturally do not provide the
most favourable training conditions for the PGN
models, which rely on literal translations contain-
ing shared subwords to teach the copier; however,
they are realistic real-word conditions for truly low-
resource languages, as we discuss in Section 6.

The WikiMatrix dataset (Schwenk et al., 2019),
which we use for Spanish-English, Spanish-
Catalan, French-German, and French-Occitan
is automatically aligned from Wikipedia content in
these languages.

The Spanish-Catalan synthetic Europarl bitext
is created by automatically translating the Europarl
dataset (Koehn, 2005) into Catalan using Apertium
(Forcada et al., 2011; Khanna et al., 2021). While
this data probably contains some noise due to MT
errors and translationese, it’s the most likely of all
our datasets to contain literal, linear translations,
and we include it as a testbed for this purpose. It
is a generally easier dataset - this is clearly visible
from spBLEU scores that our models achieve on it
in Table 2.

B Minor Variations

Pretrained encoder and decoder We tried using
a pretrained encoder and decoder at initialization
of our model and tested this for hi-mr and es-ca.
For the former, the encoder and decoder were ini-
tialized with Hindi BERT (Joshi, 2022), and for the
latter, we used Spanish BERT (Cañete et al., 2020).
These pre-trained models are language-specific in-

stances of BERT (Devlin et al., 2018). Note that
this means that we also used the pretrained tok-
enizers of these models, of sizes 52000 and 31002
for Hindi and Spanish respectively, that are only
trained on the high-resource source languages; this
leads to very poor tokenization in the target lan-
guage. In general, this set of models take longer
to converge due to their size, and show only mi-
nor differences in performance. Another related
idea is to finetune NLLB or another multilingual
MT model with an incorporated PGN; we did not
try this given the lack of encouraging results from
these experiments.

Single attention head We also tried using only
a single attention head to calculate pcopy for target
tokens, with the motivation that it was maybe better
to nudge a single head to encode information about
whether target token need to be copied, and leav-
ing other heads to generate, as opposed to asking
all heads to do both (which is the case when we
average over heads). However, these models give
almost identical results as in Table 2.

Smaller tokenizer We hypothesize that using a
smaller tokenizer size will force more splits per
token, increasing the chance that common stems
will be reflected in shared subwords. Accordingly,
we tried a tokenizer size of 8000 for hi-mr and
es-ca for the 15k and 60k settings; however, per-
formance degrades slightly (about −1 spBLEU on
average) for both NMT and PGN approaches with-
out affecting the relative trend.

This is not altogether surprising: reducing tok-
enizer size only increases the degree of splitting in
words of a certain (lower) frequency range, rather
than affecting the number of splits for all words
uniformly. More importantly, while these hyperpa-
rameters are important to tune, statistical frequency-
based tokenizers behave inherently differently from
morphologically-inspired tokenizers, as discussed
in Section 5, and it is not easy or perhaps possible
to achieve a good approximation of the latter by
playing with the hyperparameters of the former.

Identical source and target Finally, we also
trained a Hindi-Hindi model, to remove the effects
of noisy translations and non-ideal tokenization of
source and target token sequences as discussed in
Sections 4 and 5. In this setup, with 100% overlap,
the models achieve high test scores (74 spBLEU)
and converge to near-zero usage of the copy mecha-
nism. Clearly, the model still prefers to encode the
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identity relationship using a generate mechanism.
Note that this setup is fundamentally different

from our other scenarios - when all tokens are
copied, the model no longer needs the distinction
between two distinct processes (generating and
copying), and therefore does not really need to
learn how to make this decision. However, it is
still illustrative in demonstrating that model gener-
alization mechanisms, even for highly simplified
or trivial tasks, are often not intuitive or human-
interpretable.

C Visualizations

See Figures 2, 3, 4, and 5 for visualizations of the
PGN model’s cross-attention distributions and val-
ues of pcopy per target token on randomly chosen
source-target pairs using an early and late model
training checkpoint. We observe that the model
does use the copying mechanism as intended in
many places, for common subwords (udaar in
hi-mr, un in es-ca) as well as named entities
(Cour in fr-oc), common borrowings (computer
in hi-bh), numbers (1970 in fr-oc) and punctu-
ation. However, pcopy values are also relatively
high sometimes for other seemingly random target
tokens, e.g. canton-costat in fr-oc.

Note that the hi-bh source-target sentence pairs
are not in fact translations of each other and ex-
emplify the noise we discuss in Section 4 and Ap-
pendix A. The cross-attention distributions for the
es-ca and fr-oc models are in general much better
defined and able to attend to appropriate tokens (in
these example visualizations as well as others that
we looked at); this is a consequence of the better
quality of the data and models in these languages.
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(a) Epoch 10

(b) Epoch 30

Figure 2: Model’s cross-attention distributions and pcopy values for two sentence pairs for es-ca(ep), 60k sentences
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(a) Epoch 10

(b) Epoch 30

Figure 3: Model’s cross-attention distributions and pcopy values for two sentence pairs for fr-oc, 60k sentences
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(a) Epoch 10

(b) Epoch 25

Figure 4: Model’s cross-attention distributions and pcopy values for two sentence pairs for hi-mr, 60k sentences
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(a) Epoch 10

(b) Epoch 30

Figure 5: Model’s cross-attention distributions and pcopy values for two sentence pairs for hi-bh, 60k sentences
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Abstract

Neural end-to-end surface realizers output
more fluent texts than classical architectures.
However, they tend to suffer from adequacy
problems, in particular hallucinations in numer-
ical referring expression generation. This poses
a problem to language generation in sensitive
domains, as is the case of robot journalism cov-
ering COVID-19 and Amazon deforestation.
We propose an approach whereby numerical
referring expressions are converted from digits
to plain word form descriptions prior to being
fed to state-of-the-art Large Language Models.
We conduct automatic and human evaluations
to report the best strategy to numerical super-
ficial realization. Code and data are publicly
available1.

1 Introduction

The significant advances in deep learning for NLP
and its enormous success in other text genera-
tion tasks, such as machine translation (Akhbardeh
et al., 2021). As a result, approaches to surface re-
alization of data-to-text systems have moved from
traditional modular pipeline architectures (Reiter
and Dale, 2000) to end-to-end ones. These sys-
tems transform a simple meaning representation
into text without any explicit intermediate repre-
sentations (Wen et al., 2015; Dušek and Jurčíček,
2016; Lebret et al., 2016; Gehrmann et al., 2018).
While early neural data-to-text systems required a
high amount of parallel training data, current state-
of-the-art (SOTA) architectures, known as Large
Language Models (LLMs) (Radford et al., 2019;
Lewis et al., 2020; Raffel et al., 2020a), can deliver
impressive results with less training, even excelling
in zero-short or few-shot settings.

With respect to linguistic output, neural end-to-
end surface realizers appear to generate more flu-
ent text than classical pipeline architectures but

1https://github.com/BotsDoBem/LargeLM

are more likely to suffer from (semantic) adequacy
problems, in particular, hallucinations (Ji et al.,
2023), whereby the system produces text that con-
tains information which is not present in the in-
put representation. A particular hallucination prob-
lem that modern approaches seem to struggle with,
unlike classical architectures, is numerical refer-
ring expression generation (Puduppully and Lap-
ata, 2021; Wallace et al., 2019; Ji et al., 2023). For
instance, let’s hypothesize the case where a sur-
face realizer produces the outcome: “The country
registered 458,098 cases of COVID-19”, whereas
the gold-standard reference points to “The country
registered 408,098 cases of COVID-19”. Albeit
there is only a single-digit difference between both
texts (which can be overlooked by popular auto-
matic quality metrics), the difference represents an
arithmetic change of 50,000 and may lead readers
to make drastic errors given the sensitivity of the
context.

To the best of our knowledge, this problem has
never been investigated in surface realization sys-
tems, despite having been addressed in other gen-
eration tasks such as text normalization (Zhang
et al., 2019; Sproat, 2022), question-answering
(Chen et al., 2021; Kim et al., 2022), and text-to-
speech (Nikulásdóttir and Guðnason, 2019); tasks
which also struggle to synthesize texts with nu-
merical referring expressions represented by digits.
One approach to circumvent the problem in text-
to-speech systems is to normalise the input texts
by converting numerical referring expressions from
digits to plain word form descriptions prior to being
fed into the system (Nikulásdóttir and Guðnason,
2019). Another technique used in Referring Ex-
pression Generation (REG) systems is slot-filling
or delexicalisation where values like date, number,
or constants are represented as a literal (Castro Fer-
reira et al., 2018; Cunha et al., 2020).

In the context of end-to-end surface realizers,
this study raises two questions:
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B. Portuguese English
Train Dev Test Train Dev Test

Daily Deforestation 4,062 504 484 3,874 452 462
Month Deforestation 324 20 22 456 36 26
Daily Fire 942 108 108 – – –
COVID-19 1,064 122 108 – – –

Total 6,392 754 722 4,330 488 488

Table 1: Data Statistics.

Figure 1: Example of Portuguese and English Meaning
Representation inputs and their corresponding outputs.

(RQ1) How well do state-of-the-art end-to-end
surface realizers generate numerical referring
expressions?
(RQ2) Are numerical referring expressions better
verbalized when represented by digits or text
(spell-out form)?

To answer these questions, we conducted au-
tomatic and human evaluations with three SOTA
LLMs: GPT-2 (Radford et al., 2019), BART (Lewis
et al., 2020), T5 (Raffel et al., 2020b), and their
multilingual counterparts. These models were
used to verbalize English and Brazilian Portuguese
news about Amazon Deforestation, Fire Alerts, and
COVID-19 cases using four different strategies,
which we discuss in Section 3. Code and data will
be publicly available.

2 Data

For training and evaluating the models, we
used automatic-generated reports by BotsDoBem,
a group of Twitter robot-journalists such as
CoronaReporter2 and DaMata3, which publish
news in Brazilian Portuguese and English. For
Brazilian Portuguese, the dataset comprises of i)
both daily and monthly reports on deforestation in
the Legal Amazon area of Brazil (Rosa Teixeira
et al., 2020), ii) daily reports about Fires in the
Brazilian Biomes, as well as iii) COVID-19 cases
in the country (Campos et al., 2020). For English,
the dataset comprises of daily and monthly reports
on deforestation in the Legal Amazon. Although

2https://twitter.com/CoronaReporter
3https://twitter.com/DaMataReporter

automatically generated, these texts contain a high
number of numerical referring expressions, mak-
ing them suitable for our goal of evaluating how
well neural end-to-end surface realizers generate
numerical referring expressions. Table 1 introduces
the number of instances per language and domain,
split into training, development, and test sets. Each
instance in the corpus consists of a meaning rep-
resentation and a corresponding gold-standard ver-
balization in Brazilian Portuguese or English repre-
senting the sentence of a report. For both languages,
the verbalizations were automatically generated by
the pipeline system described in Rosa Teixeira et al.
(2020) and Campos et al. (2020).

Figure 1 illustrates the structure of instances in
both the English and Portuguese datasets, which
consist of meaning representations starting with a
tag representing the report domain, followed by a
tag that marks the beginning of the sentence intents
(e.g., INTENTS). Each intent in the meaning repre-
sentation follows the intent-attribute-value schema.
Finally, the tag [HISTORY] marks where the verbal-
ization of the previous sentences in the paragraph
of the target will be depicted. In the example, the
tag [PARAGRAPH] means that the target sentence is
at the beginning of the paragraph.

3 Numerical Referring Expressions

To evaluate the effectiveness of a neural end-to-
end surface realizer in generating numerical ex-
pressions, we consider two forms of number rep-
resentation: digits and word (spell-out) form de-
scriptions. These are assessed in both the meaning
representations and the verbalizations, resulting in
a total of four distinct strategies:

1. Numbers represented by digits in the mean-
ing representation and the reference texts (no
desc);

2. Numbers are described in the input meaning
representation in spell-out form and digits in
the target references (desc src);

3. Numbers represented by digits in the mean-
ing representations and spell-out form descrip-
tions in the target references (desc trg); and

4. Numbers are described in a spell-out form in
both the input meaning representations and
target references (desc).

To exemplify, Table 2 depicts the four strate-
gies of a pair of meaning representations and their
corresponding English verbalizations. We utilized
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Numeric Referring Expressions
Strategies Area Month Year Input MR

no desc 322.91 4 2021 In April 2021, 322.91 sq km of the Legal Amazon were deforested, according to
data from the National Institute for Space Research (INPE)

desc src three hundred and
twenty-two point nine
one

four two thousand
and twenty-one

In April 2021, 322.91 sq km of the Legal Amazon were deforested, according to
data from the National Institute for Space Research (INPE).

desc trg 322.91 4 2021 In April two thousand and twenty-one, three hundred and twenty-two point nine one
sq km of the Legal Amazon were deforested, according to data from the National
Institute for Space Research (INPE).

desc three hundred and
twenty-two point nine
one

four two thousand
and twenty-one

In April two thousand and twenty-one, three hundred and twenty-two point nine one
sq km of the Legal Amazon were deforested, according to data from the National
Institute for Space Research (INPE).

Table 2: The strategies and representations of the numeric referring expressions. Strategies are highlighted.

the Python library4, num2words, to transform nu-
merical digits into their textual counterparts. This
library is effective for both English and Brazilian
Portuguese languages.

4 Experiments

To address our first research question (RQ1), we
evaluate the performance of three LLMs in generat-
ing numerical references: I) GPT-2, ii) BART, and
iii) T5 for English domains. Additionally, for Por-
tuguese, we fine-tuned GPorTuguese-2 (Guillou,
2020), a Brazilian Portuguese version of GPT-2,
as well as mBART-50 (Tang et al., 2020) and mT5
(Xue et al., 2021), which are the multilingual ver-
sions of BART and T5, respectively. These models
were selected due to a more sustainable perspective
of LLMs (Rillig et al., 2023) and the environmental
implications of the new LLMs, such as ChatGPT
(OpenAI, 2023) and BARD5. The model training
process involved 30 epochs, a learning rate of 1e-5,
a batch size of 1, 5 early stops, and a maximum
token length of 300.
4.1 Automatic Evaluation
We computed the BLEU score (Papineni et al.,
2002) of the system to analyze the generated texts’
fluency automatically and whether errors in numer-
ical referring expressions are reflected in its result.

4.2 Human Evaluation
To answer our research questions (RQ1) and
(RQ2), we performed a human evaluation against
the outcomes of our evaluated approaches.

Method We perform the human evaluation fol-
lowing the methodology of Thomson and Reiter
(2020), which aims to quantify the quality of auto-
matically generated texts according to the follow-
ing taxonomy of errors: Incorrect Number, Incor-

4https://pypi.org/project/num2words/
5https://bard.google.com/

rect Named Entity, Incorrect Word, Context, Not
Checkable and Other. Besides these categories, a
Fluency error category was incorporated into the
evaluation, which allowed raters to assess the out-
put for issues related to text flow acceptability. We
are primarily interested in the dimensions concern-
ing the number errors i.e., Incorrect Number and
Incorrect Word. We also drew on best practices con-
cerning error analysis and reporting as described in
van Miltenburg et al. (2021).

Data preparation and Annotation process
Overall, we selected 20% of a stratified sample,
comprising 852 instances of Brazilian Portuguese
output (per strategy and model). Three linguisti-
cally proficient annotators assessed these instances.
To ensure reliability, a duplicate batch was eval-
uated by the same three raters. For English, all
240 outputs (per strategy per model) were indepen-
dently annotated by two linguistically proficient
raters. This process followed a pilot annotation of
50 instances for each language to clarify any ambi-
guities in the annotation guidelines before the full
annotation task. Brazilian and English annotators
and/or raters are members of the research team.

It is worth noting that for the Portuguese dataset
annotators evaluated different entries in the first
and second batches, allowing for inter-rater agree-
ment assessment. To reduce bias during double
annotation, access to corresponding entries in dif-
ferent batches was not allowed. For both datasets,
in line with Thomson and Reiter (2020) methodol-
ogy, we removed any disagreement as a result of
raters not following annotations guidelines.

5 Results

The error rates and BLEU scores for each numer-
ical strategy and model for both English and Por-
tuguese are presented in Table 3. Numerical errors
were found to be the most common type across
both languages. However, the numerical error rates
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Error Rate Full Results for English (EN) and Brazilian Portuguese (PT)
S LM Number Named Entity Word Context Uncheckable Other Fluency BLEU

EN PT EN PT EN PT EN PT EN PT EN PT EN PT EN PT EN PT

N
o

D
es

c T5 mT5 0.48 0.45 0.05 0.02 0.08 0.08 0.03 0.03 0.03 0.03 0.08 0.07 0.05 0.03 0.69 0.58
GPT2 GPT2-pt 0.65 0.24 0.28 0.04 0.03 0.03 0.53 0.03 0.08 0.01 0.60 0.14 0.95 0.09 0.14 0.60
BART mBART 0.50 0.34 0.00 0.04 0.00† 0.00† 0.08 0.09 0.00† 0.01 0.00 0.07 0.15 0.10 0.61 0.51
Avg. Avg. 0.54* 0.34 0.11 0.04 0.03 0.04* 0.21 0.05* 0.03 0.02 0.23 0.09 0.38 0.07 0.48 0.56

D
.S

ou
rc

e T5 mT5 0.45† 0.37 0.00† 0.01 0.00† 0.08 0.00† 0.05 0.05 0.01 0.00† 0.04 0.08 0.02 0.69 0.59
GPT2 GPT2-pt 1.00 0.19† 0.05 0.01 0.00† 0.02 0.03 0.12 0.00† 0.01 0.00† 0.08 0.23 0.03 0.41 0.61
BART mBART 0.48 0.28 0.00† 0.03 0.00† 0.01 0.05 0.01 0.00† 0.01 0.03 0.13 0.23 0.05 0.62 0.59
Avg. Avg. 0.64 0.28* 0.02* 0.01 0.00* 0.04 0.03* 0.06 0.02 0.01 0.01 0.09 0.18 0.03* 0.57 0.60

D
.T

ar
ge

t T5 mT5 0.95 0.87 0.00† 0.00† 0.00† 0.04 0.03 0.00† 0.00† 0.00† 0.00† 0.01† 0.00† 0.02† 0.87† 0.65
GPT2 GPT2-pt 0.95 0.90 0.03 0.01 0.00† 0.04 0.13 0.11 0.13 0.00† 0.00† 0.08 0.18 0.05 0.35 0.64
BART mBART 0.90 0.79 0.05 0.06 0.08 0.09 0.05 0.09 0.03 0.00† 0.00† 0.10 0.18 0.09 0.60 0.61
Avg. Avg. 0.93 0.85 0.03 0.02 0.03 0.06 0.07 0.07 0.05 0.00* 0.00* 0.06 0.12 0.05 0.60* 0.64

D
es

c

T5 mT5 0.93 0.90 0.00† 0.00† 0.03 0.05 0.03 0.02 0.00† 0.00† 0.00† 0.01 0.00† 0.06 0.66 0.68†
GPT2 GPT2-pt 0.90 0.80 0.13 0.01 0.03 0.12 0.23 0.14 0.03 0.00† 0.05 0.03 0.25 0.15 0.28 0.67
BART mBART 1.00 0.89 0.00† 0.00 0.03 0.07 0.03 0.03 0.00† 0.00† 0.00† 0.03 0.05 0.15 0.58 0.65
Avg. Avg. 0.94 0.87 0.04 0.00* 0.03 0.08 0.09 0.06 0.01* 0.00* 0.02 0.02 0.10* 0.12 0.50 0.67*

Table 3: Error rates and BLEU score for the 4 numerical strategies and 3 language models – Higher error rates
denote more errors. Higher BLEU scores denote greater Fluency. ∗(Lowest error rate among strategies averages);
†(Lowest error rate among model and strategy combinations); S (Strategies); and D (Desc).

Incorrect Number Error Rate

Strategies LM English (EN) B. Portuguese (PT)
DM DD Overall DM DD Overall

No Desc

T5/mT5 0.50 0.45† 0.48 0.55 0.18 0.36
GPT2/GPT2-pt 0.65 0.65 0.65 0.00† 0.00† 0.00†
BART/mBART 0.50 0.50 0.50 0.18 0.09 0.14
Avg. 0.55* 0.53* 0.54* 0.24* 0.09 0.17*

Desc Source

T5/mT5 0.45† 0.45† 0.45† 0.73 0.07 0.40
GPT2/GPT2-pt 1.00 1.00 1.00 0.27 0.00† 0.14
BART/mBART 0.50 0.45† 0.48 0.45 0.00† 0.23
Avg. 0.65 0.63 0.64 0.48 0.02* 0.25

Desc Target

T5/mT5 0.95 0.95 0.95 1.00 0.68 0.84
GPT2/GPT2-pt 0.95 0.95 0.95 0.82 0.74 0.78
BART/mBART 0.95 0.85 0.90 0.82 0.55 0.69
Avg. 0.95 0.92 0.93 0.88 0.66 0.77

Desc

T5/mT5 1.00 0.85 0.93 1.00 0.68 0.84
GPT2/GPT2-pt 0.90 0.90 0.90 0.82 0.52 0.67
BART/mBART 1.00 1.00 1.00 1.00 0.69 0.84
Avg. 0.97 0.92 0.94 0.94 0.63 0.78

Kappa Statistic 0.94 0.92 0.93 1.00 0.99 0.97

Table 4: Results displaying the “Incorrect Number” er-
ror rates in English and Portuguese, categorized by
strategies, with higher values indicating more errors.
To facilitate comparison, we present results solely for
the Monthly (DM) and Daily Deforestation (DD) do-
mains, which are common to both languages. ∗(Lowest
error rate among strategies averages) and †(Lowest error
rate among model and strategy combinations).

varied depending on the language, strategy, and
models used.

In English, the average results per strategy in-
dicated that using text to represent numerical ref-
erences did not yield a positive impact. This is
evidenced by the No Desc strategy, which resulted
in the lowest error rate. However, when examin-
ing the results per model, T5(Desc Source) strat-
egy presented the lowest error rate, followed by
BART(Desc Source) and T5(No Desc) strategies.
In terms of automatic evaluation, the Desc Target
strategy yielded the highest BLEU score with T5
being the best model in this strategy. The Kappa
coefficient for inter-rater agreement regarding In-

correct Number error for both languages reached
up to 0.90 according to Table 4, indicating a rea-
sonable consensus between human evaluations.

Contrary to English, describing Portuguese nu-
merical referring expressions in the Desc Source
strategy resulted in the lowest error rate. The
model with the fewest errors was GPT2-pt(Desc
Source) strategy. Regarding the automatic evalua-
tion, the Desc strategy yielded the highest BLEU
score (0.68) with mT5, being the best model in this
strategy for Portuguese.

It is important to note that Brazilian Portuguese
approaches were evaluated across more domains
than their English counterparts due to differences
in both datasets. To compare the numerical error
rate of models across languages, Table 4 presents
the numerical error rate of approaches in daily and
monthly Amazon deforestation domains, which
share identical meaning representations in English
and Portuguese. Based on the Incorrect Number
Error Rate results, the No Desc was the best strat-
egy in both languages. While error rates between
daily and monthly deforestation were similar in En-
glish, Portuguese utterances in daily report format
introduced fewer numerical errors than monthly re-
ports, likely due to the higher amount of daily defor-
estation training sentences for Portuguese models.

6 Conclusion and Limitations

Finally, we revisit the research questions outlined
in Section 1: (RQ1) A human evaluation was
performed to annotate different error categories,
such as numerical, named entities, context, word,
uncheckable, other, and fluency errors. Results
depicted across languages, models, and numer-
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ical strategies show the numerical error rate as
the highest among the errors. Hence, concerning
this research question, there is clear evidence that
pure state-of-the-art large language models struggle
to generate adequate and faithful numerical refer-
ring expressions. (RQ2) Results demonstrated that
the Brazilian Portuguese approach Desc Source
performs better. However, for English, represent-
ing numerical references in spell-out form did not
help regardless of whether it was present in the
source meaning representation (Desc Source), in
the target text (Desc Target) or both (Desc). As
depicted in Table 1, we report lower results for
English when compared with Portuguese. This
may result from the smaller size of the English
dataset compared to Brazilian Portuguese. More-
over, surprisingly, for English, fine-tuning LLMs
with smaller amounts of training data did not ap-
pear to produce higher results than originally hoped.
More experiments will be needed however to verify
this.

As evidenced in the results, this study confirms
that Large Language Models struggle to generate
numerical referring expressions, although T5 has
performed better. The proposed strategy to solve
the problem did not affect English, although it de-
creased numerical errors when describing the num-
bers on the source of Portuguese trials. Hence this
strategy for describing numbers may help in low-
resource scenarios.

For future work, we plan to extend our experi-
ments to GPT3 and GPT46. However, since these
models are neither free, nor reproducible due to
limited or no information concerning model size,
architecture, training parameters, and data set cre-
ation, we will investigate related open-source vari-
ations such as BLOOM7 and GPT-J8.

7 Ethics Statement

As highlighted in the Human Evaluation Subsec-
tion 4.2, all annotators are members of the research
group and were responsible for evaluating with
an equal amount of occurrences; hence ethical ap-
proval for conducting research with human subjects
was not required. All data is publicly available (see
Data Subsection 2 for more information). No con-

6https://openai.com/blog/chatgpt
7BLOOM: BigScience Large Open-science Open-access

Multilingual Language Model – https://huggingface.co/
bigscience/bloom

8https://huggingface.co/docs/transformers/
model_doc/gptj

sent from data subjects was required as this data
is purely factual, containing no personal data, and
hence compliant with the EU’s General Data Pro-
tection Regulation (GDPR)9.
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A Appendix

A.1 Annotation Guidelines
After the most common error cases were identi-
fied and the treatment for the most difficult cases
was agreed upon, annotators followed common
guidelines for the rest of the evaluation process, as
described in the following list:

• Incorrect Number: Has incorrect numerical
values (e.g., model verbalizes an area value
of “354” as “345”); Numerical values not ver-
balized in numerical form in the final texts
were considered incorrect (e.g., “three hun-
dred fifty-four” instead of “354”);

• Incorrect Named Entity: verbalizes entities
incorrectly or verbalizes entities that do not
exist;

• Incorrect Word: occurrence of spelling er-
rors;

• Context Error: verbalizes some communica-
tive intent incorrectly (e.g., verbalizes last
month’s deforestation variation instead of to-
tal area deforestation);

• Not checkable: adds information that is not
present in the input semantic representation in
the verbalized text;

• Other: other types of verbalization errors;

• Fluency: the hypothesis verbalizes a not flu-
ent text.

The annotation guidelines are summarised be-
low:

- Entries were distributed in a collaborative
spreadsheet.

- Each row consisted of the original Meaning
Representation (MR), the generated hypothe-
sis, and the rating categories.

- LLMs used to generate the entries were omit-
ted in the spreadsheet.

- The spreadsheet was formatted to highlight
the options (y - red; n - green) aiming to
aid/ease the process with visual cues.

- Difficult cases were commented on to be fur-
ther discussed within the group of raters, fos-
tering improvements in the guidelines.

- Once, the annotation was finished, the spread-
sheets were exported in .csv files for result
computation.
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Expected output
The most affected state and municipality were respectively Pará (177.84
sq km) and Altamira, in the state of Pará (51.07 sq km).

Deforestation monthly intents
TOTAL_DEFORESTATION(area=“177.84”, location=“deter-amz”,
month=“4”, state=“PA”, year=“2021”) [SEP]
TOTAL_DEFORESTATION(area=“51.07”, city=“Altamira”,
location=“deter-amz”, month=“4”, state=“PA”, year=“2021”)

T5 nodesc
The most affected state and municipality were respectively Pará (177.84
sq km) and Altamira, in the state of Pará (51.07 sq km).
T5 desctrg
The state with the most deforestation in the month was Pará (one hun-
dred and seventy-seven point eight four sq km), and the most devas-
tated municipality was Altamira / Pará, where deforestation amounted to
fifty-one point zero seven sq km.
T5 descsrc
The state with the most deforestation in the month was Pará (177.84 sq
km), and the most devastated municipality was Altamira / Pará, where
deforestation amounted to 51.07 sq km.
T5 desc
The state with the most deforestation in the month was Pará (one hun-
dred and seventy-seven point eight four sq km), and the most devas-
tated municipality was Altamira / Pará, where deforestation amounted to
fifty-one point zero seven sq km.

Table 5: Sample from T5 outputs for English consider-
ing all 4 strategies. T5 performed as the best model for
English. The numeric referring expressions are bolded.

A.2 Expected Output
A sample from the expected output is presented
in Table 5 considering the meaning representation
and each strategy in English. Furthermore, Ta-
bles 6 and 7 show Human Evaluation results for
Portuguese and English languages and highlight
problems regarding generating numerical referring
expressions.
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Language Incorrect Number Incorrect Named Entity Incorrect Word Context Error

Input area=“322.91” city=“Novo Progresso, Itaituba” - -

English The National Institute for
Space Research (INPE)
estimated that deforesta-
tion of the Legal Ama-
zon amounted to 2,322.91
sq km in April two thou-
sand and twenty, which is
a one hundred and twenty-
six percent increase from
the previous month.

The National Institute for Space
Research (INPE) reported that de-
forestation amounted to twenty-
one point seven five sq km in
the state of Pará, in the state of
Pará, in February two thousand
and twenty.

The main class of defor-
estation was clear-cut de-
forestation, which removes
all vegetetation of the soil,
responsible for 317.93 sq
km of deforested area.”

The most affected
state and municipality
were respectively Pará
(177.84 sq km) and
Altamira / Pará, in the
state of Pará.

Input cases=“4091801”
deaths=“125584”

uc=“PARQUE NACIONAL DO
JAMANXIM”

- -

Portuguese São registrados, no
total, 135.584 mortes
e 4.093.801 casos de
#COVID19 no Brasil.

O INPE gerou alerta para devas-
tação (0,19 km²) causada pelo des-
matamento com solo exposto, que
remove totalmente a vegetação da
floresta, no dia 10 de agosto de
2020 na PARQUE NACIO

A cidade mais atingida foi
SANTAQUITÉRIA, em
CEARÁ, que registrou 22
focos de incêndio.

O Instituto Nacional
de Pesquisas Espaci-
ais(INPE) registrou um
total de quinhentos e
sessenta e nove focos de
queimadas no território
brasileiro, no dia onze
de outubro de dois mil
e vinte, o território
brasileiro foi atingido.

Table 6: Examples of categories of error in human evaluation for English and Brazilian Portuguese.

Language Not Checkable Other Fluency Problem

Input - -
English The main cause of deforesta-

tion was the destruction of the
soil, which leaves the soil clear
of vegetation.

The National Institute for
Space Research (INPE) in Pará,
where the most affected munic-
ipality was Novo Pro

The National Institute for Space Re-
search (INPE) reported that defor-
estation amounted to 21.75 sq km in
the state of Pará, in the state

Input area=“0.32” day=“22”
month=“8”

- -

Portuguese O INPE gerou alerta para
devastação (0,22 km2) cau-
sada pelo desmatamento com
solo exposto, que remove to-
talmente a vegetação da flo-
resta, no dia 22 de agosto
de 2020 na RESERVA EX-
TRATIVISTA VERDE PARA
SEMPRE / Pará - no mês já são
2 dias com alertas e 0,32 km2
desmatar.

A A A A A A A A BIOLÓG-
ICA NASCENTES DA
SERRA DO CACHIMBO
somou dois vírgula sete três
km2 de área desmatada no mês
de novembro de dois mil e
vinte.

Com um total de mil quinhentos
e setenta e oito vírgula oito sete
km2, o desmatamento com solo ex-
posto, deixando a terra sem vege-
tação, a principal causa de destru-
ição da Amazônia Legal no mês foi
o desmatamento com solo exposto,
deixando a terra sem vegetação.

Table 7: Examples of categories of error in human evaluation for English and Brazilian Portuguese.
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Abstract
The literature on general purpose textual
Anomaly Detection is quite sparse, as most
textual anomaly detection methods are imple-
mented as out of domain detection in the con-
text of pre-established classification tasks. No-
tably, in a field where pre-trained representa-
tions and models are of common use, the im-
pact of the pre-training data on a task that lacks
supervision has not been studied. In this pa-
per, we use the simple setting of k-classes out
anomaly detection and search for the best pair-
ing of representation and classifier. We show
that well-chosen embeddings allow a simple
anomaly detection baseline such as OC-SVM
to achieve similar results and even outperform
deep state-of-the-art models.

1 Introduction

Anomaly Detection (AD) consists in detecting ob-
servations that deviate from normality: what is
normal is defined by available data and assumed
to be bounded (Ruff et al., 2021), while anomalies
(which can be called outliers, or novelty depending
on the application) are outside this bound. The
most obvious hurdle with AD is that it is usually
not possible to characterize anomalies: models are
mostly not designed to target a specific type of out-
lier, and the assumptions made on data are rarely
stated. In this context, supervision usually comes
from normal data. However, most NLP models
employ pre-trained representations: the impact that
this kind of prior knowledge may have on AD is
difficult to appreciate, and overlooked.

A first attempt to characterize outliers in natural
language data was made by Arora et al. (2021),
classifying them as coming from either background
shifts (coming from a shift in domain) or semantic
shifts (coming from a shift in content), and bringing
insights on which detection method might better
work on each. Arora et al. (2021) showed that back-
ground shifts are well detected by language models,

which are able to estimate the density of normal
data; there is furthermore an abundant literature on
adapting pre-trained language model to new normal
data (Ramponi and Plank, 2020).

We hence focus on semantic shifts, which are
shown to be well detected by calibration methods.
However, this assumes access to a classification
model trained on relevant categories; we however
prefer to not assume access to any labels, and adopt
a simple but convenient way of evaluating AD: re-
purposing classification datasets by declaring one
class to be normal and the others as anomalies, in
what is called k-classes-out. In this setting, exist-
ing approaches are fewer. Some are inspired by
topic modeling: they learn topic models optimized
to reconstruct normal data well, aiming to detect
anomalies by failing to accurately reconstruct them.
For example, CVDD (Ruff et al., 2019) learns a
limited number of topic-centroid vectors by apply-
ing attention upon pre-trained word-embeddings.
A second direction is to train deep self-supervised
models to recognize anomalies that are simulated,
for example through random perturbation of data,
as for DATE (Manolache et al., 2021). While both
these models were previously compared on com-
mon datasets, CVDD uses pre-trained representa-
tions and DATE is only trained on the data available
for the AD task.

In this paper, our goal is to investigate the impact
of the pre-training data on anomaly detection per-
formance in the k-classes-out setting; we exper-
iment with static and contextual representations,
off-the-shelf or obtained strictly on the AD training
data, on three datasets. Our results show that the
most simple configuration - a simple non-neural
classification model, when equipped with textual
representations obtained from the AD training data,
can beat state-of-the-art models on our AD task.
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2 Background

2.1 Preliminaries

Anomaly score: To classify a data point x ∈ X
as an anomaly, we compute an anomaly score s :
X → R indicating its degree of anomalousness
s(x) (Ruff et al., 2021); then, a threshold δ is used
as cutoff. However, we will here use measures that
evaluate the performance of AD models using only
s and independently of the choice of δ1.

Data: We consider a training set of documents
Dtrain = {xi}ni=1 for our task, which is part of
a larger dataset: Dtrain ⊂ D. A document x =
(w1, w2, . . . , wl) is a sequence of l ∈ N words
from a vocabulary V . We will use different vector
representations x of x depending on the method.

Pre-training word embeddings: In Ruff et al.
(2019), CVDD is tested with embeddings W ∈
Rd×|V| pre-trained with FastText and GloVe. How-
ever, those where trained on an external dataset,
which might be very different than Dtrain: hence,
we propose to experiment with representations pre-
trained on Dtrain and D. We choose to use Fast-
Text, as the better performing static word repre-
sentation algorithm. However, to avoid training
prediction-based representations on datasets that
are too small, we also use a traditional alternative
in NLP, the PPMI(Church and Hanks, 1990) ma-
trix, which we reduce to the appropriate dimension
d using the SVD. As DATE is based on ELEC-
TRA (Clark et al., 2020), we also experiment with
representations obtained through its off-the-shelf
version, and through one pre-trained on D.

2.2 Anomaly Detection methods

We present in this section the necessary background
information about the two models we experiment
with, CVDD and DATE, as well as the chosen base-
line. We follow Ruff et al. (2019) and use OC-
SVM, a one-class classification-based AD model2.

CVDD: CVDD scores a document by computing
an average anomaly score over r topics. It takes as
input word representations X = (wwj )

l
j=1 ∈ Rd×l.

It learns jointly two components: (1) a multi-head

1Selecting this threshold is a difficult problem in it-
self, with values selected by validation not generalizing
well (Khosla and Gangadharaiah, 2022).

2We also experimented on TONMF (Kannan et al., 2017)
and their baseline LSA as well, but the results of these base-
lines were worse than the ones we obtain with CVDD, DATE
and OC-SVM.

self-attention mechanism, which computes sets
of attention scores over the l input word embed-
dings for each of the r attention heads, grouped
in A ∈ Rl×r, allowing to aggregate them into r
representations M = XA ∈ Rd×r, and (2) a set
of r topic vectors C = (ck)

r
k=1 ∈ Rd×r whose co-

sine distances with the corresponding training data
representations d(ck,mk) are minimized through
the training objective. The anomaly score is, for a
new document xtest, computed as follows:

sCV DD(xtest) =
r∑

k=1

d(ck,Xtestak)

DATE: DATE masks some of the tokens of the
document, uses a generator to replace them, and
learns through a transformer model D based on
ELECTRA to detect the tokens which were modi-
fied, via a binary classification task called Replaced
Token Detection (RTD). Motivated by computa-
tional efficiency, the authors propose to use as score
the probability of each token not being modified:

sDATE(xtest) =
1

l

l∑

j=1

PRTD(mj = 0|xtest, D)

where mj is a boolean indicating if the token wj

has been modified in the input to the model D. The
model is trained to maximize the log-likelihood
of this distribution on perturbed data. It is trained
jointly using the Replaced Mask Detection (RMD)
objective, which aims at predicting which mask-
ing pattern is used, and with the Masked Language
Modeling (MLM) objective. DATE jointly learns
its own contextual word representations, and is
given the document x as input. It takes decisions
at the token-level, which is made possible by us-
ing contextual representations. Note that the score
sDATE will give a high value to inliers examples,
and should be reversed for comparison.

OC-SVM: We define our OC-SVM model fol-
lowing the baseline of CVDD: it uses the Scikit-
learn (Pedregosa et al., 2011) implementation,
based on the model described by Schölkopf et al.
(2001). It takes as input the aggregate3 xaggr =
1
l

∑l
j=1wwj ∈ Rd and aims at separating all the

training data points from the origin in the feature
space Fk. This space is defined as the reproducing

3Contrarily to Ruff et al. (2019), we don’t present results
using tf-idf to weight word embeddings, as we did not find it
to produce competitive results.
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kernel Hilbert space (RKHS) associated to the cho-
sen positive semi-definite kernel k : Rd ×Rd → R
and corresponding feature map ϕk : Rd → Fk.
Separating data from the origin is done looking for
a hyper-plane ω ∈ Fk maximizing a margin:

min
ω,ρ,ξ

1

2
∥ω∥2 − ρ+

1

νn

n∑

i=1

ξi

s.t ρ− ⟨ϕk(x
aggr
i ),ω⟩ ≤ ξi, ξi ≥ 0, ∀i

where the margin to the origin is given by ρ
∥ω∥ , and

the ξ are the slack variables. The decision function
should be positive for most training data points
xaggr
i . Here, ν does not control the smoothness

of the margin, but the fraction of the data which
the model will be allowed to consider as outliers.
Finally, the scoring function is simply minus the
value given by f :

sOCSVM (xtest) = ⟨ϕk(x
aggr
test ),ω⟩ − ρ

3 Experimental setting

We evaluate the performance of these models quan-
titatively on several datasets: after exploring the
impact that the pre-training data used for word
representations has on anomaly detection with OC-
SVM and CVDD, we compare all models. 4

3.1 Datasets
Following Manolache et al. (2021), we first com-
pare the different methods on two publicly avail-
able textual datasets containing news articles for
classification purposes: 20 Newsgroups5 and AG
News6. The third dataset, RNCP7, for Répertoire
National des Certifications Professionelles, was
built from a public official french repository with
training certifications. The relevant statistics for the
datasets are given in Table 5. For all datasets, we
follow the pre-processing from Ruff et al. (2019).

3.2 Experimental details
Most of our experimental choices are made fol-
lowing Ruff et al. (2019). We mainly extend their
experimental framework by looking at supplemen-
tary representations for the OC-SVM and CVDD

4The code is available at https://github.com/abreide
nstein/TextualAD

5http://qwone.com/~jason/20Newsgroups/
6http://groups.di.unipi.it/~gulli/AG_corpus_o

f_news_articles.html
7https://www.data.gouv.fr/en/datasets/reperto

ire-national-des-certifications-professionnelle
s-et-repertoire-specifique/

models, trying to compare these approaches more
fairly with respect to the data available to the model.
Unless mentioned, for each model, we chose hy-
perparameters following the reference paper.

Evaluation with k-classes-out: Noting C the set
of classes of the dataset D, for each c ∈ C we
have a train and test sets Dc

train and Dc
test. In or-

der to adapt the datasets to AD, one class cnormal

is picked, while the others are considered to be
anomalous. In our experimental setting, which we
call semi-supervised, we consider that the normal
class has been properly labeled, and the model
is trained with exactly Dcnormal

train . It is then evalu-
ated on Dtest =

⋃
c∈C Dc

test, where only elements
of Dcnormal

test are to be recognized as inliers by the
model. Experiments are repeated with taking every
c ∈ C as cnormal. We present similar experiments
in an unsupervised setting, where anomalies are
present in the training data, in Appendix B.2.

Evaluation metrics: We use the Area Under Re-
ceiver Operating Curve (AUROC, or AUC) which
is widely employed in the AD literature. It allows
to measure the performance of a binary classifier by
computing the area under the ROC curve, obtained
by plotting the true positive rate against the false
positive rate: hence, it covers the range of possible
thresholds δ between normality and anomalies over
the possible outputs of the anomaly score s(x).

Experimenting with pre-trained representa-
tions: Following Section 2.1, we propose to ex-
periment with various sets of representations for
OC-SVM and CVDD: first, the FastText represen-
tations for English (and French, for RNCP) trained
on Wikipedia and Common Crawl8, which we note
FTLarge. Then, we train our own embeddings with
FastText on D, and Dcnormal

train , noting them respec-
tively FTD and FTC . Similarly, we note the repre-
sentations obtained by reducing the dimension of a
PPMI matrix9 PPMID and PPMIC . For these pre-
trained representations, we use d = 300. Lastly,
we experimented with the ELECTRA model avail-
able on Huggingface10 and one we trained on D; as
well as those obtained through the corresponding
DATE model. As none of the contextual represen-
tations gave competitive results, we only display

8https://fasttext.cc/docs/en/crawl-vectors.h
tml

9We follow here Turney (2012, Section 3.6) and don’t use
the eigenvalues when reducing the dimension.

10https://huggingface.co/google/electra-small-
discriminator
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20Ng OC-SVM CVDD
Linear Poly RBF Best r ∈ [1, 10]

FTD 81.4 ± 0.1 76.3 ± 0.1 58.4± 0.1 55.8± 0.3 (r = 10)
FTC 69.9± 0.2 69.7± 0.1 35.6± 0.1 50.0± 0.3 (r = 5)
FTLarge 66.0± 0.2 65.9± 0.2 66.4± 0.1 68.0± 0.1 (r = 3)
PPMID 59.4± 0.2 59.1± 1.6 75.1 ± 0.1 70.4 ± 1.6 (r = 2)
PPMIC 74.5± 0.1 74.6± 0.1 40.6± 0.2 55.7± 0.2 (r = 2)

Table 1: AUCs of AD experiments over 20Ng, with OC-
SVM with Linear, Poly and RBF kernels, and CVDD.

AGNews OC-SVM CVDD
Linear Poly RBF Best r ∈ [1, 10]

FTD 89.8 ± 0.01 87.7 ± 0.03 72.6± 0.1 86.5± 0.5 (r = 1)
FTC 79.6± 0.1 87.3± 0.1 20.8± 0.1 62.8± 0.6 (r = 1)
FTLarge 82.2± 0.1 82.0± 0.1 79.1± 0.1 87.2 ± 0.7 (r = 2)
PPMID 61.2± 0.1 60.6± 0.1 89.4 ± 0.01 83.9± 0.2 (r = 2)
PPMIC 79.5± 0.1 79.8± 0.1 29.9± 0.1 58.7± 0.9 (r = 5)

Table 2: AUCs of AD experiments over AG News, with
OC-SVM with Linear, Polynomial and RBF kernels,
and CVDD.

RNCP OC-SVM CVDD
Linear Poly RBF Best r ∈ [1, 15]

FTD 63.7 ± 0.05 61.5 ± 0.04 57.8 ± 0.05 58.3 ± 0.4 (r = 8)
FTC 60.6± 0.04 60.8± 0.04 41.3± 0.1 52.2± 0.3 (r = 10)
FTLarge 56.2± 0.1 56.2± 0.2 55.0± 0.04 56.6± 0.3 (r = 12)
PPMID 58.4± 0.04 58.6± 0.03 57.2± 0.1 56.9± 0.2 (r = 2)
PPMIC 57.4± 0.1 58.8± 0.1 49.0± 0.04 52.2± 0.1 (r = 1)

Table 3: AUCs of AD experiments over RNCP, with OC-
SVM with Linear, Poly and RBF kernels, and CVDD.

the corresponding results in Appendix B.3.

4 Results

Choosing word representations: The results for
CVDD and OC-SVM11 obtained with the remain-
ing static representations are presented in Table 1, 2
and 3 for two of the datasets. FTD representa-
tions show consistently better performances than
FTLarge, and the best overall, especially when used
with an OC-SVM with a linear kernel. With class-
based representations, the results of OC-SVM mod-
els seem to vary following the size of the dataset:
the larger it is, the closer the results get to those
of dataset-based representation. In particular, FTC
representations give great results on AG News with
a polynomial kernel, as reported in Table 2. We
hence postulate that the poorer performance of FTC
representations is linked to a lack of training data.
With linear and polynomial kernels, PPMIC give
good results and largely beats PPMID on 20 News-

11The scikit-learn implementation of OC-SVM is determin-
istic. Variations in our results come from the composition of
document representations from word embeddings; we suppose
this is due to how padding is handled in the implementation
of (Ruff et al., 2019).

AGNews 20Ng RNCP
OC-SVM + FTLarge 82.2± 0.1 66.0± 0.2 56.2± 0.1

OC-SVM + ours 89.8 ± 0.01 81.4 ± 0.1 63.7 ± 0.05

CVDD + FTLarge 87.2± 0.7 68.0± 0.1 56.6± 0.3

CVDD + ours 86.5± 0.5 70.4± 1.6 58.3± 0.4

DATE 88.5 ± 0.2 70.9 ± 0.4 59.2 ± 0.1

Table 4: AUCs and standard deviations of AD experi-
ments over all datasets, with all models. For OC-SVM
and CVDD, we show the best results across hyperpa-
rameters with FTLarge, and across our own word rep-
resentations, for which we took FTD representations
except for CVDD with 20 Newsgroups, where PPMID
provide better results.

groups and AG News, opposite to what we see with
FT representations. We assume here that statistics
obtained only on class data are more representative,
and hence work better with simpler kernels. We
discuss the poor performance of class-based repre-
sentations with the RBF kernel in Appendix A.2.

Overall comparison: Table 4 presents the best
results obtained for each model, with comparison
to DATE; additionally, for OC-SVM and CVDD,
we present results for our representations (noted
ours) and external representations separately. OC-
SVM outperforms CVDD on all datasets. It reaches
better results than DATE, especially on 20 News-
groups and RNCP, although being far simpler. For
all the models, the AUC values on the RNCP
dataset are lower, which can be due to the shortness
of the documents in this dataset, making the AD
task more challenging.

On the performance of OC-SVM: our results
show that, with appropriate representations, a sim-
ple OC-SVM model outmatches complex models
such as CVDD and DATE. We hypothesize that,
in our setting especially, AD approaches based on
one-class classification are at an advantage; but the
objective with which DATE is trained may lead the
model away from what is needed in the k-classes-
out setting, as it learns to detect random replace-
ments. Here, the simplicity of an OC-SVM is a
strength, though it has the disadvantage of not pro-
viding any density score nor possible word-level
interpretation, contrarily to CVDD (through the
attention mechanism) and DATE.

On the performance of dataset-based represen-
tations: our results show the clear superiority of
representations pre-trained on the same data that
will be used on the AD task. While dataset-based
representations will generally not be available at
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training time, we argue that an OC-SVM model
with class-based representations and a polynomial
kernel should provide results that are very com-
petitive with state-of-the-art models; the choice
of representation pre-training method should de-
pend on the quantity of training data available. Our
results with contextual representations are in line
with previous results from Ruff et al. (2019).

5 Conclusion

In this paper, we implement a fair comparison be-
tween existing textual anomaly detection methods
in a k-classes-out setting and show that training
the models on only the data available for the AD
task can lead to better results. This allows methods
regarded as baselines, such as OC-SVM models,
to achieve impressive results, challenging state-of-
the-art models based on deep neural architectures,
with only the data available at hand. We intend
to extend this line of work towards more challeng-
ing textual AD tasks. We also believe our results
are indicative of the potential of model adaptation
methods for semantic anomaly detection, which is
a direction that has only been seldom explored (Xu
et al., 2021). In the future, we also intend to extend
our investigation to larger, more recent language
models for obtaining representations.
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A Datasets and hyperparameters

A.1 Dataset description

Textual AD datasets and evaluation: To the
best of our knowledge, only a handful of AD-
specific textual datasets have been released: among
them, CLINC150 (Larson et al., 2019), an intent
classification12 dataset comprising OOD examples,
and the recent NSD2 (Ma et al., 2021) propos-
ing anomalies that are created as fine-grained se-
mantic modifications. As our objective is to get a
clearer view of the performance of existing mod-
els, we choose to stay in the simple but popular
setting of k-classes-out: we should note that this
effectively restricts our study to the detection of
what Arora et al. (2021) call semantic shifts. Many
classification datasets have been used this way, a
few of them being part of the recently released
AD benchmark ADBench (Table B1: Han et al.,
2022). Among those, we choose to re-use 20 News-
groups and AG News, which DATE was applied
to (Manolache et al., 2021). Following Ait-Saada
and Nadif (2023), we diversify our experiments
with a difficult classification dataset based on the
French repository of training certifications, contain-
ing short texts (certification titles) with little lexical
overlap within classes.

20 Newsgroups: This dataset is composed of
newsgroups posts from 20 topics split between a
training and a testing set. We reproduce the setup
of Ruff et al. (2019); Manolache et al. (2021) and
group the articles into 6 top-level categories.

AG News: This topic classification dataset was
built by choosing the 4 largest classes from the orig-
inal AG dataset and contains news articles collected
from numerous news sources, and also includes an
train/test split.

12Intent classification has attracted a large part of the efforts
dedicated to textual AD, including a dedicated comparative
framework (Zhang et al., 2021).
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|Dtrain| General statistics on D
Dataset Smallest Largest Median |Dtrain|/|Dtest| Ratio |C| |V| Median(l)

AG News 30000 30000 30000 30000/1900 4 61230 24
20 newsgroups 577 2857 1916 0.6/0.4 6 76807 44

RNCP 927 14413 2957 0.75/0.25 16 4116 7

Table 5: Description of the datasets through key statistics.

RNCP: This dataset contains French training cer-
tification contents provided by the public organi-
sation France Compétences. Following Ait-Saada
and Nadif (2023), we build it into a classification
dataset by taking as textual input the "Intitulé" (ti-
tle) field, and using the ROME code of each certi-
fication (which are linked to thematic topics) for
determining the class. However, their split into
train and test sets was not made available: hence,
while we keep the same 75%/25% ratio, we chose
to work with an updated (and thus larger) version
of the dataset.

A.2 Hyperparameter tuning

Hyperparameters and computation of results:
Following Ruff et al. (2019), all presented values
are obtained by averaging results over 5 runs. For
OC-SVM, we present results over the best ν ∈
[0.05, 0.1, 0.2, 0.5]. The best value of ν is then
kept for experiments in section 4 and B.2. For
CVDD, we only present the best results obtained
over the number of attention heads r. Similarly,
the best r are re-used in section section 4 and B.2.
All our results are micro-averaged over all classes
in the dataset, meaning that we average the values
obtained for each model trained on Dc

train,∀c ∈ C,
weighted with |Dc

train|. The standard deviation
values presented are obtained using these averages
over 5 different runs.

Choice of r for CVDD: Following (Ruff et al.,
2019), we experiment with a large array of values
for the number of context vectors r in CVDD. In
our results, the best value seems to depend on both
the dataset and the representation used, and needs
to be tuned according to these two factors. The
AUC variations given r on 20 Newsgroups for the
5 representations are presented in Figure 1. The
best AUC values for FTLarge and PPMID are ob-
tained with r = 3 and r = 2 respectively. On the
whole, the best values of r in Tables 2, 1, 3 show
that more complex datasets lead CVDD to need
more context vectors. Indeed, while the classes of
AG News are thematically consistent, those of 20

Newsgroups aggregate several lower-level themes,
and the documents in the RNCP classes are also
quite diverse (Ait-Saada and Nadif, 2023).

Figure 1: AUCs over 20 Newsgroups for CVDD mod-
els trained with our 5 pre-trained word embeddings
(FTC , FTD, FTLarge, PPMIC , PPMID), depending on
the number of attention heads r.

A.3 Choice of OC-SVM Kernel

The RBF kernel is usually the default kernel for
OC-SVMs (Manevitz and Yousef, 2002). However,
a linear kernel provides here the best results. We
can infer that the geometry of the FastText rep-
resentations is well adapted to our AD task, and
that using a more complex kernel makes the model
prone to overfitting. In particular, following Ruff
et al. (2019), we applied our hyperparameter search
to ν only, whereas the γ hyperparameter of the RBF
kernel is set automatically through a method proper
to scikit-learn, inversely proportional to the vari-
ance of the training data. We hypothesize that the
surprising counter performance of RBF kernel on
class-based representations could be linked to this
way of choosing γ. It may also be caused by ex-
amples very representative of normal data lying
close to the origin in the feature space and being
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selected in the portion of training data ν allowed to
be labelled by the OC-SVM as anomalies during
training.

B Additional results

B.1 Evaluation metrics - AUPR

We also compare the performances of the differ-
ent models using the Area Under Precision Recall
curve (AUPR), which is less prevalent: it allows to
measure the performance on imbalanced datasets,
which is important in AD where the proportion of
anomalies can be very low, although their detec-
tion matters the most. While this is not the case in
our k-classes-out setting, we use this measure for
complementary analysis.

Table 6 is an extended version of Table 4, which
also includes values of AUPR-i and AUPR-o met-
rics, which are the AUPR values computed respec-
tively for the inlier and the outlier classes. For this
measure, the performances of a random classifier
correspond to the number of positive examples di-
vided by the size of the testing set. Thus, the results
vary from one dataset to another, not only depend-
ing on the performances of the model, but also with
the numbers of classes and their sizes. Overall the
AUPR scores follow the same trend as the AUC
score, except for CVDD which gets a better perfor-
mance than the other models on the AUPR-i on 20
Newsgroups.

B.2 Unsupervised setting

Setting description: In our unsupervised setting,
randomly selected documents of other classes are
added to the normal class at a specified contam-
ination rate rcont. This corresponds to real-case
scenarios where the data has not been properly la-
belled and may be contaminated with anomalies.
More formally, this corresponds to using:

Dcnormal
cont = Dcnormal

train ∪ Dcnormal
anom

where Dcnormal
anom contains examples sampled from

Dtrain \ Dcnormal
train and rcont is the proportion of

these samples in Dcnormal
cont . We experiment with

several values of rcont to evaluate the models ro-
bustness to anomalies in training data, and evaluate
with the same Dtest. For fair comparison, we use
the same contaminated datasets Dcnormal

cont for each
model. Again, experiments are repeated by picking
every c ∈ C to be cnormal.

Results: Figure 2 presents the results for several
contamination rates rcont corresponding to the pro-
portion of anomalies added to the training set of
the normal class Dcnormal

train , for the three datasets.
Unsurprisingly, the more the contamination rate
rises, the lower the results get. We can notice
that on 20 Newsgroups OC-SVM with a linear ker-
nel seems less robust to anomalies in training data
than the other methods. However, it still gives the
best results. Overall, no particular trend stands
out. While results obtained on RNCP decrease
less with contamination, they are very unsatisfac-
tory, for all models. We take note that specifically-
designed methods based on a priori assumptions
on the dataset reach better results (Ait-Saada and
Nadif, 2023).

We should note that the results we obtain are, in
some settings, notably worse than the ones pre-
sented in Manolache et al. (2021), especially on the
dataset 20 Newsgroups, although we re-used the
implementation provided by the authors and tried
our best to reproduce their results following the
paper. The discrepancy is particularly high for the
OC-SVM and DATE models, while CVDD stays
stable.

B.3 OC-SVM with DATE and Electra
representations

To better understand the impact of local represen-
tations on AD, we experimented using the contex-
tual representations from DATE with an OC-SVM
model. These representations are learnt locally on
each class of the dataset. To get a document-level
representation, we used the [CLS] token. We also
experimented using Electra representations learnt
locally without the additional RMD task present in
DATE. Figure 7 presents the results on the different
datasets.

On 20Ng and AGNews, combining DATE represen-
tations with OC-SVM shows worse performances
than the ones obtained by DATE (with DATE rep-
resentations) or OC-SVM (with FastText represen-
tations) in Table 4. On the RNCP Dataset however,
using OC-SVM with DATE representations gets
the best results. We hypothesize that the shortness
of RNCP documents leads smaller models such as
FastText to have more difficulties to extract the rel-
evant information in the representations. However,
AD methods specifically designed for short text
documents such as the one presented by Ait-Saada
and Nadif (2023) still provide the best results.

89



AGNews 20Ng RNCP
AUC AUPR-i AUPR-o AUC AUPR-i AUPR-o AUC AUPR-i AUPR-o

OC-SVM + FTLarge 82.2± 0.1 68.1± 0.2 90.8± 0.04 66.0± 0.2 34.8± 0.2 86.8± 0.1 56.2± 0.1 12.6± 0.1 91.7± 0.04

OC-SVM + ours 89.8 ± 0.01 75.7 ± 0.1 96.0 ± 0.01 81.4 ± 0.1 44.3 ± 0.2 94.4 ± 0.1 63.7 ± 0.05 14.5 ± 0.03 93.2 ± 0.01

CVDD + FTLarge 87.2± 0.7 71.6± 0.8 94.4± 0.4 68.0± 0.1 42.5± 0.2 86.6± 0.03 56.6± 0.3 12.8± 0.2 91.5± 0.1

CVDD + ours 86.5± 0.5 70.3± 1.1 94.2± 0.2 70.4± 1.6 45.3 ± 1.8 88.2± 0.4 58.3± 0.4 12.8± 0.2 91.8± 0.1

DATE 88.5 ± 0.2 73.7 ± 0.6 95.2 ± 0.1 70.9 ± 0.4 41.8± 0.5 89.8 ± 0.1 59.2 ± 0.1 13.1 ± 0.1 92.6 ± 0.04

Table 6: AUCs of AD experiments over all datasets, with all models. For OC-SVM and CVDD, we show the best
results across hyperparameters with FTLarge, and across our own word representations.

Figure 2: AUCs of AD experiments over AG News, 20 Newsgroups and RNCP, with 5 of the models shown in
Table 6, for a contamination rate rcont varying from 0 to 25%.

AGNews 20Ng RNCP

D
A

T
E OC-SVM Linear 73.1 63.3 65.5

OC-SVM Poly 73.3 63.2 67.7
OC-SVM Rbf 73.2 63.8 66.7

E
le

ct
ra OC-SVM Linear 41.5 61.4 59.2

OC-SVM Poly 40.9 61.3 59.3
OC-SVM Rbf 40.4 61.4 59.3

Table 7: AUCs of AD experiments over all datasets,
with OC-SVM using representations from DATE and
Electra learnt on each class of the dataset.

Using locally trained Electra representations com-
bined with OC-SVM gets worse results than using
DATE representations. This underlines the contri-
bution of the RMD task introduced by Manolache
et al. (2021) for AD. We also experimented on OC-
SVM with pre-trained Electra embeddings, but got
notably worse results than the ones presented in
Table 7. We recall that Ruff et al. (2019) also ex-
perimented with BERT representations but found
the results to be lacking and did not display them.

B.4 Results detailed by class
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20 Ng OC-SVM CVDD DATE
Class linear - FTD linear - FTLarge FTD (r = 2) FTLarge (r = 3) DATE
0− comp 87.4 78.9 78.0 73.7 87.7
1−misc 86.5 63.8 65.1 74.0 54.8
2− pol 82.7 58.6 76.3 71.4 61.3
3− rec 82.4 63.4 69.1 60.5 66.9
4− rel 83.1 67.2 75.8 77.9 71.0
5− sci 69.4 57.2 55.8 58.2 64.5

Table 8: AUCs of AD experiments over the different classes of 20 Newsgroups dataset, with all models. For
OC-SVM and CVDD, we show the best results across hyperparameters with FTLarge, and across our own word
representations.

AG News OC-SVM CVDD DATE
Class linear - FTD linear - FTLarge FTD (r = 2) FTLarge (r = 3) DATE
0− business 85.2 77.8 83.9 87.9 88.7
1− science 86.3 74.8 80.7 83.4 82.6
2− sports 95.7 92.1 94.7 95.7 94.5
3− world 92.1 83.3 86.5 81.8 88.2

Table 9: AUCs of AD experiments over the different classes of AG News dataset, with all models. For OC-SVM and
CVDD, we show the best results across hyperparameters with FTLarge, and across our own word representations.

RNCP OC-SVM CVDD DATE
Class linear - FTD linear - FTLarge FTD (r = 8) FTLarge (r = 12) DATE
1− environnement 52.7 6 50.2 53.5 52.8 55.1
2− defense 73.7 51.9 66.2 59.4 38.7
3− patrimoine 63.1 47.5 59.3 55.4 63.5
4− economie 58.7 56.6 53.0 53.8 55.6
5− recherche 65.7 58.4 65.7 65.1 66.5
6− nautisme 57.1 50.9 55.7 54.1 57.7
7− aronautique 68.7 63.5 63.7 62.7 66.4
8− scurit 72.3 65.4 72.1 74.3 57.2
9−multimdia 71.7 62.1 57.6 56.0 60.2
10− humanitaire 61.3 51.8 56.8 54.6 58.3
11− nuclaire 69.4 63.2 62.7 61.2 63.1
12− enfance 81.4 55.5 67.5 56.3 61.7
13− saisonnier 76.7 51.5 70.6 54.8 44.0
14− assistance 65.5 41.5 49.7 38.7 50.1
15− sport 68.1 51.2 56.9 48.3 58.2
16− ingnierie 67.8 62.7 62.2 63.3 65.6

Table 10: AUCs of AD experiments over the different classes of RNCP dataset, with all models. For OC-SVM and
CVDD, we show the best results across hyperparameters with FTLarge, and across our own word representations.
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Abstract

Fine-tuning large language models (LLMs)
with domain-specific instruction dataset has
emerged as an effective method to enhance
their domain-specific understanding. Yet, there
is limited work that examines the core charac-
teristics acquired during this process. In this
study, we benchmark the fundamental charac-
teristics learned by contact-center (CC) domain
specific instruction fine-tuned LLMs with out-
of-the-box (OOB) LLMs via probing tasks en-
compassing conversational, channel, and au-
tomatic speech recognition (ASR) properties.
We explore different LLM architectures (Flan-
T5 and Llama) and sizes (3B, 7B, 11B, 13B).
Our findings reveal remarkable effectiveness
of CC-LLMs on the in-domain downstream
tasks, with improvement in response accept-
ability by over 48% compared to OOB-LLMs.
However, we observe that the performance of
probing classifiers are relatively similar and
does not reflect the performance of in-domain
downstream tasks. A similar observation is
also noted on SentEval dataset that assess ca-
pabilities of models in terms of surface, syntac-
tic, and semantic information through probing
tasks. Our study challenges the premise that
probing classifiers can reveal the fundamental
characteristics learned by large language mod-
els and is reflective of the downstream task
performance, via a case-study of LLMs tuned
for contact center domain.

1 Introduction and Related Works

Large Language models (LLMs) have made sig-
nificant strides in recent years, with their abil-
ity to generate fluent text on variety of inputs
(Wei et al., 2022; OpenAI, 2023). The strategy
of fine-tuning the general-purpose models with
domain-specific data has led to performance im-
provements in domains with LLMs such as BioGPT
(Luo et al., 2022) and Med-PaLM (Singhal et al.,
2023) in biomedical research, CodeT5 (Wang et al.,
2021), CodeLLaMa in coding (Rozière et al., 2023),

and Bloomberg-GPT (Wu et al., 2023) in finance,
demonstrating the need and advantage of domain
specific fine-tuning of LLMs. However, one do-
main that has received relatively little attention is
the contact center industry. Contact centers play
a crucial role in customer service and support for
various businesses. They address a broad spec-
trum of customer queries, from technical issues
to billing concerns. Incorporating LLMs into con-
tact center workflows have a potential to transform
the sector. However, noisy queries, spontaneous
conversational dynamics and domain specific un-
derstanding pose significant challenges for LLMs.
Adapting to these nuances is crucial for LLMs to
enhance their effectiveness in contact center.

Instruction fine-tuning (Longpre et al., 2023) has
emerged as one the promising approaches to de-
velop domain-specific LLMs. Assessing effective-
ness of LLMs often involves evaluating their per-
formance on specific downstream tasks. However,
probing the representations of the models on differ-
ent probing tasks provide a deeper insight into the
fundamental aspects of what language models cap-
ture and learn (Conneau et al., 2018). These tasks
have been instrumental in understanding the under-
lying characteristic of language models. Conneau
et al. (2018) introduced probing tasks in SentEval
to assess sentence embedding representations of
language models. Following this, studies like those
by Tenney et al. (2019) and Lin et al. (2019) have
applied layer-wise probing to BERT, shedding light
on its semantic and hierarchical processing capa-
bilities. While the majority of probing studies have
concentrated on general LMs, work by Kumar et al.
(2021) delved into the representation capabilities
of RoBERTa in contact center domain. Building on
this foundation, our study seeks to further under-
stand the intricacies of instruction-fine-tuned LLMs
in contact centers through specific research ques-
tions, aiming to uncover how these LLMs adapt
and learn within this specialized context:
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Figure 1: Quality of responses generated by CC LLMs versus OOB LLMs on downstream tasks in contact-center
domain using a scale of Extremely Bad response to Extremely Good response. We note that CC LLMs result in over
48% improvement in response acceptability (>=Acceptable) compared to OOB LLMs (Flan-T5, Llama-Instruct).

• RQ1: How effective is instruction fine-tuning in
enhancing LLMs’ performance on downstream
tasks within the contact-center domain?

• RQ2: What unique properties related to contact-
center interactions are acquired by LLMs fine-
tuned on CC instruction sets, compared to out-of-
the-box models?

• RQ3: How does the choice of model architec-
ture and size influence LLMs’ performance on
probing tasks?

• RQ4: Following domain-specific instruction
fine-tuning, what general-purpose fundamental
properties do LLMs retain?

2 Training Contact-Center LLM

In this work, we train a contact center-specific large
language model (CC-LLM) using a proprietary
dataset of ASR transcripts1 from various sectors.
Through instruction fine-tuning, we adapt out-of-
box (OOB) LLMs to the contact center conver-
sations, characterized by multi-party interactions,
disfluencies, and ASR errors. Our training method-
ology involves generating diverse instructions for a
wide array of tasks, such as call summarization, di-
alog question answering etc., to tailor the model’s
capabilities for contact center applications. More
details is mentioned in Section A.1.

3 Probing tasks

Probing tasks tailored to the contact center domain
provide valuable insights into the capabilities and

1We cannot release the dataset due to proprietary reasons.

limitations of LMs in this specific area, as demon-
strated in a previous study (Kumar et al., 2021). In
their work, the authors propose probing tasks to
investigate the conversational, channel, and ASR
properties of pre-trained LMs. We refer to these
probing tasks and utilize the details outlined in the
work to construct datasets to investigate the char-
acteristics of contact-center LLMs via the probing
tasks. Additionally, we also probe the LMs on a
benchmark probing task of SentEval suite (Con-
neau et al., 2018) that aims to uncover the linguis-
tic knowledge and underlying properties learned
by the model. SentEval suite consists of probing
tasks across the categories of surface information,
syntactic information and semantic information.

4 Implementation Details

We compare two model classes, namely Flan
(Longpre et al., 2023) and Llama (Touvron et al.,
2023) in the three categories: OOB foundation
model, OOB instruction model, and the CC instruc-
tion model. Following the previous work by Alain
and Bengio, 2017, we utilize one-layer linear MLP
classifier to train probing classifiers on the represen-
tations extracted from LLMs on the concatenated
input of {task-instruction, dialog/turn transcript}.
More details is outlined in Section A.2.

5 Results and Analysis

5.1 RQ1: Performance on downstream tasks
We perform a qualitative assessment of the re-
sponses generated by CC and OOB-LLMs by cate-
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OOB Foundation OOB Instruction-Tuned Contact Center

Probing
Tasks

OOB-
T5
(3B)

OOB-
T5
(11B)

OOB-
Llama
(7B)

OOB-
Llama
(13B)

OOB-
Flan-
T5
(3B)

OOB-
Flan-
T5
(11B)

OOB-
Llama-
Instruct
(7B)

OOB-
Llama-
Instruct
(13B)

CC-
Flan-
T5
(3B)

CC-
Flan-
T5
(11B)

CC-
Llama-
Instruct
(7B)

CC-
Llama-
Instruct
(11B)

Disfluency 72.12 71.97 68.30 71.57 71.72 73.03 68.88 69.81 72.24 72.89 69.16 67.83
Pause 80.90 80.70 77.79 81.25 82.09 83.45 80.45 80.25 81.78 83.00 76.85 79.24
Overtalk 86.95 89.55 82.79 81.59 89.45 90.70 83.25 77.70 87.80 88.19 72.55 78.92
Question 77.52 74.49 70.34 74.31 77.59 75.39 73.03 74.33 76.96 80.37 76.22 77.15
Speaker 80.95 81.96 77.54 82.70 82.55 83.39 80.26 80.21 82.11 82.72 78.70 79.94
Resp. Length 67.65 69.35 66.23 69.09 69.20 69.66 66.03 67.29 68.88 68.79 67.27 67.95
Turn Taking 68.30 69.14 65.01 69.33 64.30 67.66 69.62 68.65 66.83 69.59 62.50 63.45
Token Multi 52.45 49.32 40.71 42.64 59.91 63.07 43.02 40.60 59.31 60.73 41.62 42.85
Token Binary 60.50 60.48 50.07 54.93 68.34 73.12 49.84 48.77 70.11 70.07 49.88 50.14

Avg. Score 71.93 71.88 66.53 69.71 73.90 75.50 68.26 67.51 74.00 75.15 66.08 67.50

Table 1: Benchmarking CC and OOB LLMs in terms of Macro F1 evaluated on contact-center probing tasks.

gorizing the responses generated by each of them
into one among following seven classes: Extremely
Good, Very Good, Good, Acceptable, Bad, Very
Bad, and Extremely Bad. The annotation process
in detail is mentioned in Section A.3. We analyze
the responses generated by the LLM groups, and
observe significant difference in the distribution
of quality of responses (refer Figure 1). Specifi-
cally, responses generated by OOB-T5 (11B) (Raf-
fel et al., 2020), OOB-Flan-T5 (11B), OOB-Llama
(13B) and OOB-Llama-Instruct (13B) models are
consistently skewed towards the lower end of the
quality spectrum. A majority of these responses
fall within the Bad to Extremely Bad categories,
indicating that without specific fine-tuning, OOB
models struggle to generate satisfactory responses
for contact center specific instructions. Conversely,
responses generated by CC-Flan-T5 (11B) and CC-
Llama (13B) models exhibit a notable shift towards
higher quality categories. A substantial portion
of responses generated by these models lands in
the Acceptable to Extremely Good range, demon-
strating their ability to comprehend and generate
contextually relevant responses for contact center
interactions. Specifically, 91% of responses from
CC-Flan-T5 and 87% of responses from CC-Llama
has score >=Acceptable compared to 22% and 39%
from respective OOB instruction models. This im-
provement in performance can be attributed to the
fine-tuning process with contact center data.

5.2 RQ2: Contact-center probing tasks

In order to investigate the conversational properties
learnt by CC-LLMs that lead to performance supe-
rior to OOB-LLMs, we evaluate these models on
the probing tasks in Section 3 and per the method-

ology described in Section A.2. Although our prob-
ing tasks are carefully designed to uncover the la-
tent knowledge within these models, our findings
in Table 1 did not conclusively favor either type of
LLM. Specifically, we observe a mixed trend where
1 out of 4 CC models, CC-Flan-T5 (3B) have higher
average score and 2 out of 4 models, CC-Flan-T5
(11B) and CC-Llama (13B), have marginally lower
(< 0.5%) average score compared to their corre-
sponding OOB instruction-tuned counterparts. We
also note a similar observation when comparing
CC-LLMs with OOB foundation models wherein
3 out of 4 CC-LLMs have comparable or better
average score. This intriguing result prompts us to
delve deeper into several critical aspects of LLMs
and their fine-tuning process prompting us to put
forth following opportunities for exploration. Prob-
ing via Hidden Layer Representation: While this
method has been widely employed (Kumar et al.,
2021; Fayyaz et al., 2021; Thukral et al., 2021) to
unearth linguistic properties by language models,
we question whether it is sufficiently nuanced to
capture conversational intricacies. It is conceivable
that the differences we seek are not embedded in
the representations extracted but are instead con-
tingent on the decoding strategy employed during
the language generation process. This insight un-
derscores the pivotal role of decoding strategies
in converting latent embeddings into coherent se-
quences of tokens that reflect both the given instruc-
tion and input. It prompts us to consider that in-
structing and fine-tuning a general-purpose model
and a domain-specific model may ultimately hinge
on decoding proficiency rather than vastly diver-
gent learned representations. We believe that this
calls for a deeper investigation into designing right
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OOB Foundation OOB Instruction Tuned Contact Center

Probing Tasks OOB-T5
(11B)

OOB-Llama
(13B)

OOB-Flan-
T5 (11B)

OOB-Llama-
Instruct (13B)

CC-Flan-
T5 (11B)

CC-Llama-
Instruct (13B)

Bigram Shift 92.48 85.66 94.19 85.59 92.17 76.79
Coordination Inversion 79.36 68.65 77.59 71.68 76.59 70.30
Object Number 82.70 73.90 89.20 74.20 86.90 76.49
Odd Man Out 73.69 66.09 74.99 66.90 72.99 63.51
Past Present 88.99 84.17 89.19 85.19 89.59 82.98
Sentence Length 100.00 100.00 100.00 100.00 100.00 100.00
Subj Number 86.19 79.49 92.09 79.66 90.29 81.57
Top Constituents 68.85 73.98 74.65 67.44 75.78 58.55
Tree Depth 36.02 28.73 37.24 32.65 38.49 27.92

Average Score 78.70 73.41 81.02 73.70 80.31 70.90

Table 2: Benchmarking CC and OOB LLMs in terms of Macro F1 evaluated on SentEval probing tasks.

probing strategies for recently popular generative
language models trained via instruction fine-tuning.
Re-designing probing tasks: The existing set of
probing tasks, although comprehensive, may not
fully encapsulate the diverse landscape of conver-
sational properties. Conversations are inherently
dynamic, context-dependent, and influenced by var-
ious factors, including the interplay between partic-
ipants, the history of the conversation, long-context
dependencies and the evolution of topics. However
the probing tasks in Kumar et al. (2021) are de-
signed for single utterance inputs. Such scenario
may not fully capture these dynamic aspects of con-
versation. It is plausible that more specific probing
tasks tailored to the characteristic of contact center
interactions are needed to fully conclude the learn-
ings of the LLMs. These tasks should ideally mir-
ror the challenges posed by real-world downstream
applications that help diagnose the contextual prop-
erties and the interplay in the conversations.

5.3 RQ3: Model architecture and model size

From our results in Table 1, we note that T5 models
consistently outperform Llama models across the
three settings, OOB Foundation, OOB Instruction-
tuned and Contact Center, highlighting that T5’s
encoder-decoder architecture has better learnt to
comprehend conversational properties compared to
Llama’s decoder only architecture. Similarly, in
downstream task performance (Section 5.1), CC-
Flan-T5 (11B), although smaller in size, outper-
forms CC-Llama (13B). This outcome was surpris-
ing, especially considering Flan’s smaller size and
the Llama model’s widespread popularity in the
open-source community. It leads to question the
impact of model architecture versus size in accu-
rately comprehending the conversational contexts.

5.4 RQ4: General purpose probing tasks
Post fine-tuning on contact center instruction data,
CC-Flan-T5 and CC-Llama show a reduced de-
pendency on fundamental linguistic properties as
evidenced by the decreased average score on Sen-
tEval probing suite. Consistent with prior findings,
the Llama models exhibits a lower score compared
to Flan models on general purpose probing task
as well. Additionally, we note that while perfor-
mance of CC-Flan-T5 is lower than OOB-Flan-T5
by 0.7%, this drop is 2.8% in Llama. This again
suggests distinct learning mechanisms between
encoder-decoder and decoder-only architectures,
warranting further investigation in the community.

6 Conclusion

Our study contributes to the growing body of re-
search on fine-tuning LLMs with domain-specific
instructions. In this work, we demonstrate that
CC-LLMs, CC-Flan-T5 and CC-Llama, exhibit su-
perior performance on downstream tasks within
the contact center domain. This finding reinforces
the effectiveness of fine-tuning LLMs with domain-
specific instructions, as expected. However, our
comparison between OOB and CC models on the
probing task reveals intriguing and unexpected ob-
servations. While the performance of CC-LLMs
are much superior to the OOB-LLMs on down-
stream tasks, the performance of probing classifiers
across the models shows no substantial differences.
This questions the efficacy of traditional probing
mechanisms and probing tasks in understanding
the LLMs. We also observe that the decoder model
(Llama-13B) consistently underperforms compared
to the lower sized encoder-decoder model (Flan-
11B) in all experiments This prompts more research
into the learning dynamics of these architectures.
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Limitations

While our study provides valuable insights into
training a contact-center specific language model
and conducting linear edge probing, it is impor-
tant to acknowledge certain limitations in our work.
Firstly, our exploration of language models is lim-
ited to a couple of models belonging to two ar-
chitectures, one encoder-decoder and one decoder
style. We choose these models on the basis of their
effectiveness across different tasks as has been sur-
faced up in the research community, however, the
trends we observe may not necessarily hold true
for other models within the same class of archi-
tecture. Secondly, our work is based on the prob-
ing methodology of linear edge probing, which
applies a one layer linear MLP on hidden repre-
sentations. The performance and observations on
probing tasks may differ if a different probing setup,
such as an attention-based probing, is used. It is
crucial to explore alternative probing methods to
gain a more comprehensive understanding of the
language model’s characteristics. Moreover, the
set of probing tasks we utilize may not cover the
full range of characteristics that a language model
can encode. Additional probing tasks can be con-
sidered to do a more extensive study of the model’s
capabilities. Lastly, our research is conducted on
a proprietary dataset that cannot be released. This
limits the ability of other researchers to directly
compare their results or replicate our experiments.
Access to the dataset is crucial for future work in
this area, and we encourage the development of
publicly available datasets for domain-specific lan-
guage models.

Despite these limitations, our study underscores
the importance of domain-specific instruction mod-
els and highlights the limited capacity of general-
purpose language models to meet domain spe-
cific use-cases. Furthermore, we pose thought-
provoking questions that can guide further research
and contribute to the advancement of the research
community’s understanding of the properties en-
coded in generative language models in the new
era.
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A Appendix

A.1 Training Contact-Center
Instruction-Tuned LLM

Numerous closed-source (Brown et al., 2020; Ope-
nAI, 2023) and open-source (Touvron et al., 2023)
general purpose LLMs have demonstrated abilities
to address a diverse range of tasks in natural lan-
guage processing. However, specialised models
like CodeT5 (Wang et al., 2021), StarCoder (Li
et al., 2023), Med-PaLM (Singhal et al., 2023),
BioGPT (Luo et al., 2022), Galactica (Taylor et al.,
2022), BloombergGPT (Wu et al., 2023) empha-
size the significance of domain-specific models in
achieving exceptional performance within fields
like coding, bio-medicine, science, and finance.
These models excel at producing high-quality out-
puts and tackling domain-specific challenges, illus-
trating the need of tailored LMs in diverse domains.

Inspired by the above works, we leverage in-
house dataset2 of conversational interactions be-
tween agents and customers to train a CC-specific
LLM (CC-LLM) to model the properties of CC
conversations. Due to the spontaneous nature of
these conversations, the data is often nuanced with
characteristics such as multi-party speakers, disflu-
encies, overtalks, call transfers, etc. Furthermore,
the data is obtained post transcription from an au-
tomatic speech recognition (ASR) system, thus in-
troducing the challenge of dealing with ASR errors
such as insertions, deletions, and substitutions, in
turn establishing the need for a model robust to the
conversational properties. In this work, we adopt
an approach of instruction fine-tuning (Wei et al.,
2022; Longpre et al., 2023), which is fine-tuning
the language model on a mixture of tasks expressed
via natural language instructions.

The process of fine-tuning a LM for contact-
center applications involves three main compo-
nents: a contact-center dataset, instructions spe-
cific to contact center use-cases, and a language
model. To curate the contact-center dataset, we
collect ASR transcripts of English conversations
between agents and customers from various sectors,
such as e-commerce, ed-tech, logistics, etc. We ob-
serve an average word-error-rate (WER) of 14.3 on

2We cannot release the dataset due to proprietary reasons.

these transcripts. The next step is to gather the in-
structions and their corresponding responses from
the collected calls. We employ three processes to
obtain these instructions:

• Initially, we utilize our previously annotated
data from use-cases such as sentiment detec-
tion, intent classification, entity recognition,
and question answering. We reformat this data
into triplets containing an {instruction, input,
output}. The instructions and outputs for these
tasks are aggregated through a semi-automatic
process involving human intervention. We
leverage the human-in-the-loop approach to
generate instructions and corresponding re-
sponses for the given task.

• Following this, we expand the instructions
by employing a paraphrasing process. This al-
lows us to generate multiple styles of the same
instructions, thereby increasing the diversity
of the instruction set.

• In addition to using the annotated data from
the past, we also gather new sets of instruc-
tions by instructing human annotators to gen-
erate relevant questions that can be asked and
answered during a call. Similar to the previous
step, we expand these generated instructions
using the paraphrasing process.

To assist the annotators in generating these tasks,
we provide them with a list of insights that we
aim to extract from the calls to address various
use-cases. Examples of such insights include un-
derstanding and tracking customer and agent behav-
iors, following the steps taken in the call to resolve
customer issues, and identifying different objec-
tions raised by the customers. The overall corpus is
constructed with a diversity of full call transcripts,
segmented call transcripts and individual speaker
turns. On an average each task-instruction is para-
phrased into 50 alternate instruction to make the
model generalizable to unseen variations.

Here are some important statistics on the inter-
nally curated contact-center dataset:

• Total corpus size: 110030
• Number of tasks: 59
• Number of instructions: 2468

Some example tasks considered in the dataset in-
clude reason for call, call summarization, seg-
mented call summarization, confirmed next steps,
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Task Task Instruction

Call Reason What is the primary call intent
Call Summarization Summarize the dialog
Segmented Call Summarization Summarize a segmented portion of the dialog
Confirmed Next Steps List the confirmed next steps if any in the dialog
Question-Answering (QA) Answer the question based on context present in the dialog
Entity Extraction List the entities present in the dialog
Topic Segmentation Segment the dialog into coherent topics
Text Rewriting (QA) Rewrite a given piece of text in a fluent and grammatically correct form
Sentiment Classification Classify the sentiment of the customer in the call among positive, negative and neutral.

Table 3: Definitions of representative tasks considered in the internally curated contact-center dataset. These tasks
were utilized as the downstream tasks for RQ1 (Section 5.1).

Question-Answering (QA), entity extraction, topic
segmentation, text rewriting, sentiment classifica-
tion. Refer to Table 3 for instructions used for these
tasks.

Further, we fine-tune OOB-LLMs that are free
for commercial use on the curated dataset. Specifi-
cally, we obtain CC-Flan-T5 model by fine-tuning
the corresponding sized OOB-Flan-T5 model, and
obtain CC-Llama model by fine-tuning the corre-
sponding sized OOB-Llama-Instruct model. The
models were trained on 8×A100 40GB GPUs
(p4d.24x larger) using Deepspeed 3 library. The
models were fine-tuned for a total of 2 epochs. The
training time per epoch for Flan-T5 (11B) model
is 32 hours, while it take 17 hours to train Llama
(13B) for each epoch.

A.2 Implementation Details for Probing Setup
(RQ2, RQ3, RQ4)

In this section, we provide a detailed account of the
implementation specifics related to our investiga-
tion into LLMs fine-tuned on CC instructions.

• Representation Extraction: To initiate the
process, we extract representations from the
LLMs, harnessing their hidden states to en-
capsulate the contextual nuances present in
the transcripts as well as instructions which
are indicative of the tasks they are expected to
perform as demonstrated in a previous study
(Amini and Ciaramita, 2023). Our approach is
different from the authors in the sense that we
use a linear probe as opposed to an attentional
probe which is explained in more detail later
in this section. For encoder-decoder models,
we tap into the final encoder layer to obtain
representations for each token within the in-
put prompt. We adopt a suitable aggregation
method depending on the characteristics of

3https://github.com/microsoft/DeepSpeed

the specific probing task. For single-token
probing tasks, we use the representation of
the target token. For other tasks, we obtain
an average of representations of all input to-
kens. On the other hand, in decoder-only
models, we utilize the last hidden layer of
the decoder block. The aggregation approach
for decoder-only models aligns with encoder-
decoder models for single-token probing tasks
but relies on the last token’s representation
for other tasks. This difference stems from
encoder-decoder models being bidirectional,
making each token representation contextual
to the entire sequence. In contrast, decoder
models process tokens sequentially from left
to right, making each token’s representation
contextual only to the tokens before it. There-
fore, we consider the last token’s representa-
tion as it encompasses information from entire
sequence.

For encoder-decoder models, the embedding
dimension spans 512, 1024, 2048, and 4096
tokens, while for decoder-only models, it en-
compasses 32001 and 65024 tokens. The
different embedding dimensions for the two
classes of models stems from the difference
in model architectures and context lengths
employed during pre-training and fine-tuning.
We employed a context length of 512 for all
models when extracting representations due
to the input prompts having a maximum se-
quence length of 507 tokens across probing
tasks. All models receive an input consisting
of a prompt, which is a combination of tran-
script generated from the input dialog, and an
instruction that defines the probing task being
conducted.

• Hyperparameters: Post representation ex-
traction, we employ a Multilayer Perceptron
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(MLP) comprising a single hidden layer, uti-
lizing the extracted representations as fea-
ture inputs for probing. We adopt a sig-
moid and softmax activation function for bi-
nary and multi-class classification respec-
tively. We perform a hyper-parameter sweep
over the range - number of neurons in the
hidden layer ∈ {50, 100, 150, 200}, learning
rate ∈ {1e − 3, 1e − 2, 5e − 2}, batch size
∈ {4, 8, 16, 32, 64} and choose the best set-
ting as evaluated on eval set. Additionally, we
employ Adam optimizer with a dropout rate
of 0.3, incorporate a weight decay of 0.00001,
and set the maximum number of epochs to 20.
Moreover, all experiments include early stop-
ping and check-pointing for the best model.

• Compute Infra: Our experiments comprising
representation extraction and probe classifier
training were conducted on an AWS cloud in-
stance, specifically, the p4d.24xlarge instance,
equipped with eight GPUs, each boasting 40
GB of memory. The process of extracting
representations is computationally intensive,
chiefly because of the substantial embedding
dimensionality. On average, a single run of
the representation extraction job for decoder-
only models of size 13 billion parameters de-
mands 8-10 hours for completion, whereas the
corresponding timeframe for encoder-decoder
models of size 11 billion parameters is con-
siderably shorter, ranging from 1-2 hours. In
contrast, training of probing classifiers present
a lighter computational load and general tak-
ing around 0.5 hours for each classifier.

• Sample instructions used for contact-center
probing tasks

– Disfluency Detection: Is the given spo-
ken utterance disfluent?

– Pause Classification: Does the speaker
take long pauses while speaking?

– Overtalk Detection: Are two speakers
talking over each other?

– Question Classification: Did the speaker
ask any question?

– Speaker Role: Who among the agent or
customer is the speaker for a given utter-
ance?

– Response Length: Is the expected re-
sponse to current utterance is short or
long?

– Turn Taking: Has speaker completed its
turn?

– Token Multi: What is the error category
of word {ref_word} among insertion er-
ror, substitution error or no error?

– Token Binary: Is the word {ref_word}
correct word in the given input

As mentioned in the previous section,
these instructions are concatenated with
the input (dialog or turn transcript) to ob-
tain the representations for training the
probing classifiers.

A.3 Annotation process for evaluating model
responses on contact center specific
downstream tasks in RQ1

In the execution of this study, an annotation proto-
col was established, aimed at quantifying the qual-
ity of the response on the parameters of consistency,
relevance, and fluency of responses generated by
the large language models. Annotation guidelines
were crafted, incorporating examples to illustrate
the application of quality metrics, ensuring unifor-
mity in annotator interpretation and application of
these criteria.

To prepare for this task, 7 in-house annotators
were subjected to a two-week training, designed
to familiarize them with the nuances of instruction
following large language models and interpreta-
tion of the response quality against the input of a
call transcript and an instruction. This training uti-
lized a dataset distinct from the evaluation corpus
to prevent overlap and bias. Throughout the annota-
tion process, the origins of the model outputs were
anonymized to preclude annotator bias towards any
specific model. Annotation agreement was moni-
tored and evaluated through a cross-annotator re-
view mechanism, yielding a Fleiss’ Kappa score of
0.59. This score signifies moderate inter-annotator
agreement, validating the reliability of the annota-
tion process post-training.

Upon completion of the training week, the eval-
uation corpus was allocated among the annotators,
where each annotator had to go through all data
points across all models. The final response quality
was judged on the basis of majority vote of the
labels provided by the annotators.
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Abstract
Legal judgment prediction encompasses the
automated prediction of case outcomes by lever-
aging historical facts and opinions. While this
approach holds the potential to enhance the
efficiency of the legal system, it also raises
critical concerns regarding the perpetuation of
biases. Abstract Meaning Representation has
shown promise as an intermediate text represen-
tation in various downstream NLP tasks due to
its ability to capture semantically meaningful
information in a graph-like structure. In this pa-
per, we employ this ability of AMR in the legal
judgement prediction task and assess to what
extent it encodes biases, or conversely, abstracts
away from them. Our study reveals that while
AMR-based models exhibit worse overall per-
formance than transformer-based models, they
are less biased for attributes like age and defen-
dant state compared to gender. By shedding
light on these findings, this paper contributes
to a more nuanced understanding of AMR’s
potential benefits and limitations in legal NLP.

1 Introduction
Transformer-based language models such as BERT,
T5, and GPT have ushered in a new era in NLP.
These language models have demonstrated excep-
tional proficiency in comprehending text with their
non-trivial degree of knowledge in every field, pro-
pelling them to the forefront of various language-
related domains (Chalkidis, 2023). However, de-
spite their impressive performance, language mod-
els still face challenges in dealing with context-
dependent language, biases in data, and a lack of
interpretability (Thakkar and Jagdishbhai, 2023).
Such limitations make them unsuitable for domains
like legal NLP, which have an abundance of com-
plicated, lengthy, and contextual legal documents.
Thus, a system that can capture the intricate seman-
tics of these documents is needed. Semantic repre-
sentation frameworks have proven to be a promising

∗Work done while at Manipal Institute of Technology

Text

Mr. T was born in 
1949 in country A. 
He robbed Mr. J.

( z0 /  mul t i - sent ence
    : snt 1 ( z1 /  bear - 02
              : ARG1 ( z2 /  per son
                        : wi k i  -
                        : name ( z3 /  name
                                  : op1 " T" ) )
              : t i me ( z4 /  dat e- ent i t y
                        : year  1949)
              : l ocat i on ( z5 /  count r y
                            : wi k i  -
                            : name ( z6 /  name
                                      : op1 " A" ) ) )
    : snt 2 ( z7 /  r ob- 01
              : ARG0 ( z2)
              : ARG1 ( z9 /  per son
                        : wi k i  -
                        : name ( z10 /  name
                                   : op1 " J. " ) ) ) )

Legal Documents

AMR-Parsed Data

AMR Parser

Legal 
Judgement 
Prediction

Figure 1: Abstract Meaning Representation in legal
judgement prediction (LJP). Here, we demonstrate how
AMR parses sensitive attributes like age, gender identity
and defendant state as well as its ability to resolve co-
referential pronouns like he, abstracting away gender.

solution, as they allow for a more nuanced under-
standing of language and can capture the complex
relationships between legal concepts (Abend and
Rappoport, 2017; Žabokrtský et al., 2020). Ab-
stract Meaning Representation (Banarescu et al.,
2013), one such framework, represents sentence-
level meaning in a directed graph-based structure,
with nodes representing concepts and edges repre-
senting relationships between them. This allows
for a more accurate and comprehensive analysis
of legal language, which is crucial in fields such
as criminal and contract law, where the slightest
of ambiguities can have significant consequences.
However, limited knowledge exists about how use-
ful these representations are in legal judgement
prediction and whether they capture cultural and
societal biases along with significant information.

This paper conducts a theoretical analysis of
Abstract Meaning Representation, scrutinizing its
potential in the realm of law. More concretely, it
investigates the critical question of whether AMR
can help produce fair legal decisions and reports
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potential biases that may arise from its use. This
evaluation helps us determine if AMR is a suitable
intermediate representation for legal judgement pre-
diction. We conduct our experiments on the ECtHR
Dataset (see Section 4.1), a benchmark for legal
judgement prediction which has been annotated
with demographic and diversity labels. It proves to
be a primary choice due to its inclusion of these la-
bels for fairness evaluation. We utilize the macro F1
score as an evaluation metric for our experiments.

Contributions. We compare AMR’s perfor-
mance parity across different attributes of the EC-
tHR dataset, including age, gender identity, and
defendant state. Our findings reflect that AMR
is unable to produce fair outcomes and acts as a
random baseline here. While it does report less
group disparity for demographic attributes like age
and state, it exhibits a low overall performance
and a lower worst-case performance. We also
release AMR-based models (LegalBERT and Dis-
tilRoBERTa) to enable further exploration of AMR
in the legal domain.1

2 Related Work
While previous research has predominantly focused
on AMR parsing of legal documents (Trong and
Le, 2018; Vu et al., 2022; Dias et al., 2022), lim-
ited attention has been given to assessing AMR’s
performance in legal tasks. A study by Schrack
et al. (2022) explores AMR’s ability to identify log-
ical relationships in legal MCQA tasks, revealing
challenges posed by AMR parsing. In contrast, our
work is the first to investigate whether AMR repre-
sentations capture social biases alongside linguistic
information, emphasizing the need to scrutinize
AMR input representations for potential biases in
legal judgement prediction tasks.

Research on fairness in machine learning mod-
els within the legal domain has also been limited.
Previous studies (Angwin et al., 2016; Rice et al.,
2019; Wang et al., 2021; Baker Gillis, 2021; Gu-
musel et al., 2022; Matthews et al., 2022; Wu et al.,
2020) have highlighted racial and gender biases
in the legal system and language models. More
recently, Chalkidis et al. (2022) introduced the Fair-
Lex benchmark to assess the fairness of language
models. In our study, we leverage one of these
datasets to examine whether AMR-based models
can effectively mitigate bias, addressing the critical
issue of bias reduction in legal language processing.

1 https://github.com/SupritiVĳay/AMR-for-Legal-AI.

3 Abstract Meaning Representation

Abstract Meaning Representation is a structured
framework that utilizes graph-like structures to rep-
resent sentence meaning, ensuring interpretability
for machines and humans. These graphs, con-
forming to rooted, directed, and acyclic properties,
are independent of semantics, grounded in syntax,
and annotated using PENMAN notation for textual
representation.

For example, the sentence "Mr. T was born in
1949 in country A. He robbed Mr. J.", as shown in
Figure 1. Here, the sentence can be seen divided
into two sub-sentences (snt1 and snt2). In snt1, the
event of "being born" (bear-02) is associated with
Mr. T along with the : 𝑡𝑖𝑚𝑒 and : 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 of birth.
While in snt2, the event of "robbing" (rob-01) is
described. Here, AMR can be seen establishing
relationships between entities, connecting Mr. T to
both the birth and the act of robbery.

4 Experimental Setup

4.1 Dataset and Metrics

The European Court of Human Rights (ECtHR)
dataset (Chalkidis et al., 2021) is a text classifica-
tion dataset annotated with multiple labels, which
map human rights articles potentially violated in
each case. It contains 11k legal cases and judge-
ments, which are split into training (9k, 2001–16),
development (1k, 2016–17), and test (1k, 2017–19)
sets. Additionally, it includes distinct group tags
like age, gender and defendant state for each case
(See distribution in Appendix A.1). Due to its
large sample size, diverse legal texts, and broad
attribute coverage, ECtHR is ideal for assessing
bias in AMR-based legal judgment prediction.

For a fair comparison with prior work, we adopt
the same metrics used by Chalkidis et al. (2022).
These include the average macro-F1 score (𝑚𝐹1),
the group disparity (𝐺𝐷), and the worst-group
performance (𝑚𝐹1𝑊 ). The 𝑚𝐹1 represents the
average macro-F1 score across different groups,
providing a comprehensive measure of algorithm
performance. The 𝐺𝐷 is calculated as the group-
wise standard deviation, indicating the extent of
disparity among the groups. Additionally, the worst-
group performance (𝑚𝐹1𝑊 ), represents the lowest
macro-F1 score among the individual groups. This
allows us to gauge how poorly the most biased
groups may perform.
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4.2 AMR Parsing
AMR parsing has been considered a significant bot-
tleneck (Schrack et al., 2022), especially concerning
the loss of information in long and multisentence
paragraphs. Hence, to overcome this challenge, we
utilize the following two pre-processing techniques
for our experiments.

1. Splitting before parsing (SbP): This ap-
proach involves splitting each case in the dataset
into sentences before parsing, resulting in single-
sentence graphs, as shown in Figure 3. These
graphs are then combined to form a multi-sentence
graph for a case. While this approach offers advan-
tages in scalability, it may have limitations in terms
of maintaining coherence across paragraphs.

2. Splitting after parsing (SaP): In contrast,
this alternative approach focuses on creating multi-
sentence graphs first, which are then linearized
and split into 512 token segments to be sent to
the encoder. These graphs capture interdependen-
cies and connections between sentences, enhancing
their richness compared to pooling single-sentence
graphs. However, it may require more computa-
tional resources and time, as illustrated in Table 3.

We utilise the SpringAMR parser (Blloshmi et al.,
2021) for parsing documents due to its strong and
robust parsing quality. It employs a simple Seq2Seq
architecture employing a pretrained BART model,
trained on the Text-to-AMR task. We further ex-
plore the above techniques quantitatively and quali-
tatively in Appendix C.1 & C.2.

4.3 Baselines
To classify AMR-parsed graphs, we adopt a hierar-
chical BERT-based architecture similar to Chalkidis
et al. (2022), which has been established as the
benchmark model for fairness evaluation in legal
datasets. This architecture effectively captures
the contextual dependencies in legal documents
by giving utmost attention to both paragraph and
document-level representations. A detailed expla-
nation of fine-tuning the models can be found in
Appendix B. Further, we also reproduce the re-
sults of the hierarchical architecture with text-only
input to evaluate the performance of AMR-based
techniques in the subsequent experiments.

4.4 AMR-based models
We utilize legalbert-base-uncased and
distilroberta-base, classifiers trained on tex-
tual data, as the primary models in the hierarchi-

cal architecture. We also execute continued pre-
training on AMR graphs to enhance the perfor-
mance of transformer models, specifically Legal-
BERT. We name this model as Dataset-specific
LegalBERT𝑆𝑀𝐴𝐿𝐿 . Through this, we examine
whether pre-training on AMR graphs captures in-
tricate structural and semantic intricacies inherent
to legal language and performs better than other
classifiers. We utilize the LegalBERT model as
the backbone for pretraining. This model is pre-
trained using the ECtHR training subset, employing
a sequence length of 128 sub-words for 10 epochs.
The AdamW optimizer is used with a maximum
learning rate of 1𝑒 − 4 and a 10% warm-up ratio.

5 Result Analysis

5.1 Dataset-specific vs Basic Models
In this subsection, we compare the performance of
dataset-specific LegalBERT and basic LegalBERT
within AMR SaP. The mF1-scores in Table 1 show
a significant performance decline with pre-training,
attributed to introduced noise and biases inherent
in the dataset. In contrast, the basic LegalBERT
model, which is trained directly on the specific
legal classification task without the additional step
of pre-training, can solely focus on learning from
the task-specific data. Additionally, we observe that
a generalized adaptation to legal knowledge may be
more effective than attuning a pre-trained model on
the experimental dataset. The vast overview of legal
knowledge assists the basic model in acquiring a
strong foundation in legal language understanding,
allowing it to outperform the dataset-specific model.

5.2 Fairness Analysis
Analysing the results presented in Table 1,
it becomes evident that the benchmark
DistilRoBERTa𝐹𝑎𝑖𝑟𝐿𝑒𝑥 model displays no-
table group disparities, particularly for Defendant
State and Applicant Age. In contrast, most
AMR-based models exhibit reduced group
disparities in these attributes. However, when it
comes to Applicant Gender, AMR-based models
consistently demonstrate higher group disparities,
with LegalBERT𝑆𝑀𝐴𝐿𝐿 (AMR SbP) recording
the highest 𝐺𝐷 for it. This phenomenon may be
attributed to the parsing of individual sentences,
assigning equal weight to all words, including
gendered ones, potentially perpetuating implicit
biases within the model. In the broader context,
we identify a recurring trend where AMR-based
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ECtHR (ECHR Violation Prediction)

Language Models Average mF1 Defendent State Applicant Gender Applicant Age
mF1 ↑ GD ↓ mF1𝑤 ↑ mF1 ↑ GD ↓ mF1𝑤 ↑ mF1 ↑ GD ↓ mF1𝑤 ↑

Text Based Models
DistilRoBERTa 62.9 63.3 2.1 61.2 59.0 2.0 56.3 61.3 2.5 58.5
DistilRoBERTa𝐹𝑎𝑖𝑟𝐿𝑒𝑥 NA 53.2 8.3 44.9 57.5 3.1 54.4 54.1 5.9 46.2
AMR Split before Parsing

LegalBERT𝑆𝑀𝐴𝐿𝐿 54.8 50.5 1.2 49.3 47.1 5.4 40.4 52.4 4.8 47.2
AMR Split after Parsing

LegalBERT𝑆𝑀𝐴𝐿𝐿 57.3 59.2 0.3 58.8 56.0 3.5 52.3 56.5 3.7 50.1(
Dataset-specific
LegalBERT𝑆𝑀𝐴𝐿𝐿

)
44.2 40.4 5.3 35.0 32.1 2.5 28.9 33.3 0.8 31.9

DistilRoBERTa 37.6 36.5 0.7 35.7 31.6 4.4 28.3 36.2 5.4 27.6

Table 1: Test results for different baselines and models per ECtHR attribute. We report the average performance
across groups (mF1), the group disparity (GD), and the worst-group performance (mF1𝑤). ↑ denotes that higher
scores are better and ↓ vice versa. We report results by Chalkidis et al. (2022) as DistilRoBERTa𝐹𝑎𝑖𝑟𝐿𝑒𝑥 .

models exhibit higher fairness levels compared
to text-based models. However, this advantage
is offset by lower 𝑚𝐹1 scores and overall perfor-
mance metrics. Notably, a subset of AMR-based
models, primarily LegalBERT𝑆𝑀𝐴𝐿𝐿 (AMR
SbP), approaches the performance of text-based
models but lacks consistency in addressing group
disparities across all attributes.

Digging deeper into worst-case performance, we
notice that while AMR models inherently prioritize
fairness, their lower worst-case performance scores
render them impractical for real-world applications.
This raises a crucial question: does a model with
greater fairness, at the cost of overall performance,
hold value?. In essence, a model with zero perfor-
mance yields zero group disparity. This brings to
light a paradox: the fairness demonstrated by AMR
models, despite having low group disparity, takes
on the semblance of a random baseline due to its
lack of substantial performance metrics. Conse-
quently, we assert that AMR may not be the optimal
choice for ensuring fairness in practice.

5.2.1 Potential Biases
As illustrated in Table 1, we observe that AMR-
based models demonstrate lower group disparity
than the benchmark DistilRoBERTa𝐹𝑎𝑖𝑟𝐿𝑒𝑥 model
for defendant state and applicant age and higher
group disparity for Applicant Gender. This could
be attributed to the fact that other group identifiers,
such as defendant state and age, may not be directly
linked to the individual during AMR parsing.

For example, the sentence "Mr. T was born in
1949 in country A. He robbed Mr. J." as represented
in Figure 1. Here, the accurate recording of the

applicant’s country (location-𝑧5) and year (time-
𝑧4) establishes a direct link with :ARG1-𝑧1, while
coreference in 𝑧7 is directly associated with :ARG0-
𝑧2. This distinction implies that while coreferences
consistently refer to the individual, contextual de-
tails such as time and location are connected to
the event itself. Consequently, the presence of pro-
nouns in the case establishes a direct relationship
between the gender and personal information of
the individual. This dissociation between these
contextual elements and the individual prevents the
subsequent classification model from making infer-
ences based on these attributes. As a result, age and
defendant state exhibit lower group disparity, while
gender disparity remains consistent throughout the
analysis.

6 Conclusion

In this paper, we explore the application of Abstract
Meaning Representation (AMR) in predicting legal
judgments. Our analysis has revealed both the
benefits and challenges associated with using AMR
in this context. While AMRs offer the capability
to capture the semantics of legal texts and enable
automated analysis and decision-making, providing
a promising avenue for fair judgement still remains
ambiguous in domains like Applicant Gender. Even
so, it clearly demonstrates its efficacy in other group
disparities like Age and Defendant State. However,
due to their poor performance and low mF1 scores,
we conclude that while AMR-based models are
fairer by design, they are unsuitable for ensuring
fairness in the real world.
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Limitations

We experimented with one AMR parser (with two
sentence-splitting strategies), SpringAMR. While
this is a widely used and highly accurate AMR
parser, other parsers might exhibit different behavior
with respect to encoding demographic attributes
such as those we investigate here.

Furthermore, while AMR is the most popular
meaning representation framework, other mean-
ing representation frameworks may again behave
differently. For example, UCCA (Abend and Rap-
poport, 2013) represents semantic structure without
attempting to capture lexical disambiguation at all.

Finally, we only investigated one of the datasets
included in FairLex, namely ECtHR, targeting the
age, defendant state and gender attributes. Different
conclusions may be drawn regarding other datasets,
tasks and attributes—for example, the SCOTUS
dataset indicates whether the respondent is a person,
public entity, organization, facility or other. FSCS
contains the language and region of the case. Fur-
ther investigation is required to better understand
and address the limitations of what is represented
in the parsed AMRs and what is not to ensure fair
and accurate predictions across all demographic
groups.

Ethics Statement

Automating legal judgement prediction raises ethi-
cal implications and warrants a thorough examina-
tion of potential biases. Our AMR-based models
have shown promising improvements in group dis-
parity. However, the parsed AMR may nevertheless
unintentionally overlook or misrepresent certain
group identifiers, leading to biased predictions we
are not yet aware of. Furthermore, the remain-
ing performance disparities observed across demo-
graphic groups, particularly in Applicant Gender,
highlight the need for continuous evaluation, im-
provement in fairness considerations and stronger
guarantees before deploying such models in legal
contexts.

The ECtHR dataset is released as part of FairLex
under the CC-BY-NC-SA-4.0 license. We only use
it for our experiments and do not redistribute it.
Furthermore, the original dataset is anonymized,
and we do not add any new data—particularly no
personal information.

https://creativecommons.org/licenses/
by-nc-sa/4.0/
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A Fairness in Legal Judgement Prediction

The legal domain represents a complex and multi-
faceted system shaped by various social, cultural,
and historical factors. Portrayed as blind, unbiased,
and objective, justice is often plagued by systemic
biases ingrained in the language of judicial opinions,
case outcomes, and the personal predispositions
of its practitioners (Rice et al., 2019). While for
NLP in law, these biases manifest in either repre-
sentational harms where certain social groups are
over or underrepresented or sentencing disparities
across certain groups (Sargent and Weber, 2021).
In our evaluation of fairness, we adopt an equal
risk or equal odds (Hashimoto et al., 2018) ap-
proach where we define bias as the disproportionate
performance of a classifier across different groups
with similar risk profiles. Such parity conclusively
establishes sensitive traits like age, nationality, and
gender as significant attributes when forming an
outcome. Therefore, we embrace this asymmetry
in efficacy as a measure of fairness across input
representations in the legal judgement prediction
domain.

For instance, victims of domestic violence, rape,
and sexual assault have little recourse to obtain tort
compensation due to the installation of recovery
restrictions (Baker Gillis, 2021; Chamallas, 2019).
This is merely one situation where failing to provide
equal weight to all genders in the law results in
severe damage.

A.1 FairLex & the ECtHR dataset
We use prior work conducted under FairLex
(Chalkidis et al., 2022) as our baseline for text
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Applicant Age Applicant Gender Defendant State
N/A >35 <65 >65 N/A Male Female E.C. West
2,794 839 4,246 1,121 3,306 4,407 1,287 7,224 1,776

Table 2: Group distribution in training set for each attribute of ECtHR dataset. These are the statistics presented in
the FairLex paper (Chalkidis et al., 2022).

classification and fairness. The study partitions the
ECtHR dataset on the following attributes:

1. Defendant States: These comprise European
nations accused of breaching the ECHR. Each
case’s defendant states form a subset of the
47 Council of Europe Member States. To
establish statistical significance, the defendant
states are categorized into two groups: Central-
Eastern European states and all other states,
as delineated by the EuroVoc thesaurus.

2. Applicant’s Age: The applicant’s birth year
is gleaned from case facts whenever possible,
leading to classification within age groups (≤
35, ≤ 64, or older).

3. Applicant’s Gender: Extracted from case de-
tails, gender is categorized as male or female
based on pronouns or other gender-specific
terminology. We will add these attribute dis-
tributions to the dataset description as well.

B Problem Formulation
In this section, we introduce the notations used
for the task of predicting legal judgments. Let
(𝑋𝑖 , 𝑌𝑖)𝑁𝑖=1 represent a training set comprising 𝑁
samples. Each sample consists of an input list of
facts denoted as 𝑋𝑖 = {𝑡1, 𝑡2, ..., 𝑡𝑚}, pertaining to
a single legal case. To capture the semantic and
relational nature of the text, we feed these text
paragraphs into an AMR parser, which generates
the respective graphs, i.e., each 𝑡 𝑗 creates its own
encoded graph 𝑓 𝑗 . Therefore, if initially each sam-
ple was represented by 𝑋𝑖 = {𝑡1, 𝑡2, ..., 𝑡𝑚}, where
each 𝑋𝑖 was an entire legal case and each 𝑡 𝑗 were
its individual facts, after encoding by AMRs, they
can be represented as 𝑋𝑖 = { 𝑓1, 𝑓2, ..., 𝑓𝑚}. With
this, we have restructured the problem statement as
judgement prediction using AMR-graphs. The cor-
responding labels for the multi-label classification
task are represented by 𝑌𝑖 = {𝑦1, 𝑦2, ..., 𝑦10}. Our
objective is to maximize the posterior probability
𝑝(𝑌 |𝑋) for each case. However, due to the presence
of lengthy textual content within each case and the
inherent token limit of transformer-based language

Parsing Time
(seconds)

Average No. of
Tokens (case)

Split Before 444960 47387.96
Split After 648000 68439.15

Table 3: Statistics for the two parsing strategies: sentence
splitting before/after parsing.

models, we adopt a hierarchical approach to address
this challenge.

This architecture uses a transformer-based back-
bone model, such as LegalBERT (Chalkidis et al.,
2020) or DistilRoBERTa (Sanh et al., 2020), to
generate embeddings for each fact ( 𝑓𝑘) in the input.
This enables us to obtain contextualized represen-
tations for each fact. Instead of using pooling
techniques at the word level, we consider the rep-
resentation of the [𝐶𝐿𝑆] token as the fact em-
bedding (𝑒𝑘), capturing the global context of the
entire fact. Subsequently, a segmentation-encoder
layer is employed to process the fact embeddings
(𝐸 = {𝑒1, ..., 𝑒𝑘 , ..., 𝑒𝑚}) and capture the longform
structure of the legal case. This layer combines
the fact embeddings using attention weights, gen-
erating a multi-vector representation for each fact
in the case (𝑆𝐸 = {𝑠𝑒1, ..., 𝑠𝑒𝑘 , ..., 𝑠𝑒𝑚}). These
representations are then pooled and fed into a clas-
sification layer to generate the probability (𝑝) of a
violation (𝑌 ) given the input (𝑋).

C AMR Parsing

C.1 Quantitative Analysis
We compare the length of parsed strings using two
AMR parsing techniques, "Splitting before parsing"
(X-axis) and "Splitting after parsing" (Y-axis), as
shown in Figure 2. The plot illustrates a significant
difference, with a distinct upper bound on the Y-axis
(1.4M characters) and a lower bound on the X-axis
(391k characters), taking into account characters
and whitespaces. This trend persists even after
removing whitespaces using regex, indicating that
"Split After" consistently results in longer strings.
Additionally, we compute statistics on depth and the
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Figure 2: A scatter plot depicting the length of parsed
strings using AMR parsing techniques, "Splitting before
parsing" (X-axis) and "Splitting after parsing" (Y-axis),
reveals a noticeable difference between them. The plot
shows a wider dispersion of data points on the Y-axis.
Here, length of parsed strings refer to the number of
characters in the entire case, i.e., all linearized graphs
that are concatenated together.

number of relations. The average depth for "Split
Before" is 17.76, while for "Split After," it is 44.81,
suggesting higher structural complexity in the latter.
Likewise, "Split After" exhibits an average number
of relations at 44.90, compared to 17.87 for "Split
Before," indicating more interactions in the former.

Additionally, the scatter plot demonstrates that
the “Splitting after parsing” technique exhibits a
wider dispersion of data points on the Y-axis, indi-
cating its ability to retain a more significant amount
of knowledge. These findings highlight the effec-
tiveness of the “Splitting after parsing” technique
in capturing more information.

C.2 Qualitative Analysis
In this section, we study different techniques of pars-
ing from the perspective of structure, coreference,
and context retention. The first technique, “Split-
ting before parsing,” offers scalability, although it
also limits context understanding and coherence
across paragraphs. For instance, as shown in Fig-
ure 3, individual sentences may not capture the
associations between entities, leading to a lack of
comprehensive analysis. Furthermore, we observe
that while splitting a paragraph into component
sentences, certain short phrases enclosed between
two periods tend to be skipped. In the example
presented in Figure 3, person "T." can be seen elim-
inated during graph generation. We have validated
these errors in “Splitting before parsing” method

using a naive approach of ’.’ detection, as well as,
using NLTK’s 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 − 𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟. The issue of
co-reference still persists across both splitters as
expected.

In contrast, the second technique, “Splitting af-
ter parsing,” retains entity and event-coreference
and maintains a stronger connection to the original
context. Here, splitting is based on the limitation
provided by the 𝐿𝐿𝑀 model, since we are using
𝐵𝐸𝑅𝑇 , it is the 𝑚𝑎𝑥 − 𝑡𝑜𝑘𝑒𝑛𝑠 which can be fed
into that model. This, allows the graphs to strongly
associate and encode large amounts of text data,
including their co-references irrespective of the
sentence structure. Upon feeding it further for
classification, since we use a 𝐻𝐴𝑁 architecture it
continues to carry-forward the same co-references
in its predictions. Therefore, as demonstrated in Fig-
ure 3, the multi-sentence graph represents the same
content but with a different organization, capturing
diverse associations and temporal relationships. It
is able to better capture the interrelation between
the individuals involved, the event, and the timing
of the event. This technique contributes to more
accurate parsing results and a deeper understanding
of legal entities and their relations.

While our findings suggest the "Splitting after
parsing” method is a more effective parsing strat-
egy for AMR graphs, we still witness occasional
oversights by the approach. Such as the graph on
the left (split before) uses the same variable 𝑧0 for
the person "J.", the action of placing, and the action
of visiting. This is incorrect as they are distinct
entities or events. The person "T." who visited
is not represented in the graph. The graph does
not capture that both the placing and the visiting
happened on the same day, 23 June 1993. The
graph uses (𝑧1 / she) to represent "her," but it’s not
clear that "her" refers to "J". The graph separates
the events of placing and visiting into different
sub-graphs but does not establish any relationship
between them. Also, the date "23 June 1993" is
associated only with the person "J." and not with
the events of placing and visiting. The graph on
the right (split after) uses a single variable 𝑧1 to
represent both "J." and "T." under : 𝑛𝑎𝑚𝑒. This
is incorrect as they are distinct entities. While the
graph includes the date entity 𝑧6, it is only linked
to the 𝑝𝑙𝑎𝑐𝑒 − 01 event. It should also be linked
to the 𝑣𝑖𝑠𝑖𝑡 − 01 event to indicate that both events
happened on the same day. The graph still does not
make it clear that "her" refers to "J." Coreference
should be explicitly represented.
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31. On 23 June 1993 J. was placed in the family centre. T. visited her the same day. 

( z0 /  per son
    : wi k i  -
    : name ( z1 /  name
              : op1 " J" )
    : t i me ( z2 /  dat e- ent i t y
              : day 23
              : year  1993) )
( z0 /  pl ace- 01
    : ARG2 ( z1 /  cent er
              : mod ( z2 /  f ami l y) ) )
( z0 /  v i s i t - 01
    : ARG1 ( z1 /  she)
    : t i me ( z2 /  day
              : ARG1- of  ( z3 /  same- 01) ) )

( z0 /  v i s i t - 01
    : l i  31
    : ARG0 ( z1 /  per son
              : wi k i  -
              : name ( z2 /  name
                        : op1 " J. "
                        : op2 " T. " ) )
    : ARG1 ( z3 /  pl ace- 01
              : ARG1 z1
              : ARG2 ( z4 /  cent er
                        : mod ( z5 /  f ami l y) )
              : t i me ( z6 /  dat e- ent i t y
                        : year  1993
                        : mont h 6
                        : day 23
                        : t i me- of  z0) ) )

Split-Before Split-After

Figure 3: AMR graphs, in PENMAN format, obtained through sentence splitting before (left) and after parsing
(right), showing the differences in graph structure. In the former, sentence splitting errors result in an incorrect AMR.
The latter results in an AMR with less severe errors, which also demonstrates cross-sentence co-reference resolution
of the time expression. For distinction, we present segments of the image in red, which are clearly contrasted within
the “Split-Before” side of the image. We see that "T.", "month 6", and "time-of z0" are better co-referenced and
associated by the “Split-After” technique.

109



Proceedings of the Fifth Workshop on Insights from Negative Results in NLP, pages 110–123
June 20, 2024 ©2024 Association for Computational Linguistics

WINOVIZ: Probing Visual Properties of Objects Under Different States

Woojeong Jin, Tejas Srinivasan, Jesse Thomason, Xiang Ren
Department of Computer Science, University of Southern California, USA
{woojeong.jin,tejas.srinivasan,jessetho,xiangren}@usc.edu

Abstract

Humans interpret visual aspects of objects
based on contexts. For example, a banana
appears brown when rotten and green when
unripe. Previous studies focused on language
models’ grasp of typical object properties. We
introduce WINOVIZ, a text-only dataset with
1,380 examples of probing language models’
reasoning about diverse visual properties un-
der different contexts. Our task demands prag-
matic and visual knowledge reasoning. We also
present multi-hop data, a more challenging ver-
sion requiring multi-step reasoning chains. Ex-
perimental findings include: a) GPT-4 excels
overall but struggles with multi-hop data. b)
Large models perform well in pragmatic rea-
soning but struggle with visual knowledge rea-
soning. c) Vision-language models outperform
language-only models.

1 Introduction

Language models (LMs) face challenges in devel-
oping intuitive reasoning and acquiring knowledge
from experience, similar to humans. Human knowl-
edge acquisition from the visual world is effortless
but poses difficulties for LMs, as such knowledge is
often not explicitly described in text. Overcoming
these challenges requires visual grounding, con-
necting language and visual information for com-
prehension.

Previous studies have predominantly aimed at
investigating language models in relation to ob-
ject prototypical visual properties such as color,
shape, and affordance, and transferring such knowl-
edge from vision-language models (Norlund et al.,
2021; Paik et al., 2021; Zhang et al., 2022; Li et al.,
2023b). In this work, we study language models’
reasoning ability on associations between objects
and their visual properties across different object
states. The task requires a model to reason about
different states of an object where the object may
exhibit different properties.

A man went to grab a quick breakfast before 
leaving, but saw that the only remaining banana 

was rotten.

The banana is brown.The banana is yellow.

Premise sentence

Hypothesis 1 Hypothesis 2

The banana is the 
color of a tree log.

The banana is the 
color of an egg yolk.

Multi-hop

Figure 1: The WINOVIZ task. We investigate the
divergent properties of an object and explore the rea-
soning abilities of language models pertaining to object
attributes.

In this work, we investigate the divergent proper-
ties of an object and explore the reasoning abilities
of language models pertaining to object attributes.
Annotators create a premise sentence portraying
a scene with a banana and two hypothesis sen-
tences highlighting its visual properties as depicted
in Fig. 1. The goal is to choose a more plausible hy-
pothesis, requiring comprehension of the banana’s
properties in different states. A more challenging
multi-hop version replaces the visual attribute word
with another object word sharing a similar visual
attribute.

Benchmarking zero-/few-shot performance in-
cludes text-only models like BERT (Kenton and
Toutanova, 2019), T5 (Raffel et al., 2020; Chung
et al., 2022), and GPT variants (Brown et al., 2020),
ranging from 110 million to 175 billion parameters.
Models incorporating visual information, such as
VL-BERT (Su et al., 2019) and Oscar (Li et al.,
2020), are explored.
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Key findings from experiments with the
WINOVIZ benchmark include: a) GPT-4 performs
effectively but degrades on multi-hop data. b)
Large models excel in pragmatic reasoning but
face challenges in visual knowledge reasoning. c)
Vision-language models outperform language mod-
els.

2 The WINOVIZ Task

The WINOVIZ task entails the need for a model to
deduce whether objects can demonstrate prototypi-
cal behaviors in various scenarios. More precisely,
when provided with a natural language sentence
describing an object engaged in a particular behav-
ior (premise sentence), the model must determine
between two sentences presenting contrasting vi-
sual attributes of the object (hypothesis sentences).
Fig. 2 includes dataset collection (details are in the
appendix)

Challenges. The WINOVIZ task assesses a ma-
chine’s reasoning ability about daily objects, fo-
cusing on their varied properties. Models often
struggle with visual knowledge related to common
objects due to limited explicit details in training
text, attributed to reporting bias (Norlund et al.,
2021; Jin et al., 2022). The task is challenging as it
requires pragmatic reasoning and visual knowledge
reasoning, involving finding intended meanings in
the text and reasoning about object properties. A
more challenging version, multi-hop data, requires
multi-step reasoning chains.

3 Experiments

We first describe the experimental setup used in our
analysis and share experimental results.

Language Models. We experiment with 7 lan-
guage models in total (Table 5). We include
encoder-only, encoder-decoder, decoder-only mod-
els. The sizes of LMs vary from 109M to 175B.
We include large LMs, GPT-3, GPT-3.5, and GPT-
4 (Brown et al., 2020; Ouyang et al., 2022; OpenAI,
2023).

Vision-language Models. We experiment with
a total of 5 vision-language models (see Table 5).
Our task involves understanding visual informa-
tion about objects in various states, derived from
image-caption datasets. We investigate whether
vision-language models surpass language models
in our task. For evaluation, we deliberately exclude

Object: Banana

P1: Ripe

P2: Rotten

Identify properties and attributes

VA1: Yellow

VA2: Brown

Write natural sentences for each attribute and property 

He picked up a ripe 
banana and put it in his 
grocery cart. 

P1: Ripe P2:Rotten
He went to grab a quick 
breakfast before leaving, but
saw that the only remaining 
banana was rotten.

VA1: Yellow
The banana is yellow.

VA2: Brown
The banana is brown.

Figure 2: Dataset Collection. We collect our data
through crowdsourcing efforts. The first step is to iden-
tify properties and visual attributes for an object and
the second step is to write natural sentences for each
property and attribute. Sentences with properties will
be used as premise sentences and sentences with visual
attributes will be used as hypothesis sentences.

image inputs and focus solely on the language com-
ponents of the models, using encoder-only models
(VL-BERT (Su et al., 2019) and Oscar (Li et al.,
2020)), a decoder-only model (LLaVA-v1.5 (Liu
et al., 2023)), and a bi-encoder model (CLIP ‘clip-
vit-large-patch14’(Radford et al., 2021)).

Inference. In our analysis, we rely on zero-
shot inference and few-shot in-context learning
for encoder-decoder, decoder-only models. Our
prompt design for the zero-shot inference is as
follows: “You will be given a sentence, and two
options. Output either Option 1 or Option 2, de-
pending on which option is more likely to be true
given the sentence.” For the few-shot in-context
learning, we use 4 examples. We also adopt chain-
of-thought prompting (Wei et al., 2022) for the few-
shot inference. In addition to the encoder-decoder
and decoder-only models, we explore encoder-only
models. Encoder-only models cannot do zero-shot
inference for multi-choice tasks since it requires a
task-specific head for unseen tasks. Thus, we fine-
tune the encoder-only models with SNLI (Bowman
et al., 2015) and ANLI (Nie et al., 2019) datasets
and we use only ‘contradiction’ and ‘entailment’
labels in fine-tuning.

Evaluation Setup. We evaluate models with two
different metrics: individual accuracy (Ind.) and
pair accuracy (Pair). Individual accuracy refers to
accuracy on each individual question, while pair
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Model Single-hop Multi-hop

Ind. Pair Ind. Pair

FLAN-T5-XXL 86.24 72.71 68.09 40.43
LLaMA2 73.28 48.85 52.84 20.45
LLaVA 79.47 59.63 56.82 17.05
GPT-3 84.17 69.24 58.5 22
GPT-3.5 86.58 75.62 58 20
GPT-4 90.25 81.19 72 45

Table 1: Results on WINOVIZ in a zero-shot manner.
We evaluate large models using 0 examples on both
our single-hop and multi-hop datasets. We observe that
these models performed well on the single-hop data;
however, their performance is significantly degraded on
the multi-hop data.

accuracy refers to the accuracy on each pair of
questions. In WINOVIZ, two premise sentences are
paired and they share the same set of hypothesis op-
tions. We measure the model’s performance based
on its ability to accurately predict both premise
sentences. If the model’s prediction is correct for
only one of the premise sentences in the pair, we
consider the prediction less robust.

3.1 Analysis Questions

In our empirical analysis, we try to answer the
following questions:

1. How good are large models on our task?
When it comes to multi-hop data, how good
are they? (Section 3.2)

2. Do few-shot prompting and CoT prompting
improve the results? (Section 3.3)

3. Which reasoning step between pragmatic rea-
soning and visual knowledge reasoning is
main bottleneck in our task? (Section 3.5)

4. Do vision-language models outperform
language-model counterparts? (Section 3.2)

3.2 Zero-shot Results

We evaluate language models and vision-language
models in a zero-shot way, without utilizing any
training data (Table 1). Overall, large models per-
form well on the single-hop data, but their perfor-
mance is significantly degraded on the multi-hop
data. Among them, GPT-4 exhibits the best over-
all performance on both single-hop and multi-hop
tasks. Surprisingly, FLAN-T5-XXL, the smallest

Model Single-hop Multi-hop

Ind. Pair Ind. Pair

FLAN-T5 (0) 86.35 73.17 68.09 40.43
FLAN-T5 (4) 87.84 76.15 69.32 42.05
FLAN-T5 (4 CoT) 87.16 74.77 67.05 38.64
GPT-3.5 (0) 86.58 75.62 58 20
GPT-3.5 (4) 88.42 77.75 62.5 28.41
GPT-3.5 (4 CoT) 77.18 59.63 65.34 34.09

Table 2: Results on WINOVIZ with 4-shot in-context
learning. We use FLAN-T5-XXL and GPT-3.5 in this
analysis. Standard prompting marginally improves the
performance of them, while chain-of-thought prompting
is beneficial for GPT-3.5 in the multi-hop task.

Method Single-hop Multi-hop

Ind. Pair Ind. Pair

BERT-Large 67.31 39.44 54 16
VL-BERT-Large 69.61 42.88 56 18
Oscar-Large 72.93 50.22 64.5 32

Table 3: Results on WINOVIZ after NLI training. We
train encoder-only models on NLI datasets and choose
an option by the highest probability of the ‘entailment’
class.

model among the comparison, yields comparable
results to larger models, including GPT-3. More-
over, it outperforms GPT-3 and GPT-3.5 on the
multi-hop dataset. LLaVA, built upon LLaMA2
and trained with image-caption datasets, shows
noteworthy performance. As indicated in the ta-
ble, LLaVA surpasses LLaMA2 on both single-hop
and multi-hop data, suggesting that image-caption
datasets enhance reasoning in our task.

3.3 Few-shot Results

Table 2 displays the results with 4 in-context ex-
amples for FLAN-T5-XXL and GPT-3.5. We con-
duct tests using standard prompting and chain-of-
thought prompting in this experiment. Initially,
standard prompting with 4 in-context examples
marginally improves the performance of FLAN-
T5 and GPT-3.5 on both single-hop and multi-hop
tasks. It’s surprising that chain-of-thought prompt-
ing appears to negatively impact the performance of
GPT-3.5. However, it proves beneficial for GPT-3.5.
in the multi-hop task. We speculate that the effec-
tiveness of chain-of-thought prompting increases
when the task is more challenging.
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Model Pragmatic Visual Combined

FLAN-T5-XXL 93.04 82.91 79.75
LLaMA2 86.71 70.25 69.62
LLaVA 92.41 74.05 73.25
GPT-3.5 91.14 82.28 79.75
GPT-4 95.57 88.61 85.44

Table 4: Results on pragmatic reasoning, visual
knowledge reasoning, and our original data (com-
bined). We study different types of reasoning in our
data. We report individual accuracy.

3.4 Results of Encoder-only Models

Encoder-only models cannot be applied to our
task without fine-tuning. Thus, we fine-tune the
encoder-only models on natural language inference
datasets instead. By doing this, our task is framed
into the NLI setup and choose an option by the high-
est probability of the ‘entailment’ class. We fine-
tune the encoder-only models with SNLI (Bowman
et al., 2015) and ANLI (Nie et al., 2019) datasets
and we use only ‘contradiction’ and ‘entailment’
labels. Table 3 shows the results of encoder-only
models. VL-BERT and Oscar are BERT-based
vision-language models, and they are trained on
image-caption datasets. In our experiments, we ob-
serve that the vision-language models consistently
surpass the BERT model on our dataset.

3.5 Pragmatic and Visual Knowledge
Reasoning

We investigate whether models genuinely under-
stand visual knowledge for our task. Our task re-
quires pragmatic reasoning and visual knowledge
reasoning. We decouple our task into pragmatic
reasoning and visual knowledge reasoning and an-
alyze which step is a bottleneck. Table 4 shows the
results on pragmatic reasoning (pragmatic), visual
knowledge reasoning (visual), and our original data
(combined), utilizing the same subset. Firstly, re-
sults on pragmatic reasoning are better than others,
suggesting that large models do well on pragmatic
reasoning. For example, GPT-4 achieves 95.57%
on pragmatic reasoning. Main bottleneck in our
task is on visual knowledge reasoning; results on
visual knowledge reasoning are lower than those on
pragmatic reasoning. When comparing LLaMA2
and LLaVA, LLaVA demonstrates superior abilities
in both pragmatic reasoning and visual knowledge
reasoning. Interestingly, FLAN-T5-XXL performs
comparably to a proprietary model, GPT-3.5, in

terms of pragmatic reasoning and visual reasoning.

4 Conclusion

Examining real-world object properties requires
a visual understanding that language models lack.
In our study, we introduced a text-only WINOVIZ

focused on question-answering tasks, comprising
1,380 examples exploring language models’ reason-
ing capabilities across various visual properties of
objects in diverse contexts. Our findings revealed
that large language models demonstrate effective
performance overall but struggle particularly with
the multi-hop version of our dataset. It became
apparent that the bottleneck in our task lies in the
reasoning of visual knowledge. Vision-language
models surpass their language-only counterparts,
although image-generation approaches prove in-
effective for our specific task. Future endeavors
will delve into how to efficiently transfer visual
knowledge from images or captions.

5 Limitations

Our work is focused on a specific subset of lan-
guage models and vision-language models. We
adopt vision-language models in which the lan-
guage backbones are pre-trained using image-
caption datasets. Additionally, we employ Stable
Diffusion for image generation, although the cur-
rent output may not directly benefit our task. Utiliz-
ing state-of-the-art diffusion models could enhance
image quality, yet the challenge of generating im-
ages useful for our task persists. Moreover, our
observations indicate that large language models
excel in our single-hop task, achieving up to 90%
accuracy. This suggests that these large models can
effectively reason over visual knowledge even in
the absence of explicit visual signals. Nonetheless,
how visual signals can be harnessed to enhance
language models is underexplored, and we defer it
to future research endeavors.
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A Appendix

A.1 Data Collection

The data collection is broken down into three sec-
tions: (1) collecting candidate objects, (2) annotat-
ing premise and hypothesis sentences, (3) verifying
the quality of the annotated dataset, and (4) human
evaluation.

Object Collection. To begin with, we gather
a collection of objects along with their poten-
tial properties or attributes for constructing our
data. These objects and attributes are obtained
by scraping information from reliable sources such
as Memory Colors (Norlund et al., 2021), Visual
Property Norms (Hagström and Johansson, 2022),
and McRae feature norms (McRae et al., 2005).
Through this process, we manage to collect a total
of 800 unique objects and 302 unique attributes.
However, it is necessary to refine our dataset by
filtering out attributes that are either too abstract
or non-visual in nature. To accomplish this, we
employ specific heuristics to ensure the inclusion
of only concrete and visually relevant attributes.
As a result of this filtering process, we successfully
obtain a final dataset comprising 775 objects and
156 attributes.

Dataset Annotation. We utilized Amazon Me-
chanical Turk (Crowston, 2012) for data annotation,
as depicted in Figure 1. The data annotation pro-
cess involves several steps. Initially, annotators are
given an object, and are instructed to identify two
properties for the object and corresponding visual
attributes for those properties. For example, for the
object banana, the annotator may come up with
two properties ripe and rotten, which would have
corresponding visual attributes yellow and brown,
respectively. After identifying a pair of object prop-
erties and visual attributes, they are tasked with
composing natural language sentences for each at-
tribute and property. The properties are associated
with premise sentences, while the attributes were
linked to hypothesis sentences.

Annotators were selected from a small pool of
Mechanical Turkers that the authors had previously
worked with. The Turkers had to further pass a
qualification task that tested their understanding
of the annotation task. The authors manually ex-
amined the annotations to ensure quality of the
collected data.
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Model # Params Public VL model

BERT-Base 109M ✓ ✗

BERT-Large 335M ✓ ✗

VL-BERT-Large 335M ✓ ✓

Oscar-Large 335M ✓ ✓

CLIP-Large 427M ✓ ✓

FLAN-T5-XXL 11B ✓ ✗

InstructBLIP 11B ✓ ✓

LLaMA2 13B ✓ ✗

LLaVA 13B ✓ ✓

GPT-3 175B ✗ ✗

GPT-3.5 Unknown ✗ ✗

GPT-4 Unknown ✗ ✗

Table 5: A list of models used in the experiments:
BERT (Kenton and Toutanova, 2019), CLIP (Radford
et al., 2021), VL-BERT (Su et al., 2019), Oscar (Li
et al., 2020), FLAN-T5 (Chung et al., 2022), Instruct-
BLIP (Dai et al., 2023), LLaMA2 (Touvron et al., 2023),
LLaVA (Liu et al., 2023), GPT-3 (Brown et al., 2020;
Ouyang et al., 2022), and GPT-4 (OpenAI, 2023). We
use the ‘text-davinci-003’ API for GPT-3, ‘gpt-3.5-
turbo-instruct’ for GPT-3.5, and ‘gpt-4-0314’ for GPT-4.

A.2 Versions of WINOVIZ

We now collect our WINOVIZ data. We also pro-
pose the multi-hop data, a more challenging ver-
sion of WINOVIZ, and a dataset for probing visual
knowledge. For the multi-hop data, we create new
hypothesis options that require more intermediate
steps while we simplify the premise sentences to
measure the ability of models about visual knowl-
edge.

Multi-hop Data. To create a more challenging
task, we introduce a multi-hop version of our data,
which requires more intermediate steps. The basic
idea of the multi-hop data is to replace a visual
attribute word in hypotheses with another object
word which has a similar visual attribute. This
requires one more reasoning step to find out the vi-
sual attribute. For example, one hypothesis option
is ‘The banana is yellow.’. Then ’yellow’ can be
replaced with ‘the color of an egg yolk.’ So the new
hypothesis option for the multi-hop version is ’The
banana is the color of an egg yolk.’ The multi-hop
version is more challenging since a model has to
find out what color is an egg yolk. We focus on
color, shape, material on the multi-hop data and
curate prototypical objects for each visual property
word. We get 200 samples for the multi-hop data.

Pragmatic Reasoning vs. Visual Knowledge Rea-
soning. Another important aspect of this work is

Model Ind. Pair

FLAN-T5-Base (No imgs) 67.89 40.37
CLIP-Large 64.67 36.46

FLAN-T5-XXL (No imgs) 86.24 72.71
FLAN-T5-XXL (Captions) 85.83 71.88

InstructBLIP 53.21 22.93

Table 6: Results on WINOVIZ with generated im-
ages. We use Stable Diffusion (Rombach et al., 2022)
to generate 5 images per premise sentence. We adopt
majority voting at inference time to choose an option.
FLAN-T5-Base (No imgs) refers to a model without
any generated images, with a size comparable to CLIP-
Large. FLAN-T5-XXL (No imgs) refers to a model
without any generated images, while FLAN-T5-XXL
(Captions) refers to a model with captions generated
by BLIP2 on the generated images. Instead of directly
inputting images into FLAN-T5, we extract captions
from the generated images and use them as additional
context. InstructBLIP uses generated images.

that models genuinely understand and know visual
knowledge. Our task requires pragmatic reasoning,
the process of finding the intended meaning, and
visual knowledge reasoning but models may fail
in one of the reasoning steps. Thus, we decouple
the premise sentence into pragmatic reasoning step
and visual knowledge reasoning step to analyze
which step is a bottleneck. Pragmatic reasoning
involves finding the intended meaning and finding
key phrases for the next step, visual knowledge
reasoning. For example, a model should first find
‘the banana is ripe’ given the premise sentence in
the pragmatic reasoning step (Figure 1). Given
the simplified sentence, a model should choose a
better option, ‘the banana is yellow’, in the visual
knowledge reasoning step. We obtain 160 samples
to study this (Section 3.5).

A.3 Using Image Generation for WINOVIZ
Task.

Another approach for our task is to utilize image
generation. We generate images based on premise
sentences and employ these generated images for
our task. The generated images may contain use-
ful information that assists in identifying a correct
hypothesis. We utilize an image generation ap-
proach, Stable Diffusion (Rombach et al., 2022), to
generate images. We use the generated images to
guide the LMs inspired by imagination-guided text
generation (Zhu et al., 2022). Given the generated
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images, there are three ways to use them. The first
method involves using CLIP (Radford et al., 2021)
on both the images and hypothesis sentences to
identify a superior hypothesis option. Specifically,
we calculate the cosine similarity between the em-
bedding of a generated image and the embedding
of a hypothesis option, selecting the hypothesis
with a higher cosine similarity score. The second
approach is to generate captions for the generated
images using a caption model. Since language mod-
els cannot directly process images, we generate
captions and utilize them as additional context for
the task. BLIP2 (Li et al., 2023a) is employed for
caption generation. The third strategy is to reframe
our task as a visual question-answering task and
employ a vision-language model to identify a bet-
ter option. In this setup, we use InstructBLIP (Dai
et al., 2023). For image generation, we use Sta-
ble Diffusion (Rombach et al., 2022), generating 5
images per premise sentence. A better hypothesis
option is determined through majority voting.

Table 6 displays the outcomes related to image
generation. The first approach utilizing CLIP falls
short compared to FLAN-T5-Base which is slightly
smaller than CLIP-Large. In the second approach
involving BLIP2 captions, we opt for FLAN-T5-
XXL as the benchmark, comparing one scenario
with no additional data and another incorporating
captions from generated images. Our experiment
reveals a notable decline in performance when cap-
tions are employed. The third approach signifi-
cantly underperforms FLAN-T5-XXL by a large
margin. These experiments collectively indicate
that generated images offer limited utility for our
task. Furthermore, a manual assessment of 100
generated images reveals that 66% of them do not
contribute meaningfully to our objectives. Exam-
ples of generated images with premise sentences
are shown in Figure 3. In the figure, the bananas in
both images are yellow; the generated images do
not provide any clues to choose a more plausible
option.

A.4 Related Work

There are multiple perspectives on how our contri-
butions relate to previous work, and we elaborate
on this in the subsequent sections.

Visual Knowledge Probing. Several attempts
have been made to assess the reasoning ability
of language models regarding objects, primarily
through natural language benchmarks (Norlund

Figure 3: Examples of generated images. We generate
images using Stable Diffusion (Rombach et al., 2022).
In the second example, the bananas in both images are
yellow, leading the model to select the incorrect option.
The generated image examples don’t assist in selecting
a more plausible hypothesis option.

et al., 2021; Hagström and Johansson, 2022; Paik
et al., 2021; Zhang et al., 2022; Singh et al., 2022;
Qasemi et al., 2021). Norlund et al. (2021) in-
troduced a task involving querying a multimodal
model for visual commonsense knowledge related
to memory colors, which are the typical colors as-
sociated with well-known objects. Hagström and
Johansson (2022) expanded on this work by propos-
ing visual property norms as a measure of visual
commonsense knowledge in both language models
and multimodal models. Paik et al. (2021) evalu-
ated the color perception of language models us-
ing a color dataset called CoDa, revealing that re-
porting bias negatively affects model performance
and that multimodal training can alleviate these ef-
fects. Zhang et al. (2022) confirmed these findings
and extended the evaluation to a wider range of
visually salient properties. Similarly, Singh et al.
(2022) evaluated vision-language models on a vi-
sually accessible commonsense knowledge dataset.
Liu et al. (2022) explored spatial commonsense,
the knowledge about spatial position and relation-
ship between objects, finding that image synthesis
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models are more capable of learning accurate and
consistent spatial knowledge than other models. Gu
et al. (2022) proposed a probing dataset for physi-
cal knowledge about everyday things. In contrast,
we present a challenging dataset that probes the
reasoning abilities of language models regarding
variant visual properties of objects under different
context.

Vision-Language Modeling Recent advances in
vision-language (VL) models have led to success
on vision-language tasks such as visual question
answering, captioning, and grounding (Antol et al.,
2015; Lin et al., 2014; Mao et al., 2016). Existing
VL models jointly learn image and text represen-
tations through cross-modal alignments including
VL-BERT (Su et al., 2019), LXMERT (Tan and
Bansal, 2019), Oscar (Li et al., 2020). Recent ap-
proaches have introduced visual instruction tun-
ing, which involves fine-tuning a VL model using
instruction-following data (Liu et al., 2023).

While these VL models have shown significant
improvement in VL tasks, the exploration of how
to transfer visual knowledge from VL modeling to
language tasks remains underexplored. Vokeniza-
tion (Tan and Bansal, 2020) utilized token-level
text-to-image retrieval to transfer visual knowledge
to language models. VidLanKD (Tang et al., 2021)
employd contrastive learning to train a teacher
model on video datasets and uses distillation ap-
proaches to transfer visual knowledge from the
teacher to a student model. CMKT (Jin et al.,
2022) investigated two types of knowledge trans-
fer: text knowledge transfer (e.g., captions) and vi-
sual knowledge transfer (e.g., images and captions).
Their findings demonstrate that such transfer can
enhance performance on commonsense reasoning
tasks.

A.5 Annotation Interfaces
We provide Turking interfaces: qualification task
in Figure 4, and annotation task in Figures 5, 6, 7,
8.
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Figure 4: The Interface of the qualification task. We provide 12 questions to find quality workers.
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Figure 5: Interfaces of annotating visual contrast sets (parts 1 and 2).
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Figure 6: Interfaces of annotating visual contrast sets (part 3).
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Figure 7: Interfaces of converting contrast sets into sentence puzzles (parts 1 and 2).
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Figure 8: Interfaces of converting contrast sets into sentence puzzles (part 3).
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Abstract

With the rapid development of LLMs, it is nat-
ural to ask how to harness their capabilities
efficiently. In this paper, we explore whether it
is feasible to direct each input query to a single
most suitable LLM. To this end, we propose
LLM routing for challenging reasoning tasks.
Our extensive experiments suggest that such
routing shows promise but is not feasible in all
scenarios, so more robust approaches should
be investigated to fill this gap.1

1 Introduction

Large language models (LLMs) demonstrate re-
markable capabilities in many natural language
generation and understanding tasks (Bommasani
et al., 2021; Chang et al., 2023; Minaee et al., 2024).
At the same time, Jiang et al. (2023) show that
no single open-source LLM outperforms all oth-
ers across different benchmarks and datasets, as
various LLMs may exhibit different domain exper-
tise (Beeching et al., 2023). Experiments towards
predicting model behavior (Rabinovich et al., 2023;
Srivatsa and Kochmar, 2024) also suggest that par-
ticular aspects of input prompts can affect different
LLMs in different ways.

It is, therefore, reasonable to investigate whether
the capabilities of different LLMs can be harnessed
to achieve better results more efficiently. Recent
findings suggest that performance can be improved
with ensembling (Wang et al., 2022, 2023; Li et al.,
2024) and collaborative frameworks (Wu et al.,
2023b; Li et al., 2023). However, the research in
this area is still in the early stages, with a number of
open research questions. In this work, we propose
LLM routing, which investigates whether directing
an input prompt to the most suitable single LLM
can lead to better performance than what can be

*Equal contribution
1Our code and data are available at https://github.

com/kvadityasrivatsa/llm-routing.

achieved with individual LLMs while maintaining
a reasonable (e.g., single LLM) latency.

With the rise of larger and more capable models
in NLP and the wider field of ML, the research
on sparse expert models has also extended. This
class of models includes mixture-of-experts (Ja-
cobs et al., 1991; Collobert et al., 2002; Eigen
et al., 2013), switch-transformers (Fedus et al.,
2022), and routing networks (Rosenbaum et al.,
2017), among other models.2 Approaches to build-
ing these sparse models vary along several dimen-
sions: (i) how the optimal parameter subset(s) or
model-pool candidates are identified for each input
(e.g., feature-based or deep-encoder-based classifi-
cation), (ii) whether the subset selection involves
pre-training the candidate models or model layers
(e.g., Mixtral (Jiang et al., 2024)), which can incur
significant training compute and data costs, (iii)
how many experts are selected for each input (e.g.,
HybridLLM (Ding et al., 2024) selects only the
single best, whereas Shazeer et al. (2017) selects
the top-k), and (iv) whether the approach also aims
to improve the response quality or overall perfor-
mance beyond that of any single candidate model.
In this context, our paper aims to build and analyze
a sparse LLM routing model that selects the sin-
gle best LLM (from a pool of at least two LLMs)
for each input query. The proposed router only re-
quires fine-tuning of a relatively small pre-trained
Transformer encoder model on the data without the
need for pre-training or fine-tuning the LLMs.

Given that LLMs frequently face challenges with
reasoning and planning tasks (Wei et al., 2022; Ko-
jima et al., 2022), we focus on two well-established
reasoning task benchmarks. We empirically investi-
gate the feasibility of building LLM routing model
capable of selecting the most suitable LLM for
each input from a pool of diverse LLMs. The rout-
ing is grounded on responses generated by LLMs.

2For more details on the related work, see Appendix F.
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Figure 1: Overview of the proposed workflow.

We explore binary and multi-label classification
modeling at the input query level, as well as a clus-
tering approach based on the similarity between
the queries. Finally, leveraging prediction confi-
dence scores, we design multiple optimal policies
to select a single suitable LLM from the pool.

The contributions and key findings of this work
are as follows: (1) We propose an LLM routing
model, which directs input queries to the most
suitable single LLM. (2) We explore two different
types of approaches for LLM routing, treating it as
a classification and a clustering task. (3) We con-
duct experiments with 7 open-source LLMs and on
two challenging reasoning benchmarks (GSM8K and
MMLU). (4) We introduce theoretical upper bounds
for two scenarios: (i) highest possible performance
achieved jointly with all LLMs (i.e., oracle), and (ii)
highest performance achieved with the proposed
routing model. (5) Our findings indicate that the-
oretical upper bounds of the routing model are
higher than individual model performance, how-
ever, the proposed model developed in practice is
unable to achieve those scores. Specifically, the
performance of the routing model is better than
that of the weak LLMs but is similar to or slightly
lower than that of the top-performing LLMs, which
may be due to the small size of the training data.

Despite the somewhat negative results, we be-
lieve this study demonstrates the feasibility of mod-
eling LLM routing and contributes to new research
directions on efficient usage of LLMs, which can
benefit researchers and practitioners.

2 Methodology

We present an overview of the proposed workflow
in Figure 1. Below, we describe our approaches to
LLM sampling and LLM routing.

Split/Criteria GSM8K MMLU
Training 6,816 13,757
Validation 359 285
Test 1,319 1,530
#examples for few-shot CoT 5 5

Table 1: Dataset statistics for the GSM8K and MMLU
datasets. MMLU data splits are remapped to have a distri-
bution similar to GSM8K. CoT: Chain-of-Thought

LLMs Chat? Specialized? #Parameters
llama2-7b × × 7B
llama2-13b-chat D × 13B
mistral-7b × × 7B
mistral-7b-it D × 7B
gemma-7b × × 7B
gemma-7b-it D × 7B
metamath-7b × D 7B

Table 2: List of diverse LLMs selected in this study.

2.1 LLM Sampling

Selection of Benchmarks and LLMs As it has
been observed that most of the existing LLMs
struggle with reasoning tasks (Patel et al., 2021;
Wu et al., 2023a), we focus on two challenging
datasets associated with distinct domains – math-
ematical (GSM8K by Cobbe et al. (2021)) and natu-
ral language reasoning (MMLU by Hendrycks et al.
(2021)). GSM8K consists of 8,792 diverse grade-
school level math word problems (MWPs), while
MMLU contains 15k multiple-choice questions span-
ning 57 subjects across STEM, humanities, and
social sciences, among others (see Table 1). We
have selected diverse LLMs based on criteria such
as performance on benchmarks, training method-
ologies, model specialization, and more. The final
set of LLMs is presented in Table 2.

Routing Data In this study, we assess each
LLM’s performance by generating 10 responses
for each input query to ensure more reliable and
replicable behavior in our modeling. For LLM
prompting and answer extraction from responses,
we have followed the standard guidelines (see Ap-
pendices B and C for details). Figure 2 presents
the sample prompting templates. We use major-
ity voting scores as labels for each input query to
train routing classifiers. Majority Voting (MAJ@K

∈ {0, 1}) determines whether the most frequent
answer matches the gold answer or not. The mean
MAJ@10 scores across all input queries are re-
ported in Table 3. Furthermore, to ensure a re-
liable response from an LLM, we consider only
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those LLMs for which the extracted answer viabil-
ity scores are above 90% (please refer to Appendix
B for more details), resulting in 6 viable LLMs for
the GSM8K dataset and 7 for the MMLU dataset, re-
spectively. We prepare the routing dataset by asso-
ciating each input query with those viable LLM(s)
that have a MAJ@10 score of 1. Formally, the
target label for an input query q ∈ Q is given
by label (q) = {l | l ∈ L,maj@10 (q, l) = 1},
where L is the set of candidate LLMs and Q is
the set of query prompts from GSM8K or MMLU.

2.2 LLM Routing
Next, we build an LLM router, determining which
model to select from a pool of LLMs for a given
input query based on performance and inference
latency. The ideal routing algorithm should select
an optimal single LLM with high accuracy and
low latency. To this end, we explore modeling at
the individual query level using classification and
utilize similarities among queries using clustering.

Classifier-Based Routing The classification-
based routing consists of (1) the development of
a classifier that can predict a set of LLMs capable
of solving the input query along with prediction
confidence scores, and (2) the identification of the
policy to select optimal LLMs (with high accuracy
and low latency) from the predicted LLMs based
on confidence scores in the range [0-1].
Multi-label and Separate Classifiers: We have con-
sidered two types of classifiers: a multi-label classi-
fier (MLC) and separate classifiers (SC). MLC aims
to predict all LLMs apt for a given input query to-
gether in a single prediction step. The SC model,
on the other hand, employs a separate binary clas-
sifier for each LLM and accumulates the results
post hoc. Both types of classifiers are built on top
of existing popular pre-trained language models
(PLMs). Specifically, we experimented with BERT,
DistilBERT, RoBERTa, and T5 models. Addition-
ally, due to the small size of the training data, we
explored smaller models, utilizing only a few lay-
ers of PLMs, as well as simpler models such as
Random Forests. RoBERTa emerged as the best-
performing model, and all results in this paper are
reported with classifiers built by fine-tuning the
RoBERTa PLM exclusively.
Proposed Policies: We utilize the classifiers’ pre-
dicted confidence scores to design the following
policies:

1. ArgMax: Select an LLM with the highest

confidence score.
2. Random: Select a pool of LLMs with con-

fidence above a certain threshold (i.e., 0.80)
and randomly pick one LLM from the pool.

3. Prediction: Train a RandomForest regressor
using training data confidence scores, where
each input represents the confidence score for
each predicted label, and the target is the con-
fidence score of the first gold reference LLM.
At test time, we select the LLM with a confi-
dence score closest to the predicted score.

4. Sorted Prediction (Sorted Pred): Similarly
to the ‘Prediction’ policy, the input confidence
scores are arranged in ascending order based
on LLMs’ performance. This ensures that
weaker LLMs have a fair opportunity.

Clustering-Based Routing Additionally, to in-
corporate the query-level similarities, we explore
clustering for LLM routing as detailed below.
Learning Clusters: We fit a KMeans3 clustering
model on query-specific features extracted from the
training data to learn discrete clusters. The features
are extracted using: (1) TF-IDF vectorizer,4 and (2)
pooled hidden embedding of the RoBERTa5 model’s
last layer.
Routing: For each cluster in the training set, the
best performing LLM is determined. At inference,
input queries in the test set are routed to the best-
performing LLM for their corresponding cluster.

3 Experimental Setup

LLM Routing Baseline Models The following
baseline models are included for comparison:

1. Oracle: The maximum possible performance
is assumed under the premise that an oracle al-
ways selects a single LLM capable of solving
each query if it is solvable.

2. Random: This represents the mean perfor-
mance of randomly selecting an LLM uni-
formly for each input query across 1000 inde-
pendent runs.

3. Individual Models: This is the mean perfor-
mance of individual models with MAJ@10
across all queries.

3https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html

4https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.text.
TfidfVectorizer.html

5https://huggingface.co/FacebookAI/
roberta-base
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Models GSM8K MMLU
ACC LAT (sec) ACC LAT (sec)

Oracle 87.18 3.46 89.15 1.89
Random 55.37 3.52 52.50 2.35
gemma-7b 71.11 7.10 63.85 3.00
metamath-7b 67.55 4.70 42.28 2.40
mistral-7b 59.74 3.70 62.09 1.80
*mistral-7b-it 50.41 1.00 51.63 1.10
llama2-13b-chat 46.70 1.80 50.52 4.80
*gemma-7b-it 36.84 0.70 49.28 1.00
llama2-7b – – 48.36 2.30
All LLMs 74.37 19.00 60.39 16.40

MLC

Upper bound 79.68 5.16 77.18 1.94
ArgMax policy 67.62 4.76 62.28 2.95
Random policy 67.47 4.76 58.16 2.86
Prediction policy 67.70 4.77 63.85 2.95
Sorted Pred policy 59.90 4.77 48.36 2.92

SC ArgMax policy 67.55 4.70 62.87 2.94

Clustering
TF-IDF 67.55 4.70 61.76 2.83
RoBERTa 67.55 4.70 61.76 2.83

Table 3: Performance of different routing models on
GSM8K and MMLU test sets. For all queries, we have con-
sidered 10 generations with each LLM. ACC: mean ac-
curacy with MAJ@10 (%), LAT: LLM inference latency
in seconds per query (10 generations for each query),
MLC: multi-label classifier, and SC: separate classifiers.
* The term ‘it’ indicates instruction-tuned LLMs. The
highest individual-LLM accuracy is underlined, and the
highest classifier accuracy is in bold for each dataset.

4. All LLMs: This baseline reports the mean ac-
curacy of MAJ@(10×|L|) based on the com-
bined pool of 10 generations from each LLM,
where |L| is the total number of LLMs.

Classifier Upper Bound This is similar to the
oracle model, where the upper bound is calculated
with predicted labels instead of gold labels.

4 Results and Discussion

In Table 3, we present the performance of each
individual LLM across both datasets, alongside the
performance of baselines and routing models. We
observe that, even though gemma-7b outperforms
other LLMs, there are diverse performance trends
for other LLMs across datasets, with some per-
forming better on GSM8K, and others on MMLU. To
investigate the results further, we pose and address
a number of research questions.

Does including multiple LLMs solve all ques-
tions in a given dataset? The Oracle model’s
ACC scores for both datasets are lower than 90%,
indicating that more than 10% of questions can-
not be solved by all LLMs combined. For details,
see Figure 3 in the Appendix, where we project
the distribution of questions solved by each of the
LLMs.

How effective is a routing model when randomly
picking LLMs? As expected, the random base-
line model achieves the lowest ACC score for both
datasets. This highlights the necessity for an effec-
tive routing model to navigate through LLMs.

Is the joint performance of multiple LLMs bet-
ter than that of individual LLMs? Consider-
ing extreme cases like top-k and bottom-k LLMs
as shown in Appendix Tables 5 and 6, we find
that multiple LLMs collectively outperform single
LLMs in terms of ACC. Even the joint perfor-
mance with the bottom-2 model is better than that
of individual models, underscoring LLMs’ diverse
problem-solving capabilities. However, we note
two limitations in joint modeling: (i) the joint per-
formance with all LLMs may not always be the best
(see All LLMs baseline ACC scores), as reported for
the MMLU dataset, and (ii) joint modeling drastically
increases inference latency costs (i.e., LAT), align-
ing with recent research (Li et al., 2024). In con-
trast, the proposed LLM routing aims to leverage
joint LLM capabilities while minimizing latency
by selecting the single best-suited LLM.

Can the upper bound performance of the clas-
sifier/clustering be equal to the Oracle model
performance? This is possible in an ideal sce-
nario where classifier/clustering routing algorithms
are perfect and bias-free. However, in our case,
the training data for the algorithms is small (∼9k
in GSM8K and 15k in MMLU), which leads to sub-
optimal performance. Still, the multi-label clas-
sifier’s upper bound (ACC) has achieved a higher
score than any individual LLMs, which is also close
to the Oracle model performance. We hypothesize
that more training data for classification/clustering
may bridge this gap.

Does router modeling with multi-label classi-
fiers exhibit better performance than individual
LLMs? Unfortunately, the proposed multi-label
classifier with different confidence-based policies
does not lead to better performance (i.e., ACC)
than some individual LLMs. This may be due to
the small training data for the classifier. However,
it can be observed that the classifier’s performance
is better than most of the weak-performing LLMs
and close to the top-performing LLM. This sug-
gests that LLM routing is a promising direction
that requires better classifier modeling.

What is the impact of different policies on LLM
router modeling? We have proposed four poli-
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cies based on the label confidence scores of the
multi-label classifier. The best policy can push
the model performance closer to the upper bound
performance of the multi-label classifier. How-
ever, we observe that due to the imperfect clas-
sifier (which yields weighted F1 scores of 0.71
for GSM8K and 0.67 for MMLU), the predictions (and
confidence scores) are skewed towards only a few
labels (see Figure 4 in the Appendix) which leads
to sub-optimal ACC score. The predictions-based
policy is better than other policies; however, the
classifier performance presents a serious bottleneck.
We conclude that larger training data and the de-
velopment of a better classifier are essential for
improving the ACC scores. Small sizes of both
GSM8K and MMLU datasets prevent further investiga-
tion of this question.

How does a separate classifier compare to a
multi-label classifier for LLM routing? With
relatively small and imbalanced training sets, sep-
arate classifiers for each LLM are more prone
to over-fitting. Despite attempts to address this
with measures like early stopping and weighted
class-based loss, most individual models usually
converge to the overall best performers such as
gemma-7b on test split. Ultimately, with the argmax
policy in place, the separate classifier-based rout-
ing model’s performance is similar to that of the
argmax policy of the multi-label classifier.

How does clustering-based LLM routing com-
pare to other models? The cluster-level routing
approach aims to select the best LLM for a group
of similar query prompts. It assumes that the rela-
tive performance of LLMs for each cluster remains
consistent between the training and test sets. We
find that this assumption does not hold for many
clusters (39 out of 50 for GSM8K and 28 out of 50
for MMLU). In general, the best-performing LLM
for most clusters in the training set is the same as
the best LLM overall. The impact of different fea-
ture extraction methods (TF-IDF vs. RoBERTa) was
minimal, resulting in a similar performance to the
MLC+ArgMax model.

What is the impact of LLM routing on inference
latency? Table 3 provides the inference latencies
for all LLMs, baselines, and LLM routing mod-
els in seconds per query, recorded using a single
Nvidia A100 GPU. Ideally, the best routing poli-
cies should maximize model accuracy (while main-
taining at least same-level latency) or minimize

overall latency (with the best LLM accuracy main-
tained). For instance, the MLC+ArgMax latency
is lower than the corresponding highest individual
model latency (of gemma-7b) for GSM8K. However,
as the routing classifiers overfit to the best LLMs
on the training sets (metamath-7b for GSM8K and
gemma-7b for MMLU), the overall latency, much like
mean accuracy, differs very slightly from that of
the best LLMs. These findings validate our claim
that the proposed LLM routing model consistently
maintains a latency score equal to or lower than
any individual LLM.

Ablations with multi-label routing: In ap-
pendix Figure 5, we overview ablation tests for
LLM routing using a multi-label classifier trained
with best- and worst-performing LLMs across both
datasets. Key insights include: (1) Increasing the
number of top-performing LLMs improves ora-
cle scores but has marginal effects on the classi-
fier’s upper bound or argmax policy. (2) Increasing
the number of worse-performing LLMs results in
higher scores across oracle, MLC’s upper bound,
and MLC+ArgMax policy model, highlighting the
effectiveness of LLM routing.

5 Conclusions and Future Directions

This study investigates the feasibility of LLM rout-
ing, i.e., navigating input queries by efficiently
selecting the most suitable single LLM from a
pool of LLMs. Through extensive experimentation
with multi-label and separate classifiers, as well
as clustering across two challenging benchmarks,
we conclude that (i) there are theoretical bounds
that can be achieved with LLM routing that are
much higher than individual models’ performance,
and (ii) routing LLMs is a feasible direction that
works best with equally capable LLMs. However,
if a few LLMs dominate, the router’s performance
degrades, even though it still outperforms weak
LLMs. At the same time, the inference latency of
the routing model is at least at the same level as
that of single LLMs.

With these findings in mind, we envision future
research to investigate the following directions: (1)
collecting larger datasets for LLM routing design;
(2) developing novel models for LLM routing to
accommodate LLMs with diverse capabilities; (3)
designing better routing policies with confidence
scores; (4) incorporating LLM-specific features for
improved modeling; and (5) scaling up using more
diverse LLMs and benchmarks.
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Limitations

One of the key limitations of the proposed rout-
ing model is the limited training data available
for training different algorithms with varying poli-
cies, which can result in biased learning despite
taking a number of precautionary measures. An-
other limitation is the extraction of answers from
generated responses: despite utilizing our best an-
swer extraction algorithm, we could only extract
viable answers for 83% to 95% of queries (with
different LLMs). For the remaining queries, the
answers extracted with our algorithm may be in-
valid or incorrect. Next, the proposed model works
well with equally capable LLMs but is not yet ef-
fective enough for LLMs that have very different
capabilities.

Finally, although the inference latency of the
proposed model is comparable to that of the most
suitable single LLM, frequent switches between
the LLMs (based on the input queries) necessitate
loading most of the LLMs into memory, posing a
limited memory issue. This issue is also observed
with different emerging LLMs (Jiang et al., 2023,
2024) similarly to our case. At the same time,
the problem of limited memory in the context of
LLMs has been well studied (Alizadeh et al., 2023;
Eliseev and Mazur, 2023), and the solutions de-
veloped are directly (or with minor adjustments)
applicable to our modeling, thereby ensuring the
practical usability of the proposed model. We leave
investigation of such approaches to future work.

Ethics Statement

This paper introduces router modeling to effec-
tively harness the power of LLMs with different
capabilities. As the proposed routing models use
LLMs, we must acknowledge that, independently
of this research, there are certain risks that pertain
to all LLMs, as such models may generate out-
puts that, although plausible, are factually incorrect
or nonsensical. Such hallucinations can misguide
decision-making and propagate biases, especially
in critical scenarios where accuracy is vital. With-
out proper safeguards, widespread LLM adoption
could worsen these concerns. Thus, it is essential
to develop mechanisms to mitigate hallucination
risks, ensuring responsible and beneficial deploy-
ment of these powerful models before adopting the
proposed routing model.
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A LLM Inference Latency

Prompt Type LLM GSM8K MMLU
llama2-7b 4.21 2.30
gemma-7b 7.10 3.00

FCoT mistral-7b 3.70 1.80
metamath-7b 4.70 2.40
gemma-7b-it 0.70 1.00

ZCoT llama2-13b-chat 1.80 4.80
mistral-7b-it 1.00 1.10

Table 4: Statistics on the inference latency (i.e., runtime
in seconds) for various LLMs over 10 generations for
each input query. The timings were recorded using a
single Nvidia A100 GPU. FCoT denotes few-shot Chain-
of-Thought, and ZCoT denotes zero-shot CoT. We have
considered 5 examples for FCoT prompting.

B Prompting for LLM Sampling

The consideration of diverse LLMs and datasets
contributed to the challenges in prompting, as there
is no single uniform prompting approach across
LLMs and datasets (Sclar et al., 2023). Consider-
ing recent findings about the appropriate usage of
prompts (Sahoo et al., 2024) and those from our
own experimentation, we have converged on the
following prompting decisions:

• For non-chat LLMs, few-shot Chain-of-
Thought (CoT; Wei et al. (2022)) prompting
works better than zero-shot (Kojima et al.,
2022) for both datasets. We used 5 few-
shot examples. The few-shot prompting
leads to over 95% viable answers (except
for llama2-7b LLM, which has the viabil-
ity score of 83%) in generated solutions. A
viable answer is a single numeric/alphabetic
answer that can be extracted from the gener-
ated solution using extraction algorithms (see
Appendix C) to compare with the reference
answer. The viable answer can be correct or
incorrect.

• For chat LLMs, few-shot CoT distracts the
generation, which leads to unexpected outputs.
The zero-shot CoT works best. We utilize dif-
ferent models’ chat-templates from Hugging
Face6 to ensure correctness. The viability of
answer extraction for chat models is 92%.

The sample zero-shot and few-shot CoT prompt
templates are presented in Figure 2.

6https://huggingface.co/docs/transformers/en/
chat_templating
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C Answer Extraction from LLM
Responses

The adapted prompting approaches used in our
LLM queries are designed to instruct LLMs to
specify their final answers at the very end of each
of their responses. We thus use a simple answer
extraction policy of selecting the last mentioned
numerical value (for GSM8K) and multiple-choice
option (for MMLU) from the generated responses.
Responses failing to report any final answer are re-
garded as invalid and counted as incorrect answers.
For MMLU, we evaluate the extracted options directly
against the annotated correct options (among ‘A’,
‘B’, ‘C’, and ‘D’) in the dataset. For GSM8K, ques-
tions where the absolute difference between the
ground truth and predicted numerical answers are
less than ϵ = 0.1 are considered to be solved cor-
rectly. This threshold was set to accommodate
instances where model-generated real-valued an-
swers differ slightly from the expected answer.

Lessons Learned: It is observed that sometimes
the expected answer is present in one of the last
sentences of the response instead of at the very end.
We extracted all such answers as well. Allowing a
0.1 absolute error difference leads to more accurate
answers.

D Implementation, Hyperparameters,
and Hardware Details

Querying LLMs We use the vLLM package7

to query LLMs. All models were queried with
a temperature of 0.8 and a max token length of
2000. Each question prompt was queried 10 times
with different initialization seeds. We used a single
Nvidia A100 GPU for all runs. Querying each
dataset once took approximately 1-2 hours.

Training Routing Classifiers We use the Hug-
gingFace library8 for loading and tuning all pre-
trained Transformer encoders in our experiments.
Each model was trained for 10 epochs, with an
initial learning rate of 2e-5, warmup ratio of 0.1,
and class-balanced CrossEntropy loss. The train-
ing checkpoint with the lowest validation loss was
selected for inference.

E Detailed Results for Routing Models

See Figures 3-5 and Tables 5-6.

7https://github.com/vllm-project/vllm
8https://huggingface.co/

Models ACC (%) LAT (sec)
Oracle 87.18 3.46
Random 55.37 3.52
gemma-7b 71.11 7.10
metamath-7b 67.55 4.70
mistral-7b 59.74 3.70
mistral-7b-it 50.41 1.00
llama2-13b-chat 46.70 1.80
gemma-7b-it 36.84 0.70
top-2 LLMs 81.80 11.80
top-3 LLMs 84.00 15.5
top-4 LLMs 85.82 16.5
top-5 LLMs 86.03 18.3
bottom-2 LLMs 55.64 2.50
bottom-3 LLMs 67.02 3.50
bottom-4 LLMs 75.51 7.20
bottom-5 LLMs 79.91 11.90
All LLMs 74.37 19.00
Upper Bound of MLC 79.68 5.16
MLC + Argmax policy 67.62 4.76
MLC + Random policy 67.47 4.76
MLC + Prediction policy 67.70 4.77
MLC + Sorted Pred policy 59.90 4.77
SC + Argmax policy 67.55 4.70
Clustering + TF-IDF 67.55 4.70
Clustering + RoBERTa 67.55 4.70

Table 5: Performance of different routing models on
GSM8K data. ACC: mean accuracy with MAJ@10 (%),
LAT: LLM inference latency in seconds per query (10
generations for each query), MLC: multi-label classifier,
SC: separate classifiers, and top-k: best k performing
models. All other notation is the same as for Table 3.

F Related Work

Model Diversity Several surveys (Bommasani
et al., 2021; Minaee et al., 2024, inter alia) sug-
gest that LLMs can develop emergent capabilities.
Specifically, this suggests that models can show
behavior and demonstrate skills beyond explicitly
constructed ones. By virtue of differing training
data, models may exhibit a wide variety of domain
expertise. Jiang et al. (2023) demonstrates that no
single open-source LLM outperforms other models
across popular benchmarks. This further motivates
the need to develop ensembling or routing methods
aimed at improving the combined performance of
a pool of LLMs with a diverse range of abilities.

Model Selection A fundamental step in routing
queries within an ensemble of models is to esti-
mate the extent of overlap between the capabili-
ties of the LLMs in the candidate pool with those
deemed necessary to resolve an input query. Model
selection in the context of LLM routing greatly
differs from its traditional form in ML (Bishop,
2006; Raschka, 2020), wherein the training and test
datasets are similar in distribution. Training data
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Answer the following question step by step to the best of your ability.

Natalia sold clips to 48 of her friends in April, and then she sold half
as many clips in May. How many clips did Natalia sell altogether in

April and May?

Zero-Shot CoT Prompt

Sure, I'd be happy to help! Let's analyze the information given: 
In April, Natalia sold clips to 48 of her friends.
...
So, Natalia sold 24 clips in May.
Now, let's add the number of clips she sold in April and May to find out how
many clips she sold altogether:
48 clips + 24 clips = 72 clips
Therefore, Natalia sold a total of 72 clips in April and May.

Model Response

Zero-Shot CoT prompt for GSM8K 

<START_QUESTION> Question:  An auditor traces the serial numbers ... is supported by this test?
    (A) Valuation and allocation ... (D) Presentation and disclosure <END_QUESTION>
<START_ANSWER> Answer:  Let's think step by step. ... The answer is (B). <END_ANSWER>

<START_QUESTION> Question:  One hundred years ago, ... what is the investment worth today?
    (A) $13,000 (B) $600 (C) $15,000 (D) $28,000 <END_QUESTION>
<START_ANSWER> Answer: Let's think step by step. ... The answer is (A). <END_ANSWER>
...
<START_QUESTION> Question: A company whose stock ... stock dividend? <END_QUESTION>
    (A) Treasury stock is debited for $300. ... (D) Common stock is debited for $3,000.
<START_ANSWER> Answer: Let's Think step by step.

Few-Shot CoT Prompt

The stock dividend is calculated based on the number of shares outstanding, not the
current market price.  Hence the adjustment for the stock dividend is $1*$1,000*30%=300,
which is in Retained earnings.  The answer is (C). <END_ANSWER>

Model Response

Few-Shot CoT prompt for MMLU 

Few-Shot Exemplars

Figure 2: Sample zero-shot Chain-of-Thought (CoT) prompt template for a chat (or instruction-tuned) LLM and
few-shot Chain-of-Thought (CoT) prompt template for a standard LLM.

(a) GSM8K

(b) MMLU

LL
M

s
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M
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Figure 3: Distribution of queries from the GSM8K and
MMLU test sets solved (score 1 with MAJ@10) by each
LLM. The counts at the bottom of each figure denote
the number of questions in each chunk, and those on
the right denote the total number of questions solved by
each LLM.

for LLMs include massive corpora spanning tril-
lions of tokens with relatively straightforward learn-
ing objectives like next-token prediction (Brown
et al., 2020). Test data, on the other hand, often
involves highly structured tasks like reasoning and
question answering (Hendrycks et al., 2021; Cobbe
et al., 2021; Joshi et al., 2017), summarization (Tam
et al., 2023), and classification (Zhang et al., 2023),
which may not be very prevalent in correspond-
ing training data. This makes gauging the pain
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Figure 4: LLMs “solvability" distribution. The gold
label scores are obtained with MAJ@10, and prediction
label scores are obtained with a multi-label classifier.

points of resolving a complex query non-trivial.
Furthermore, studies like Rabinovich et al. (2023)
and Srivatsa and Kochmar (2024) suggest that cer-
tain aspects of the prompt phrasing, i.e., its length
and readability, significantly impact LLMs’ ability
to tackle the underlying tasks.

LLM Ensembling Previous attempts at ensem-
bling and routing of LLMs aim to tackle one of two
tasks: (1) Opting between LLM generations to se-
lect the best response. Liu and Liu (2021); Ravaut
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Figure 5: Different ablation configurations for LLMs for GSM8K and MMLU datasets.

Models ACC (%) LAT (sec)
Oracle 89.15 1.89
Random 52.50 2.35
gemma-7b 63.85 3.00
mistral-7b 62.09 1.80
mistral-7b-it 51.63 1.10
llama2-13b-chat 50.52 4.80
gemma-7b-it 49.28 1.00
llama2-7b 48.36 2.30
metamath-7b 42.28 2.40
top-2 LLMs 73.47 4.80
top-3 LLMs 79.54 5.90
top-4 LLMs 83.72 10.70
top-5 LLMs 85.75 11.70
top-6 LLMs 87.88 14.0
bottom-2 LLMs 60.13 4.70
bottom-3 LLMs 71.17 5.70
bottom-4 LLMs 78.10 10.50
bottom-5 LLMs 81.69 11.60
bottom-6 LLMs 83.11 13.40
All LLMs 60.39 16.40
Upper Bound of MLC 77.18 1.94
MLC + Argmax policy 62.28 2.95
MLC + Random policy 58.16 2.86
MLC + Prediction policy 63.85 2.95
MLC + Sorted Pred policy 48.36 2.92
SC + Argmax policy 62.87 2.94
Clustering + TF-IDF 61.76 2.83
Clustering + RoBERTa 61.76 2.83

Table 6: Performance of different routing models on the
MMLU data. ACC: mean accuracy with MAJ@10 (%),
LAT: LLM inference latency in seconds per query (10
generations for each query), MLC: multi-label classifier,
SC: separate classifiers, and top-k: best k performing
models. All other notation is the same as for Table 3.

et al. (2022); Jiang et al. (2023) train models to rank
or classify the most suitable response for a given
query. However, this requires querying all LLMs
in the model pool for each query during inference
time. This can become computationally expensive
with a large number of LLMs in the candidate pool.
(2) Building routing networks (Rosenbaum et al.,
2017) that utilize only a subset of parameters of a
model or a subset of experts from a pool of can-
didate models. For example, Jiang et al. (2024)
employ a Mixture-of-Experts (MoE) (Jacobs et al.,
1991; Collobert et al., 2002; Eigen et al., 2013)
model with 8 experts, wherein only 2 experts are
accessed at each model layer to produce the next to-
ken. This, however, requires pre-training the model
weights, which incurs large computing and data
costs. Alternatively, HYBRIDLLM (Ding et al.,
2024), Shazeer et al. (2017), and Shnitzer et al.
(2023) train separate classifiers which select the
best LLM(s) for each input query.

This paper aims to create and study a sparse
routing network for selecting the best LLM from
a pool of more than two LLMs for each exam-
ple. The routing network only needs to tune an
extra Transformer-based classifier without needing
to pre-train or fine-tune the LLMs. Furthermore,
we also incorporate the former task by measuring
the response quality (through accuracy) and deter-
mining if it can outperform the individual experts
(LLMs) in the pool.
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Abstract

This research investigates the impact of pref-
erence annotation acquisition methods on the
performance of LLM alignment algorithms, in-
cluding Direct Preference Optimization (DPO),
Identity Preference Optimization (IPO), and
Conservative DPO (cDPO), compared to Su-
pervised Fine-Tuning (SFT) in NLP tasks. We
analyze the influence of LLM and human-based
preferences on algorithm performance, con-
sidering data volume and quality. Addition-
ally, we assess DPO’s vulnerability to overfit-
ting and IPO’s resilience against it, addressing
four main research questions. Using the GAIR
dataset and Zephyr-7b as the SFT model, we
reveal unexpected negative outcomes. Specifi-
cally, DPO trained on LLM preferences outper-
forms human preferences, contrary to expecta-
tions. Moreover, there’s no correlation between
preference data volume or quality and algo-
rithm performance. Contrary to expectations,
DPO shows no overfitting in both human and
LLM preference datasets. Surprisingly, cDPO
doesn’t fare better than DPO under flip noise.
Our findings highlight the complexities of pref-
erence annotation methods and underscore the
importance of scrutinizing negative results in
NLP algorithm research.

1 Introduction

Large language models (LLMs) have proven their
capacity to amass broad knowledge by simply max-
imizing the likelihood of human-written text but
this objective isn’t sufficient to generate responses
that are safe, helpful and aligned with human prefer-
ences. Methods based on Reinforcement Learning
with Human Feedback (RLHF), including Proxi-
mal Policy Optimization (PPO) (Schulman et al.,
2017), aim to align LLMs with human preferences,
a theme also explored in other papers (Ouyang
et al., 2022; Askell et al., 2021; Bai et al., 2022a;

* Work done during internship at Observe.AI

Touvron et al., 2023). Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023) was later shown
to train policies in a single stage, treating it as a
classification task using human preference data. It’s
favored over PPO for its ability to handle reward
translation issues well and consistently achieve
high rewards across different levels of KL diver-
gence in generated text.

Due to the expensive nature of collecting human
annotations, LLM preferences serve as a substi-
tute for human preferences in generating synthetic
datasets (Chiang and Lee, 2023). Reinforcement
Learning from AI Feedback (RLAIF) (Bai et al.,
2022b) provides a promising alternative by lever-
aging a powerful off-the-shelf LLM to generate
preferences for large-scale model training. The use
of LLM preferences in dataset creation (Lee et al.,
2023) has shown comparable performance between
RLAIF and RLHF across various tasks, with per-
formance degradation attributed to dataset quality
issues, as evidenced by human-agreement scores.
Conservative DPO (cDPO) 1 addresses these chal-
lenges by adopting a conservative target distribu-
tion, minimizing error probability, and deriving a
loss function to ensure alignment between model
preferences and observed preferences. The scarcity
of diverse preference datasets poses a challenge
for RLHF and feedback learning research. UL-
TRAFEEDBACK (Cui et al., 2023) addresses this
challenge by providing an extensive, high-quality,
and diversified preference dataset.

While widely adopted in preference optimiza-
tion, DPO is susceptible to overfitting as observed
by Tunstall et al. (2023) in the initial epoch of
Zephyr-7B DPO training, but noted improved per-
formance with further epochs. The IPO paper (Azar
et al., 2023) discovered that RLHF and DPO are
prone to overfitting due to relying on the assump-
tion that pairwise preferences can replace ELo-

1https://ericmitchell.ai/cdpo.pdf
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scores through Bradley-Terry modeling. To mit-
igate this, IPO introduces a regularizing term con-
trolling log-likelihood ratios to address overfitting
to the preference dataset.

A literature gap exists in exploring how training
data volume influences LLM alignment algorithms,
DPO and IPO. Empirical evidence is lacking on
IPO’s ability to counter DPO’s overfitting, and stud-
ies on data quality’s impact on DPO, and cDPO’s
effectiveness in addressing it, are scarce. It’s es-
sential to investigate the influence of preference
annotation methods (LLM vs. human preferences)
on these factors and the performance of LLM align-
ment algorithms, including DPO, cDPO, and IPO,
given the increasing use of LLM preferences.

In this work, we investigate how the method of
preference annotation acquisition affects the criti-
cal performance factors influencing the effective-
ness of LLM alignment algorithms and seek to
address the following research questions:

• RQ1: How does the choice of preference an-
notation acquisition method influence the per-
formance of DPO and IPO in comparison to
SFT?

• RQ2: What is the effect of data volume on the
performance of DPO and IPO? Does the rela-
tionship depend on the preference annotation
acquisition method?

• RQ3: What is the effect of data quality on
the performance of DPO and cDPO? Does the
relationship depend on the preference annota-
tion acquisition method?

• RQ4: To what extent does DPO suffer from
overfitting, and can IPO withstand it? How
does the preference annotation acquisition
method impact this phenomenon concerning
both loss functions?

We demonstrate unexpected superiority of LLM
trained with DPO on LLM preferences over human
preferences. Performance shows no correlation
with data volume or quality. DPO doesn’t exhibit
overfitting issues, while cDPO doesn’t improve
under noise. Our findings highlight challenges in
preference annotation and aligning LLMs.

2 Implementation Details

We choose Zephyr-7B as our SFT model and GAIR
(Li et al., 2024) as our preference dataset, contain-

ing both human and LLM preferences, for our ex-
periments. MT Bench (Zheng et al., 2023) is used
to evaluate our models while GPT4-Turbo is cho-
sen as the LLM for obtaining synthetic preferences.
Further details on our choices are provided in Sec-
tion A.1, including hyperparameter specifics.

3 Results and Analysis

In this section, we provide a comprehensive anal-
ysis of the performance evaluation results, shed-
ding light on the key observations made during our
study.

3.1 RQ1 (Preference model performance)
To investigate this, we independently fine-tuned
Zephyr-7B (SFT) using preferences from both
GPT4-Turbo and humans in the GAIR dataset. In
Table 1, the IPO model trained on human prefer-
ences, as anticipated, outperforms its GPT4-Turbo-
trained counterpart according to the MT Bench
score. However, contrary to expectations, the DPO
model trained on GPT4-Turbo preferences outper-
forms its human-trained counterpart according to
the MT Bench score. We speculate that GPT4,
acting as the MT Bench judge, might show bias to-
wards responses from GPT4-Turbo-trained models.
To verify, we collect predictions from both mod-
els on MT Bench, comprising 160 samples, and
shared them with our in-house annotation team of
three members. Model names were concealed, and
annotators chose from options ’model 1’ (GPT4-
Turbo preference trained model), ’model 2’ (human
preference trained model), or ’equal’ based on the
quality of the generated output. We opt for a major-
ity vote to determine the final preference, and the
inter-annotator agreement score, calculated using
Fleiss’ Kappa (Fleiss et al., 1971), was measured
at 0.64. As shown in Table 2, the model trained on
GPT4-Turbo preferences was preferred in 63 of 160
samples with a much higher win rate of 39.4%, sug-
gesting alignment between MT Bench scores and
human annotation. This negative outcome of model
trained on LLM preference data outperforming the
one trained on human preference data prompts a
crucial inquiry regarding the superiority of human
preferences over those sourced from LLMs and
the necessary measures to guarantee the quality
standards of human-collected data.

3.2 RQ2 (Effect of data volume)
To investigate this, we independently fine-tune
Zephyr-7B (SFT) using DPO and IPO losses on
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Algorithm GPT4-
Turbo

Human

SFT (Baseline) 6.753 6.753
Preference
Model (DPO)

6.994 6.722

Preference
Model (IPO)

5.125 5.484

Table 1: Benchmarking performance of DPO and IPO
by Preference annotation acquisition method using MT
Bench scores

Model # Wins # Ties Win Rate
DPO (GPT4-
Turbo)

63 51 39.38%

DPO (Human) 46 51 28.75%

Table 2: Results from human annotation of DPO model
trained on GPT4-Turbo and Human preferences

Data Volume (%
Train Data)

GPT4-Turbo Human
Loss = DPO Loss = IPO Loss = DPO Loss = IPO

100% 6.994 5.125 6.722 5.484
75% 6.756 5.741 6.544 6.300
50% 6.878 6.766 6.897 6.692
25% 6.788 6.953 6.819 6.928

Table 3: Benchmarking performance of DPO and IPO models by preference annotation acquisition method when
trained on different data volumes using MT Bench scores

sampled datasets with varying proportions of pref-
erences from both GPT4-Turbo and humans in the
GAIR dataset. Contrary to the anticipation of im-
proved generalization with increased data diver-
sity, this pattern is absent in DPO and IPO models
trained on both types of preferences (Table 3). Nei-
ther GPT4-Turbo-Preference-trained nor human-
preference-trained DPO and IPO models demon-
strate a monotonic relationship with data volume,
suggesting that augmenting preference data volume
may not necessarily enhance model performance.
Notably, DPO and IPO models trained on 25% hu-
man preference data outperform those trained on
the entire dataset, hinting at potential overfitting
issues. We conduct an exhaustive examination into
the susceptibility of DPO to overfitting, with de-
tailed results emphasized in 3.4.

Table 3 also demonstrates that models trained
with IPO underperform those trained with DPO
across sample proportions of 100%, 75%, and
50% in both GPT4-Turbo and human preference
datasets. Upon conducting a hyperparameter sweep
over a fine-grained range for the DPO and IPO
models trained on 100% of the human preference
dataset, significant uplift in performance was ob-
served for both IPO and DPO models post-tuning
β as indicated in Table 8. However, we see that
DPO still outperforms IPO, indicating the ineffi-
cacy of IPO in surpassing DPO despite extensive
tuning of β. Due to the high cost of running these
experiments and the limited effectiveness of IPO,
we did not extend the tuning exercise to other con-
figurations.

This finding highlights the valuable insight for
ML researchers and scientists in enterprises using
DPO for preference modeling. It also underscores
the challenges involved in exploring alternative loss
functions such as IPO to enhance performance with
limited preference data.

3.3 RQ3 (Effect of data quality)

To tackle this issue, we independently fine-tune
Zephyr-7B (SFT) using DPO and cDPO losses
on sampled datasets with varying levels of flip
noise introduced into preferences from both GPT4-
Turbo and humans in the GAIR dataset. Flip noise
is introduced by swapping the chosen response
and the rejected response for a selected percent-
age of prompts. Despite the anticipation that mod-
els would exhibit better generalization with higher
data quality, this pattern is not evident in DPO
and cDPO models trained on both types of prefer-
ences (Table 4). Intriguingly, DPO models trained
with 25% flip noise outperform those trained on
clean data across GPT4-Turbo and human pref-
erences, while the cDPO model only marginally
outperforms it when trained on 50% flip noise data.

Moreover, Table 4 indicates that models trained
with cDPO consistently exhibit inferior perfor-
mance compared to those trained with DPO across
all configurations and datasets. This contradicts ex-
pectations set by the cDPO paper, which suggests
that cDPO’s ability to optimize to a fixed delta from
the reference model and then halt likely enhances
its stability compared to the original DPO loss,
making it more effective when dealing with noisy
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Data Quality
(% Flip
Noise)

GPT4-Turbo Human
Loss =
DPO

Loss =
cDPO

Loss =
DPO

Loss =
cDPO

0% 6.994 6.994 6.722 6.722
5% 6.956 6.733 6.759 6.559
25% 7.013 6.313 6.731 6.284
50% 7.081 6.372 6.703 6.344
75% 6.984 5.456 6.584 5.378

Table 4: Benchmarking performance of DPO and cDPO models by preference annotation acquisition method when
trained on datasets with different flip noise ratios using MT Bench scores

#
Steps

GPT4-Turbo Human
Loss = DPO Loss = IPO Loss = DPO Loss = DPO (Tuned) Loss = IPO Loss = IPO (Tuned)

Training
Loss

MT
Bench
Score

Training
Loss

MT
Bench
Score

Training
Loss

MT
Bench
Score

Training
Loss

MT
Bench
Score

Training
Loss

MT
Bench
Score

Training
Loss

MT
Bench
Score

1/4 0.212 6.809 11.796 6.578 0.283 6.638 0.539 6.969 14.775 6.669 0.577 6.919
2/4 0.037 6.859 5.959 5.244 0.057 6.744 0.505 6.919 9.322 4.677 0.368 7.056
3/4 0.024 6.813 4.056 4.781 0.038 6.728 0.253 6.981 6.648 5.874 0.274 6.953
4/4 0.018 6.994 3.231 5.125 0.031 6.722 0.219 7.184 5.415 5.484 0.241 7.113

Table 5: Impact of Overfitting on DPO and IPO Models at 100% Data Volume by Preference Annotation Acquisition
Method

training data. Upon conducting a thorough hyper-
parameter sweep over a finely grained range for
both DPO and cDPO models trained on the human
preference dataset with 5% flip noise, significant
performance enhancements were observed for both
after β tuning as indicated in Table 9. However,
DPO continues to surpass cDPO, indicating the
limited efficacy of cDPO even after extensive β
tuning. Due to the substantial expenses involved
in running these experiments and the limited effec-
tiveness of cDPO, we discontinued extending the
tuning process to other configurations.

This negative outcome holds considerable signif-
icance for researchers and professionals in organi-
zations utilizing DPO for preference modeling in
noisy datasets.

3.4 RQ4 (DPO and IPO overfitting)
Our objective is to validate the hypothesis that DPO
is susceptibile to overfitting and IPO is resilient
against it (Azar et al., 2023). We conduct empirical
validation by independently fine-tuning Zephyr-7B
(SFT) using DPO and IPO losses on 100% of pref-
erences from both GPT4-Turbo and humans in the
GAIR dataset. Overfitting is assessed by monitor-
ing training loss and evaluation scores of check-
points at intervals of 25% of the training steps on
MT Bench.

Table 5 reveals that DPO exhibits overfitting
only when trained on human preferences with the
default β of 0.1, contrasting IPO, which exhibits
overfitting when trained on both types of prefer-

ences. As suggested in the paper, we hypothesised
that tuning beta would help mitigate overfitting in
IPO trained model. As expected, when examining
models trained with a tuned β, a different pattern
emerges, where both DPO and IPO models trained
on human preference data do not display overfit-
ting. Thus, the key negative result we observe is
that tuning β (0.00625) helps mitigate overfitting
in DPO when trained on human preferences, pro-
viding valuable insights for ML researchers and
industry practitioners employing DPO and IPO for
preference modeling with limited data.

4 Conclusion

We analyze the influence of data quantity on DPO
and IPO, utilizing LLM preferences and human
preferences. Surprisingly, there’s no linear correla-
tion between data quantity and performance. Simi-
larly, the impact of data quality on DPO and cDPO,
using both LLM preferences and human prefer-
ences, also lacks a linear trend with performance.
Contrary to expectations, DPO trained on LLM
preferences outperforms its human-trained counter-
part. Additionally, IPO fails to outperform DPO
across various data volumes, while cDPO strug-
gles to address induced flip noise in preferences.
Interestingly, DPO shows no signs of overfitting
when trained on both LLM and human preference
datasets. These findings prompt further research to
enhance the resilience and effectiveness of LLM
alignment algorithms in preference modeling.
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5 Limitations

This study offers significant insights into the per-
formance of LLM alignment algorithms and the in-
fluence of preference annotation acquisition meth-
ods, but it is not without its limitations. First, the
research is grounded in a specific set of LLM align-
ment algorithms, namely DPO, IPO, and cDPO.
The results may not extend to other alignment al-
gorithms like KTO (Ethayarajh et al., 2024). Fu-
ture studies could broaden the scope by examin-
ing the performance of different algorithms for a
more holistic understanding of the field. Second,
the GAIR training dataset and MT Bench evalu-
ation dataset were used in this study. The out-
comes might vary with the use of different datasets,
hence, extrapolating these findings to other con-
texts should be done with caution. Third, the
Zephyr-7b, a decoder-only model, was used as
the underlying SFT model, and GPT4-Turbo was
used as the source in GAIR for acquiring LLM-
based preferences. The outcomes might differ with
the use of other models. Specifically, the trends
observed may not necessarily apply to other SFT
models within the same architectural class or differ-
ent architectural classes such as encoder-decoder
models. Fourth, the study did not find a correlation
between the volume or quality of preference data
and algorithm performance. However, this does not
exclude the possibility of other factors influencing
algorithm performance. Additional research is re-
quired to identify these potential factors. Fifth, the
study found that DPO trained on LLM preferences
outperforms human preferences, which was unex-
pected. This raises questions about the validity of
human preferences as a performance benchmark
for algorithms. Future research should delve deeper
into this issue. Lastly, the study found no evidence
of overfitting in DPO when trained on both LLM
and human preference datasets. However, this find-
ing should be interpreted cautiously as overfitting
is a multifaceted issue influenced by various fac-
tors, including model complexity, training dataset
size, and data noise. Further research is needed to
fully comprehend the conditions that may lead to
overfitting.

In conclusion, while this study offers valuable
insights into the performance of LLM alignment
algorithms and the impact of preference annotation
acquisition methods, these findings should be con-
sidered in light of the aforementioned limitations.
Future research should strive to address these limi-

tations for a more comprehensive understanding of
the field.
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A Appendix

A.1 Implementation Details for LLM
Alignment Experiments

In this section, we elaborate on the implementation
details of our study, exploring how variations in the
quality and quantity of preference data impact the
performance of DPO, IPO, and cDPO, alongside
the influence of preference annotation acquisition
methods.

We opt for Zephyr-7B, a decoder-only model
based on Mistral-7B, as our SFT model due to its
top-ranking performance in MT Bench (top 5 in the
list of models with a non-proprietary license) and
accessibility in the HuggingFace model repository
under the apache-2.0 license.

We employ the GAIR preference dataset (Li
et al., 2024), comprising 5.24K curated conver-
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sations with pairwise human preferences from 13K
unique IP addresses on the Chatbot Arena, col-
lected between April and June 2023. Addition-
ally, binary preference labels are gathered from 32
LLMs, incorporating 2 proprietary and 30 open-
source models. With 29 defined properties, each
response is annotated using Likert scale ratings or
property-specific annotations. This dataset is se-
lected primarily for its inclusion of both human
and LLM preferences. Furthermore, the renowned
LIMA paper (Zhou et al., 2023) originates from the
same organization that released this dataset.

We also conduct experiments on two additional
preference datasets: Ultrafeedback (Cui et al.,
2023), comprising 61K prompts with preferences
sourced from GPT4, and the Stanford Human Pref-
erences Dataset (SHP) (Ethayarajh et al., 2022),
extracted from posts and user comments across 18
subreddits containing human preferences, totaling
349K samples, which we downsample to 100K
samples by filtering for those with a score ratio
greater than 2 for experimentation. These datasets
are selected for their extensive scale and diversity
compared to other datasets.

Models are evaluated using MT Bench (Zheng
et al., 2023), a curated benchmark featuring 80
high-quality, multi-turn questions designed to eval-
uate conversation flow and instruction-following
capabilities in multi-turn dialogues. GPT-4 rates
MT Bench outputs on a scale of 1-10, with higher
scores indicating better performance. Refer to Ta-
ble 15 for the domains considered in the datasets.
Average MT Bench scores across questions and
turns are reported for all experiments.

We fine-tune all alignment models for two to
three epochs, following the approach in Tunstall
et al. (2023). Adam optimizer with betas of (0.9,
0.999) and epsilon of 1e-08 is utilized. A linear
learning rate scheduler with a peak rate of 5e-7 and
10% warmup steps is applied. Models are trained
with a global batch size of 16, using β = 0.1 to
control deviation from the reference model. A
hyper-parameter sweep for β is performed over the
range ∈ {1e− 3, 2.5e− 3, 5e− 3, 6.25e− 3, 1e−
2, 5e− 2, 1e− 1, 1.5e− 1, 2e− 1, 5e− 1, 9e− 1}
for four settings: training DPO / IPO models on
100% data volume + 0% flip noise and DPO /
cDPO models on 100% data volume + 5% flip
noise. β tuning is specifically focused on due to its
significant impact on model performance. Given
the high training cost, β tuning is not conducted
for all experiments. Experiments are conducted on

an AWS p4de.24xlarge instance with eight GPUs,
each with 80 GB of memory. A single training run
takes 3-4 hours on average, costing approximately
$140-190. Results are reported as the mean of 4
runs.
Dataset: https://huggingface.co/datasets/
GAIR/preference-dissection
Training Code: https://github.com/
huggingface/alignment-handbook/tree/
main
Evaluation Code: https://github.com/lm-sys/
FastChat

A.2 Error Analysis
In our study, we encountered several unexpected re-
sults that contradicted our initial hypotheses. This
section provides an in-depth error analysis to under-
stand these observations and their potential causes.

Firstly, we posited that DPO performance would
be superior when trained on human preferences
compared to LLM preferences. However, our find-
ings contradicted this hypothesis. One plausible
explanation for this unexpected outcome could be
the inherent biases present in human preferences,
which may not align with the objective function of
the DPO algorithm. Moreover, there may be inher-
ent limitations in the methodology used to collect
human annotations.

An example of this discrepancy is evident in the
performance of the DPO model trained on GPT4-
Turbo preferences versus human preferences, par-
ticularly in the task of coding, as illustrated in fig-
ures 1 and 2. It is conceivable that the expertise
levels of the human annotators selected for this task
were not carefully considered.

Additionally, our analysis revealed instances of
hallucinations (Row 3 in Table 16) and the genera-
tion of incomplete or redundant responses for Math
questions (Row 6 in Table 16) by the DPO model
trained on human preferences. These discrepancies
may be attributed to various biases inherent in hu-
man preferences or inconsistencies in annotation
practices.

Conversely, LLM preferences may exhibit
greater consistency or comprehensiveness, thereby
yielding superior performance. Further investiga-
tion is warranted to elucidate this discrepancy.

Secondly, we observed no discernible correla-
tion between the volume or quality of preference
data and the performance of the alignment algo-
rithms. This finding challenges the widely held
assumption that larger, higher-quality datasets in-
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variably lead to improved performance. One poten-
tial contributing factor to this discrepancy could be
the possible absence of independence and identical
distribution (iid) in the data sourced from GAIR
(Li et al., 2024), which may have influenced the
outcomes of our experiments.

As depicted in figures 3 and 4, the disparities in
performance among models trained on varying data
volumes or with different proportions of flip noise
are not uniformly distributed across the domains in
MT Bench (Zheng et al., 2023). To delve deeper
into this phenomenon, we manually mapped the
domains in GAIR (Li et al., 2024) and MT Bench
(Zheng et al., 2023), as illustrated in Table 6. Subse-
quently, we aggregated the data volume from GAIR
(Li et al., 2024) according to the distinct domains
in MT Bench (Zheng et al., 2023), as presented in
Table 7.

As demonstrated in Table 7, there exists an im-
balance in the distribution of samples within GAIR
(Li et al., 2024) across the various domains in MT
Bench (Zheng et al., 2023). This non-uniform dis-
tribution could potentially skew the results of our
experiments on data quantity and quality. Addi-
tionally, it is plausible that there are diminishing
returns once a certain threshold of data volume is
surpassed.

Thirdly, contrary to our initial expectations, the
DPO algorithm did not exhibit indications of over-
fitting on either the human or LLM preference
datasets. This suggests the possibility that our
methods for detecting overfitting may not have
been sufficiently sensitive. Moreover, the relatively
small volume of the GAIR (Li et al., 2024) dataset,
consisting of approximately 5.2K samples, may
have biased the results pertaining to DPO overfit-
ting. It is conceivable that the dataset lacked the
requisite data volume to effectively capture the on-
set of overfitting.

Furthermore, the decision to train for only 2-3
epochs might have been too brief to provoke overfit-
ting, particularly because the learning rate was ap-
propriately set. We opted for this duration based on
the findings of Tunstall et al. (2023), who reported
observing overfitting after a single epoch. How-
ever, the divergence in observed behaviors could
be attributed to the differences in the nature and
size of the datasets.

It is worth noting that models often necessitate
additional training iterations before overfitting man-
ifests, as they gradually adapt not only to the un-
derlying pattern but also to the noise present in the

training data. Consequently, further investigation is
warranted to ascertain the precise underlying cause
of these observations.

Lastly, cDPO did not perform better than DPO
under flip noise conditions. This was surprising as
cDPO is designed to be more conservative and thus
more resilient to noise. One possible explanation
could be that the flip noise in our dataset was not
significant enough to differentiate the performance
of DPO and cDPO. Alternatively, there might be
other types of noise or errors that cDPO is not
equipped to handle.

In conclusion, our error analysis has revealed
several unexpected findings that challenge common
assumptions in LLM alignment algorithm research.
These findings underscore the importance of rigor-
ous error analysis and the need for further research
to understand the complexities of preference anno-
tation methods.
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Figure 1: Analysis of GPT4 Ratings by Domains in MT Bench: DPO and IPO Models trained on GPT4-Turbo vs
Human Preferences. Notably, the DPO model trained on GPT4-Turbo preferences excels over its counterpart trained
on Human preferences in domains such as Coding, Extraction, Reasoning, and Humanities, while demonstrating
competitive performance in other areas.

Figure 2: Analysis of Human Preference Rate by Domains in MT Bench: DPO Models trained on GPT4-Turbo vs.
Human Preferences. Remarkably, the DPO model trained on GPT4-Turbo preferences demonstrates superior or
comparable performance across all domains, with the exception of Roleplay.
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Figure 3: Analysis of GPT4 Ratings by Domains in MT Bench: DPO and IPO Models trained on different volumes
of GPT4-Turbo and Human Preferences within the GAIR dataset. We present three comparisons that challenge the
expected trends: IPO model trained on 25% versus 100% Human Preferences, IPO model trained on 25% versus
100% GPT4-Turbo Preferences, and DPO model trained on 50% versus 100% Human Preferences.

Figure 4: Analysis of GPT4 Ratings by Domains in MT Bench: DPO and cDPO Models trained on different
proportions of flip noise induced in GPT4-Turbo and Human Preferences within the GAIR dataset. We present
three noteworthy comparisons that challenge the expected trends: cDPO model trained on 25% versus 50% flip
noise induced in Human Preferences, cDPO model trained on 25% versus 50% flip noise induced in GPT4-Turbo
Preferences, and DPO model trained on 5% versus 50% flip noise induced in GPT4-Turbo Preferences.
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Domain - GAIR (Train) Domain - MT Bench (Test) # Samples - GAIR
(Train)

analyzing_general Reasoning, Extraction, Writ-
ing, Roleplay

16

chitchat Roleplay 239
code_correction_rewriting Code 24
code_simplification Code 1
counterfactual Reasoning 52
explaining_code Code 29
information_extraction Extraction 30
keywords_extraction Extraction 3
note_summarization Extraction 1
question_generation Reasoning 53
recommendation Reasoning 45
solving_exam_question_with_math Math 27
solving_exam_question_without_math STEM, Humanities 39
text_simplification Writing 7
text_to_text_translation Writing 43
verifying_fact Extraction 57
writing_cooking_recipe Writing 47
writing_job_application Writing 23
writing_marketing_materials Writing 2
writing_personal_essay Writing 29
writing_product_description Writing 21
writing_social_media_post Writing 10
writing_technical_document Writing 13
creative_writing Writing 275
instructional_rewriting Writing 25
language_polishing Writing 12
open_question Writing 395
text_correction Writing 14
title_generation Writing 10
writing_advertisement Writing 5
writing_email Writing 79
writing_legal_document Writing 17
writing_news_article Writing 5
writing_presentation_script Writing 12
writing_scientific_paper Writing 6
writing_song_lyrics Writing 41
functional_writing Writing 195
paraphrasing Writing 22
writing_blog_post Writing 12
asking_how_to_question Reasoning 100
classification_identification Extraction 28
code_generation Code 341
code_to_code_translation Code 6
explaining_general Reasoning 385
ranking Reasoning 39
text_summarization Extraction 93
brainstorming Reasoning 165
data_analysis Math 19
math_reasoning Math, Reasoning 334
reading_comprehension Reasoning 13
roleplay Roleplay 131
value_judgement Humanities 172
default - 865
planning Reasoning 75
seeking_advice Roleplay 323

Table 6: Mapping between the domains represented in GAIR and MT Bench
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Domain - MT Bench (Test) # Samples - GAIR (Train)
Writing 1336
Reasoning 1277
Roleplay 924
Code 401
Math 380
Extraction 228
Humanities 211
STEM 39

Table 7: Data Volume in GAIR Corresponding to Domains in MT Bench

Data Volume
(% Train
Data)

Human
Loss =
DPO
(Tuned)

Loss = IPO
(Tuned)

100% 7.184 7.113
75% 7.038 6.981
50% 7.181 6.722
25% 6.959 6.878

Table 8: Benchmarking performance of DPO
and IPO models when trained with tuned β on
different volumes of human preference data
using MT Bench scores

Data Quality
(% Flip Noise)

Human
Loss =
DPO
(Tuned)

Loss =
cDPO
(Tuned)

0% 7.184 7.184
5% 7.078 7.063

Table 9: Benchmarking performance of DPO
and cDPO models when trained with tuned β
on human preference datasets with different
flip noise ratios using MT Bench scores

Algorithm UltraFeedback SHP
Baseline (SFT) 6.753 6.753
DPO 7.225 6.441

Table 10: Benchmarking DPO model perfor-
mance on Ultrafeedback and SHP datasets us-
ing MT Bench scores

Data Volume
(% Train Data)

UltraFeedback SHP

100% 7.225 6.441
75% 7.419 6.438
50% 7.306 6.244
25% 7.384 6.122

Table 11: Benchmarking DPO model perfor-
mance with varying sample proportions in Ul-
trafeedback and SHP datasets using MT Bench
scores

Data Quality (% Flip Noise) UltraFeedback SHP

0% 7.225 6.441
5% 6.872 6.453
25% 6.691 6.272
50% 6.403 6.244
75% 5.928 5.664

Table 12: Benchmarking DPO model performance with varying flip noise in Ultrafeedback and SHP datasets using
MT Bench scores

UltraFeedback SHP

Data Volume (% Train Data) Loss = DPO Loss = IPO Loss = DPO Loss = IPO

100% 7.225 6.813 6.441 6.200
75% 7.419 5.853 6.438 6.469
50% 7.306 6.756 6.244 6.466
25% 7.384 6.344 6.122 6.419

Table 13: Benchmarking models with DPO and IPO loss functions across different Ultrafeedback and SHP dataset
ratios using MT Bench scores
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UltraFeedback SHP

Data Quality (% Flip Noise) Loss = DPO Loss = cDPO Loss = DPO Loss = cDPO

0% 7.225 7.225 6.441 6.441
5% 6.872 6.484 6.453 6.425
20% 6.691 6.050 6.272 5.963
50% 6.403 6.325 6.244 6.403
75% 5.928 5.797 5.664 5.616

Table 14: Benchmarking models with DPO and cDPO loss functions across different Ultrafeedback and SHP flip
noise ratios using MT Bench Scores.

Dataset # Train # Val Domains / Sub-Datasets
Ultrafeedback 61135 2000 TruthfulQA, FalseQA, Evol-Instruct, UltraChat, ShareGPT
SHP 100000 1000 academia, anthropology, baking, carguys, culinary, docs, engineers, his-

torians, hr, philosophy, physics, science, science fiction, social science,
vet, change my view, explain like i’m five, legal advice

GAIR 5240 0 Chatbot Arena conversations
MT Bench - 160 Writing, Roleplay, Extraction, Reasoning, Math, Coding, Knowledge I

(STEM), and Knowledge II (humanities/social science)

Table 15: Overview of Datasets

RQ Description Text Output
Score

1 Prompt You can see a beautiful red house to your left and a hypnotic greenhouse
to your right, an attractive heated pink place in the front. So, where is
the White House?

-

1 DPO Model trained
on 100% of GPT4-
Turbo preferences in
GAIR dataset

The White House is not visible from this description as it is not men-
tioned. The description only describes other buildings and their colors.

3

1 DPO Model trained
on 100% of Hu-
man preferences in
GAIR dataset

The White House is likely located behind the red house and greenhouse,
as it is the official residence and workplace of the President of the
United States. The heated pink place in the front may be a separate
building or structure on the same property.

2

1 Prompt Benjamin went to a bookstore and purchased a variety of books. He
bought 5 copies of a sci-fi novel, each priced at $20, 3 copies of a history
book priced at $30 each, and 2 copies of a philosophy book for $45
each. What was the total cost of his purchases?

-

1 DPO Model trained
on 100% of GPT4-
Turbo preferences in
GAIR dataset

The total cost of Benjamin’s purchases is:
5 copies of sci-fi novel at $20 each = $100 3 copies of history book at
$30 each = $90 2 copies of philosophy book at $45 each = $90
Total cost = $100 + $90 + $90 = $270

6

1 DPO Model trained
on 100% of Hu-
man preferences in
GAIR dataset

5 x $20 = $100 3 x $30 = $90 2 x $45 = $90
Total cost = $100 + $90 + $90 = $270
Therefore, the total cost of his purchases was $270.

4

Table 16: Examples of generated model outputs on MT Bench
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Abstract

Deploying large language models (LLMs) en-
counters challenges due to intensive compu-
tational and memory requirements. Our re-
search examines vocabulary trimming (VT) in-
spired by restricting embedding entries to the
language of interest to bolster time and memory
efficiency. While such modifications have been
proven effective in tasks like machine transla-
tion, tailoring them to LLMs demands specific
modifications given the diverse nature of LLM
applications. We apply two language heuris-
tics to trim the full vocabulary—Unicode-based
script filtering and corpus-based selection—to
different LLM families and sizes. The meth-
ods are straightforward, interpretable, and easy
to implement. It is found that VT reduces the
memory usage of small models by nearly 50%
and has an upper bound of 25% improvement
in generation speed. Yet, we reveal the lim-
itations of these methods in that they do not
perform consistently well for each language
with diminishing returns in larger models.

1 Introduction

Large language models (LLMs) are gaining increas-
ing attention given their strong performance (Rad-
ford et al., 2019; Brown et al., 2020; Scao et al.,
2022; Touvron et al., 2023). LLMs, especially
multilingual ones, hold vocabulary items for many
languages and scripts, which entail a costly matrix
multiplication H × |V | in the output layer, where
H is the hidden size and |V | is the size of a vocabu-
lary V . This expensive operation leads to increased
costs of both memory and time given the autore-
gressive nature of LLM decoding. Given their sub-
stantial size, this latency in inference significantly
escalates the expense of LLM deployment.

In practice, creating a sub-vocabulary V ′ with
|V ′| ≪ |V | and only loading its corresponding
embedding entries for inference seems favourable
since most logits from the output layer do not
affect the hypothesis token(s) at each time step.

Vocabulary trimming (VT) has been actively ex-
plored in machine translation (often called short-
listing, Schwenk et al., 2007; Le et al., 2012; De-
vlin et al., 2014)—it computes token-level align-
ments and makes potential target tokens a sub-
vocabulary. While anticipating certain limitations
such as domain mismatch (Bogoychev and Chen,
2021; Domhan et al., 2022), vocabulary shortlist-
ing in LLMs poses a fundamental challenge: often
LLM outputs are variable and open-ended, compli-
cating the determination of the required lexicons.
Recent attempts at multilingual pre-trained models
select tokens in a task’s language (Abdaoui et al.,
2020; Ushio et al., 2023). Nonetheless, research
in this direction is still limited, especially in speed
considerations.

We follow the idea of fitting vocabulary to the
language of the downstream task. Specifically, We
examine two strategies: Unicode-based filtering
where vocabulary items are removed if they do not
belong to the task language, and corpus-based se-
lection where we record vocabulary hits from a
large representative corpus. After experimenting
with LLMs from two families of different sizes,
we identify a good upper bound of memory re-
duction with several limitations and outlooks: 1)
Unicode-based script filtering maintains quality for
Latin-based languages but harms languages requir-
ing code-mixing. 2) Corpus-based selection leads
to fewer alterations but is less effective in reduc-
ing the embedding size. 3) Embeddings are pro-
portionally smaller in larger models (with smaller
vocabularies). Yet we argue that VT can be ap-
plied orthogonally to other efficiency methods like
efficient attention, quantization, etc.

2 Language-Based Vocabulary Trimming

We explore two ways to prepare sub-vocabulary
for LLMs, focusing on only retaining tokens rel-
evant to the language being generated. We test
a batched setting on the fly: we determine a sub-
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vocabulary for an entire batch because creating
the sub-vocabulary separately for each input is too
expensive in practice. Furthermore, we always in-
clude all tokens appearing in the inputs.

Script-based filtering This is done by filtering
token strings that fall out of a language’s Unicode
range—keeping tokens in the writing script of that
language. It should be especially effective for lan-
guages operating on unique scripts, such as Arme-
nian, Chinese, Korean, etc since it allows for con-
cise vocabulary restriction. This method might be
less practical if a writing system is shared among
multiple languages (e.g. Cyrillic or Latin alpha-
bets), because it would be infeasible to limit the
lexicons to those solely belong to a specific lan-
guage, resulting in a relatively large sub-vocabulary.
Moreover, this method would strictly rule out code-
mixed texts, emojis, etc, which are used in real-
world communications.

Corpus-based selection Another way is to to-
kenize a representative corpus in the desired lan-
guage in advance and use the vocabulary entries
that have been recorded to build a sub-vocabulary.
This method is non-exhaustive because we could
miss rare but valid tokens or suffer from domain
mismatch between the vocabulary selection corpus
and the downstream tasks at inference time.

3 Experimental Setup

Languages and test sets We experimented on
four languages: Bulgarian, Chinese, English, and
Spanish, to offer distinct conditions that cover
different degrees of writing script overlap, code-
mixing, etc, with details in Appendix A. We sam-
ple 50 prompt questions from OpenAssistant (Köpf
et al., 2023) which are then human-translated into
test languages. We decode them with beam size 1.

Metrics We consider efficiency-quality trade-
offs. In terms of speed, we report end-to-end time
to decode the entire test, including model loading
and embedding slicing. As a quality indicator, we
count the chances a model fails to produce the ex-
act same output (miss) with a full vocabulary and
with VT. In addition, we report the BLEU and chrF
of the VT output w.r.t. to the original output with
the full vocabulary (not the reference). Note that
there is no gold reference due to the open domain
nature; we hence prefix the two string metrics with
an “o-”.

Large language models We experiment with
instruction-tuned LLMs based on BLOOM at var-
ious sizes (Scao et al., 2022) as well as LLaMA-
7B (Touvron et al., 2023). We adopt Chen et al.
(2024)’s models fine-tuned on machine translations
of the Alpaca dataset (Taori et al., 2023) to test
for open domain question answering, which maxi-
mizes the difficulty for VT as explained earlier.

BLOOM is multilingual and explicitly supports
English, Spanish, and Chinese, but not Bulgarian.
Consequently, it has a sizeable vocabulary of 250K
and is therefore a prime and tempting candidate to
reduce vocabulary for a specific language during
inference. We experiment with the 560M, 1B7, and
7B1 checkpoints, with diminishing computational
burden on the embedding and output layers.

LLaMA is an English-centric LLM with a small
32K vocabulary. We might have reduced benefit
from VT because a proportionally lower amount
of computation occurs in the output layer. On the
other hand, since the LLM is European language-
focused, we expect drastic vocabulary reductions
compared to BLOOM for Bulgarian and Chinese.

Vocabulary trimming details We tokenize the
test prompts and always include input tokens in
the sub-vocabulary. We then apply either of the
proposed selection methods. Script-based filtering
checks whether a vocabulary entry belongs to a
Unicode subset: Cyrillic for Bulgarian, ASCII for
English, Latin Extended-A for Spanish, and Chi-
nese characters for Chinese. Whereas for corpus-
based selection, we tokenize a subset of WikiMa-
trix (Schwenk et al., 2021) containing Wikipedia
texts for each language and record vocabulary hits.

For both selection methods, we keep the first
300 vocabulary entries of each LLM too, as those
usually correspond to special tokens, Unicode bytes
(for byte-level BPE), numbers, etc. We compute
the sub-vocabulary offline and we do not record
the time spent on pre-tokenizing a large corpus or
extracting a Unicode subset in the measurements,
as once done, these can be reused for every batch
during inference. Script-based filtering takes under
60 seconds and corpus-based selection takes up
to 10 minutes. Adding the inputs’ tokens to the
sub-vocabulary takes negligible time.

Hardware We conduct experiments both on CPU
and GPU devices. For the CPU tests, we use Xeon
Gold 6248 (40 Cores, 80 Threads), and for GPU
tests, we use a single Nvidia RTX 3090. CPU in-
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Language |V |
BLOOM-560M BLOOM-1B7 BLOOM-7B1

time miss o-BLEU o-chrF time miss o-BLEU o-chrF time miss o-BLEU o-chrF

bg full 250680 05:26 – 15:18 – 65:01 –
Unicode 22912 04:39 1 99.04 99.73 13:44 4 91.67 96.36 51:46 10 83.42 87.03
corpus 58642 04:49 0 09:34 1 99.49 99.85 60:28 3 91.68 95.84
oracle 1408 04:22 0 12:31 0 61:06 0

en full 250680 07:37 – 16:35 – 55:08 –
Unicode 186752 07:40 1 98.21 98.68 16:05 0 58:18 0
corpus 113024 07:00 1 99.22 99.45 15:08 3 96.59 98.88 54:20 2 98.91 99.40
oracle 4736 06:14 0 13:06 0 48:46 0

es full 250680 05:58 – 12:26 – 63.15 –
Unicode 187008 05:48 0 12:01 0 59:15 0
corpus 112128 05:37 0 11:34 4 95.91 97.71 57:41 4 94.46 96.25
oracle 4736 04:53 0 09:26 0 51:43 0

zh full 250680 06:29 – 15:27 – 55:09 –
Unicode 51584 05:54 16 53.32 70.38 13:09 21 47.66 63.66 50:50 22 47.76 63.60
corpus 104320 06:08 11 66.17 78.44 14:08 16 63.26 73.99 46:39 17 62.37 76.55
oracle 4096 05:16 0 12:07 0 50:50 0

Table 1: CPU VT results for the BLOOM family.

Language |V |
LLaMA-7B

time miss o-BLEU o-chrF

bg full 32000 117:15 –
Unicode 4736 125:55 19 74.13 81.51
corpus 26496 132:24 5 97.75 98.44
oracle 2048 123:06 0

en full 32000 113:52 –
Unicode 27520 125:57 6 79.43 88.91
corpus 30720 111:30 19 93.07 97.14
oracle 4480 119:32 0

es full 32000 131:03 –
Unicode 27648 128:00 8 89.60 91.62
corpus 30336 129:26 2 97.08 99.15
oracle 3456 123:25 0

zh full 32000 130:42 –
Unicode 2688 114:39 13 75.43 83.36
corpus 28160 119:58 2 95.47 97.80
oracle 1536 126:16 0

Table 2: CPU VT results for LLaMA-7B.

ference is performed in float32 precision, whereas
GPU inference is in int8 (Dettmers et al., 2022).

4 CPU Results and Discussions

Upper bound performance First of all, we con-
duct an oracle vocabulary selection experiment to
find the theoretical upper bound for speed and mem-
ory improvements: we run inference using the full
vocabulary and we add the used vocabulary items
to a oracle sub-vocabulary.

BLOOM versus LLaMA We present CPU re-
sults for the BLOOM family in Table 1 and those
for LLaMA-7B in Table 2. We observe around 20%

time improvements with the smaller BLOOM at
560M and 1B7, but only 5–10% in the 7B models.
As the model grows in size, the oracle upper bound
sees decreasing gains, due to the proportion of the
embedding matrices becoming smaller in a larger
model. By comparing BLOOM-7B1 with LLaMA-
7B, we also find that the larger the base vocabulary,
the more effective VT is. The oracle vocabulary is
more than an order of magnitude smaller than our
VT approaches, but in practice, it would be difficult
to reduce the vocabulary size by as much.

Speed numbers of LLaMA-7B on CPU are rel-
atively inconsistent and had wide variance across
test runs. We attribute this to the small vocabulary
size and thus less computational footprint in the out-
put layer affected by VT. Also, there could be vari-
ous scheduling issues and non-deterministic cache
accesses as GEMM operations are split across the
40 cores of the CPU.

4.1 Script-based vocabulary trimming

When applying script-based filtering, we observe
different trends in English and Spanish compared
to Bulgarian and Chinese. For BLOOM, the sub-
vocabulary size for Bulgarian and Chinese can be
reduced to 10–20%, whereas for English and Span-
ish, it remains at 60%. This is potentially because
BLOOM allocated more vocabulary items for Euro-
pean languages which are the dominant ones when
the tokenizer is trained. Generally, the inference
time reduces to between full and oracle vocabulary.
In terms of misses, the model can maintain almost
the same outputs with and without VT for English
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and Spanish. However, there are 10–20% misses
for Bulgarian and 30–40% for Chinese.

LLaMA-7B results are less favourable: script-
based filtering does not significantly reduce the vo-
cabulary size for English and Spanish, and all lan-
guages suffer from relatively high misses between
10–40%. Specifically for Bulgarian and Chinese,
we argue that Unicode filtering could be too harsh
as sometimes English characters are code-mixed in
the language and cannot be avoided, e.g., when gen-
erating a website link. Therefore, we conclude that
VT based on the writing script can improve infer-
ence efficiency without degrading performance for
a multilingual LLM to generate Latin languages,
but it is less feasible for non-Latin languages or
English-centric LLMs with a smaller vocabulary.

4.2 Corpus-based vocabulary trimming
Corpus-based selection leaves a much larger vocab-
ulary for Bulgarian and Chinese but reduces the
vocabulary to half or less for English and Span-
ish. This method produces a more balanced sub-
vocabulary for each language likely due to the in-
clusion of tokens outside of the desired language.
However, for LLaMA-7B which has a small vocab-
ulary in the first place, this approach keeps most of
the entries for all languages and is thus not useful.

The corpus-based selection also ameliorates the
quality problem to some extent by allowing for
code-mixing (usually English), although the Chi-
nese VT models still struggle to produce identical
output as the full vocabulary models. Overall, we
see a small but consistent reduction in runtime with
BLOOM for this VT approach, indicating its prac-
ticality at least for English.

4.3 Memory
Besides speed considerations, VT can lead to ample
memory footprint reduction, especially for smaller
models like BLOOM-560M, where the model size
is dominated by the vocabulary (nearly 50% of all
model parameters). In practice, these models are
small enough to fit in modern GPUs and CPUs, so
the reduced memory is not game-changing. On
the other hand, when looking at bigger models like
BLOOM-7B1 or LLaMA-7B, vocabulary makes up
just a tiny portion of the overall number of param-
eters and thus the relative reduction in model size
is modest and could not enable the use of smaller
GPUs. We can view this as a proxy judgement
about the computational distribution of the model:
The larger the model, the less time is spent in the

output layer, and thus the smaller the impact of VT
is. Exact memory numbers are available in Table 3.

Language
BLOOM LLaMA

|V | 560M 1B7 7B1 |V | 7B

Full model 250680 2.10 6.10 27.10 32000 27.10

Embedding matrix or output layer
full vocab 250680 0.90 1.90 3.80 32000 0.50

bg Unicode 22912 0.09 0.18 0.36 4736 0.07
bg corpus 58642 0.22 0.45 0.90 26496 0.41
en Unicode 186752 0.70 1.40 2.80 27520 0.43
en corpus 113024 0.44 0.88 1.70 30720 0.48
es Unicode 187008 0.70 1.40 2.80 27648 0.43
es corpus 112128 0.43 0.86 1.70 30336 0.47
zh Unicode 51584 0.20 0.40 0.80 2688 0.04
zh corpus 104320 0.40 0.80 1.60 28160 0.44

Table 3: Theoretical memory footprint (in GB) for
BLOOM and LLaMA with float32 featuring the em-
bedding matrix.

5 GPU results

In addition to CPU tests, we performed the same
BLOOM experiments on a GPU and observed that
all three selection criteria including the oracle do
not lead to improved inference speed. Small perfor-
mance differences might amount to little more than
noise when the overhead of model slicing is con-
sidered. We hypothesize that GPUs are designed
for multiplying large matrices, so reducing the ma-
trix size, even to the extremity of an oracle sub-
vocabulary, is not able to offer any speedup. This is
consistent with Bogoychev et al. (2020)’s findings
in applying shortlists to neural machine translation
on GPUs. We list GPU results for BLOOM in
Appendix B Table 4.

6 Conclusion

We presented a study of two straightforward
language-inspired vocabulary trimming methods
to speed up inference and save memory for large
language model deployment. Experiments reveal
ups and downs. While we can achieve speed im-
provements, it does not guarantee that the output is
not altered compared to full vocabulary generation.
With the models tested, we see the feasibility of
our proposed approaches for English and Spanish,
but there are shortcomings when considering lan-
guages written in non-Latin script and requiring
code-mixing. In terms of efficiency, the reduction
in inference time is less pronounced compared with
memory saving.
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Ethical Considerations

Our study aimed solely at reducing the computa-
tional resource consumption for deploying large
language models. Our analysis contributes to the
understanding of language heuristics in trimming
an LLM vocabulary. While there is minimal risk
associated with generating harmful content, it is
no different for other research on large language
models. We believe research into this direction has
a positive impact in terms of energy saving and
service deployment.
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A Languages

We experimented with Bulgarian, Chinese, En-
glish, and Spanish, to cover different conditions
and use cases regarding writing scripts and text
usage. English and Spanish use the same script
and have a high overlap in vocabulary with many
other languages after tokenization. Since LLMs
are English-centric, we examine how effective of
a sub-vocabulary we can find when it is not pos-
sible to shortlist merely based on the script. Bul-
garian is a low-resource language written in the
Cyrillic script. Most multilingual language mod-
els have lower amounts of Cyrillic tokens, so we
expect that script-based filtering will leave a small
sub-vocabulary; however, since Cyrillic is used by
other languages, we will inevitably end up with
vocabulary items that do not belong to Bulgarian.
Finally, Chinese is a high-resource language with a
unique script; Unicode filtering would be the most
effective in this case.

B GPU Performance

We provide GPU performance numbers in Table 4.
Unfortunately, neither of the language-based vo-
cabulary trimming methods can improve time effi-
ciency.

Language |V |
BLOOM
-560M

BLOOM
-1B7

BLOOM
-7B1

time miss time miss time miss

bg full 250680 05:22 – 08:29 – 14:43 –
Unicode 22912 05:23 0 08:45 6 14:35 17
corpus 58642 05:22 0 08:38 1 14:33 10
oracle 1408 05:21 0 09:06 0 14:33 0

en full 250680 06:50 – 09:02 – 11:54 –
Unicode 186752 06:54 0 08:52 0 11:46 0
corpus 113024 06:38 2 08:56 3 11:59 3
oracle 4736 06:43 0 09:00 0 11:52 0

es full 250680 06:17 – 07:05 – 12:35 –
Unicode 187008 06:13 0 07:03 0 12:17 0
corpus 112128 06:15 1 7:10 3 12:30 3
oracle 4736 06:26 0 07:23 0 12:17 0

zh full 250680 05:37 – 08:47 – 11:58 –
Unicode 51584 06:10 15 08:34 20 11:22 29
corpus 104320 06:03 11 09:01 16 11:35 13
oracle 4096 05:35 0 08:42 0 11:46 0

Table 4: GPU VT results for the BLOOM family.
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Abstract

We present a multi-task learning approach to
predicting semantic plausibility by leveraging
50+ adapters categorized into 17 tasks within
an efficient training framework. Across four
plausibility datasets in English of varying size
and linguistic constructions, we compare how
models provided with knowledge from a range
of NLP tasks perform in contrast to models
without external information. Our results show
that plausibility prediction benefits from com-
plementary knowledge (e.g., provided by syn-
tactic tasks) are significant but non-substantial,
while performance may be hurt when injecting
knowledge from an unsuitable task. Similarly
important, we find that knowledge transfer may
be hindered by class imbalance, and demon-
strate the positive yet minor effect of balancing
training data, even at the expense of size.

1 Introduction

The ability to distinguish between plausible and im-
plausible events represents a crucial building block
for natural language processing (NLP). While exist-
ing models include classical transformer-based ap-
proaches (Porada et al., 2019; Emami et al., 2021),
researchers also devise world-knowledge features
(Wang et al., 2018), and examine lexical abstraction
chains (Porada et al., 2021) in order to integrate
relevant but yet missing information. In contrast,
our work tackles the prediction of plausibility from
a novel perspective, by testing whether knowledge
from different tasks may be used to fill knowledge
gaps and to improve plausibility models in low- to
mid-size resource scenarios. Leveraging adapters
(Pfeiffer et al., 2020a, 2021; Poth et al., 2023) as an
efficient multi-task learning framework, we train
53 task adapters categorized into 17 tasks ranging
from syntactic problems such as parsing to lexi-
cal semantics tasks such as abstractness prediction
as well as sentence- and discourse-level seman-
tics problems such as question answering. Across

four plausibility datasets in English of varying size
and linguistic constructions, we compare how mod-
els perform without external information (single-
task adapters) in contrast to models provided with
knowledge from other tasks (multi-task learning
with adapter-fusion). In particular, the main goal
of this paper is not to improve state-of-the-art re-
sults for each dataset but to explore whether task
transfer through adapter-fusions works better than
single-task adapters. More specifically, we are in-
terested in the relationships between the source
tasks (e.g., abstractness prediction or parsing) and
the target task (plausibility prediction), and inves-
tigate which kind of knowledge is potentially rel-
evant but yet missing for successfully predicting
whether a given event is plausible or implausible.
We first train single-task adapters for plausibility
using each datasets’ training data, and then explore
the impact of additional within-task data regarding
class balance as a potential factor. This is relevant
insofar as language models (LMs) are commonly
pretrained on mainly plausible training data and
should thus be expected to perform better for plau-
sible than implausible data. In a second step, we
train and evaluate a range of adapter fusion models.

Our results indicate that (i) depending on the
dataset, single-task adapter models can represent a
viable alternative to full fine-tuning, (ii) knowledge
from different tasks does not substantially improve
and even hurt performance, depending on task,
dataset, and training data setting, and (iii) adding in-
domain data and removing class imbalance sustains
plausibility prediction across datasets. Analyzing
task categories reveals minimum negative impact
from syntactic tasks, followed by discourse-level
and lexical semantics tasks. We thus conclude that
given the prerequisite of class balance, knowledge
transfer through adapter fusion does not lead to sub-
stantial improvements for plausibility prediction
when leveraging complementary tasks and might
be even hurt in case of more closely related tasks.
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2 Background and Related Work

Modeling Semantic Plausibility While classi-
cal distributional models tend to model selectional
preferences rather than semantic plausibility (Erk
et al., 2010), there has been a line of advances
to model plausibility (Wang et al., 2018; Porada
et al., 2019; Pyatkin et al., 2021; Tang et al., 2023),
including approaches to inject or induce knowl-
edge at various levels.1 For example, Wang et al.
(2018) enhance a neural classifier to make use of
manually annotated world-knowledge features of
subjects and objects in (im)plausible events, and
substantially increase performance. Porada et al.
(2021) explore a transformer-based approach and
show that providing abstractions over subjects and
objects in form of lexical hierarchies is not suffi-
cient to boost performance over a vanilla RoBERTa
model. Emami et al. (2021) explore the effect of
adjectival modifiers on event plausibility with trans-
formers, and demonstrate that neither the adjective
itself nor taxonomic classes help in correctly de-
termining plausibility. More recently, Bang et al.
(2023) consider a larger model and report results on
physical semantic plausibility using ChatGPT with
a prompting approach on a PEP-3K (Wang et al.,
2018) sample. However, the strength of the pre-
sented findings is limited by their focus on only 30
of the available 3,062 s-v-o events (ď 1%). Provid-
ing insights from a slightly different perspective,
Liu et al. (2023) devise a model to estimate the
plausibility of commonsense statements with the
goal of verification. Leveraging commonsense QA
datasets and knowledge bases to substantially scale
up training data and experimenting with different
training objectives, they show that more data and a
larger model (T5-XXL) significantly improve perfor-
mance on commonsense verification.

In our work, we address the challenge of mod-
elling plausibility from a novel angle, and test
whether leveraging knowledge from other tasks im-
proves plausibility prediction with a standard-sized
transformer model through providing information
from closely related vs. vastly different tasks, thus
exploring which knowledge gaps need to be filled.

Multi-Task Learning with Adapters Adapters
(Houlsby et al., 2019) have been introduced as a
parameter-efficient fine-tuning approach2 for trans-

1For a brief discussion wrt. the distinction between selec-
tional preference and semantic plausibility, we refer to App. A.

2For an overview of different adapter architectures, we
refer to Pfeiffer et al. (2024).

formers (Vaswani et al., 2017) with comparable
performance. They consist of sets of additional
task-specific parameters that are introduced at ev-
ery layer of a transformer and updated during fine-
tuning, while the remaining PLM parameters are
kept frozen. Since adapters can be used in a mod-
ular fashion, they are particularly well-suited for
multi-task and cross-lingual transfer learning (He
et al., 2021; Pfeiffer et al., 2020b, 2021; Ansell
et al., 2021) as well as to inject external knowledge
sources to solve downstream tasks (Lauscher et al.,
2021; Falk and Lapesa, 2023).

We use Adapters (Pfeiffer et al., 2020a, 2021;
Poth et al., 2023) as our framework; it enables
both training task-specific adapters, i.e., knowledge
extraction, and combining the trained adapters in a
second step through knowledge composition in a
non-destructive way.

3 Datasets

We harness four English datasets for plausibility:
PEP-3K (Wang et al., 2018) consists of 3,062
subject-verb-object events in English that focus on
highly concrete concepts, e.g., lion-destroy-house.
Events have been judged plausible or implausible
by five crowd-sourced annotators.
20Q3 comprises a collection of 20 question-style
games played by crowd-sourced workers. One
player tries to guess a topic by asking questions
to the other player (who knows the topic) that lead
to a discrete answer. Possible answers are {al-
ways, usually, sometimes, rarely, never}. We use
the dataset version adapted for binary plausibility
classification by Porada et al. (2021).
ADEPT (Emami et al., 2021) encompasses
16,115 English sentence pairs differing only in an
adjective modifying a noun, e.g., {A horse goes
away Ø A dead horse goes away}. The dataset
was collected for predicting changes in plausibil-
ity within a multi-class setting; the set of labels is
{impossible, less likely, equally likely, more likely,
necessarily true}. To train and evaluate on this
dataset, we map every s1 from the sentence pairs
xs1, s2y to the label plausible. For sentences s2 we
map the labels impossible and less likely to implau-
sible, and the labels equally likely, more likely and
necessarily true to plausible.
ELLIE (Testa et al., 2023) is a small dataset com-
posed of 575 English elliptical constructions, i.e.,
the dataset was constructed to evaluate the effect of

3https://github.com/allenai/twentyquestions
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argument thematic fit when resolving ellipses. In-
stances are labeled typical, atypical, or violating se-
lectional preference regarding agents and patients.
We map the labels typical and atypical to plausible,
and instances violating selectional preference to
implausible. While we add ELLie data for training,
our main use of the dataset is for in-domain evalua-
tion, to assess generalization to complex linguistic
constructions.

For an overview of dataset statistics, training set-
ting sizes, dataset splits, and details regarding the
conversion of selectional preference datasets such
as ELLIE for plausibility modeling, we refer to
App. B.

4 Models

Single-Task Adapters To establish baseline per-
formance for predicting plausibility without knowl-
edge from additional tasks, we train single-task
(ST) adapters.4 To further explore the influence
of adding within-task knowledge and class imbal-
ance, we experiment with training (i) on the train
portion of each target dataset (TRAIN); (ii) on all
full datasets except for the target dataset, and eval-
uate on the target datasets’ dev and test, with and
without removing class imbalance (W/O TRAIN, W/O

TRAIN+B); (iii) on all datasets, including train of the
target dataset, and evaluate on target datasets’ dev
and test, with and without removing class imbal-
ance (W/ TRAIN, W/ TRAIN+B). To compare results
to previous work, we test models trained on the
respective other datasets (W/O TRAIN, W/O TRAIN+B)
and evaluate on PEP-3K and 20Q dev and test set
splits as used by Porada et al. (2021).

We conduct an intermediate error analysis on
our ST adapter models, in order to understand how
training data choices influence model performance.
For this, we calculate error overlap at instance level
and compute Spearman’s ρ across training settings.
In case of substantial overlap between wrongly
predicted instances, we assume low influence of
training data. In the reverse case, we assume that
training data does make a difference. More details
and results are presented in App. C, Fig. 1 with
observations indicating that additional training data
leads to different types of errors and may thus add
relevant knowledge. Furthermore, removing class
imbalance alters sets of errors significantly, in case
of a previously imbalanced dataset.

4https://github.com/AnneroseEichel/
adapters-for-pp

Adapter Fusion We make use of 53 source-
task adapters trained on 17 tasks categorized into
syntactic, lexical-semantic, and sentence/discourse
level (for an overview see Table 5 in App. C).
Whenever available, we harness existing adapter
implementations via adapterhub or huggingface. We
train two task adapters, with different motivations:
(i) we predict a selectionally preferred argument
using the SP-10K dataset (Zhang et al., 2019), be-
cause we are interested in the impact of adapters
trained on the closely related task of selectional
preference prediction; and (ii) we predict a word’s
abstractness score using a modified version of the
concreteness norms by Brysbaert et al. (2014), be-
cause event abstractness vs. concreteness is poten-
tially correlated with semantic plausibility (Eichel
and Schulte im Walde, 2023).

To incorporate knowledge from other tasks, we
train task-based adapter fusions using all task
adapters belonging to a task, plus a task adapter for
plausibility prediction.

Experimental Setup We use RoBERTa (Liu
et al., 2019) (roberta-base) as the backbone
transformer for all models. We train ST adapters
for our target task of predicting whether a text input
is plausible or not by using a task-specific predic-
tion head, thus following the training setup recom-
mended by Poth et al. (2023). We pick the best
model based on development set results optimizing
for macro F1. To train adapter fusions, we use the
three best-performing target task adapters based on
ST performance. We consider three training data
settings to explore knowledge transfer (i) in low-
resource settings and high class imbalance (TRAIN),
(ii) in cases where no train portion might be avail-
able or included (W/O TRAIN), and (iii) for balanced
datasets (W/ TRAIN+B). Our hypothesis is that train-
ing with small and imbalanced datasets may partic-
ularly benefit from knowledge transfer. The train-
ing setup mirrors the single-task setup, except for
using a smaller learning rate and a larger batch size
as in Poth et al. (2023), with models optimized for
macro F1. For more details, we refer to App. D.

5 Results

In the following, we present our results comparing
fusion-based against single-task adapter models for
the target task of assessing plausibility. We use the
Almost Stochastic Order (ASO) test (Del Barrio
et al., 2018; Dror et al., 2019) as implemented by
Ulmer et al. (2022) to assess which training and
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PEP-3K 20Q ADEPT

BL/tasks train w/o
train

w/
train+b

train w/o
train

w/
train+b

train w/o
train

w/
train+b

ST 0.80 0.69 0.82 0.76 0.66 0.76 0.76 0.57 0.82

(Morpho-)Syntactic
chunk 0.80 0.68 0.82 0.76 0.62 0.77 0.72 0.55 0.83

dep 0.79 0.67 0.81 0.77 0.62 0.77 0.74 0.55 0.83
ged 0.81 0.68 0.82 0.76 0.63 0.78 0.71 0.54 0.83
la 0.80 0.68 0.82 0.76 0.62 0.77 0.72 0.54 0.83

ner 0.81 0.68 0.82 0.76 0.62 0.77 0.71 0.55 0.83
parse 0.80 0.67 0.82 0.76 0.63 0.77 0.72 0.54 0.83
tag 0.79 0.67 0.81 0.76 0.63 0.77 0.71 0.56 0.83

Lexical Semantics
abstr 0.79 0.68 0.81 0.77 0.62 0.77 0.75 0.55 0.83
emo 0.80 0.68 0.82 0.76 0.63 0.77 0.71 0.55 0.83
senti 0.80 0.68 0.82 0.76 0.62 0.77 0.73 0.55 0.83

sp 0.80 0.68 0.81 0.77 0.63 0.76 0.71 0.55 0.83

Sentence/Discourse-level Semantics
arg 0.80 0.67 0.82 0.76 0.62 0.77 0.72 0.54 0.83
csr 0.78 0.67 0.82 0.76 0.63 0.77 0.71 0.56 0.83
mrc 0.79 0.68 0.83 0.76 0.62 0.78 0.72 0.54 0.83
nli 0.81 0.66 0.81 0.75 0.62 0.77 0.70 0.55 0.83
qa 0.78 0.68 0.82 0.75 0.64 0.77 0.71 0.55 0.83
sts 0.80 0.68 0.81 0.76 0.63 0.77 0.72 0.56 0.83

Table 1: Performance of fusion models across datasets and training data settings, with test set performance reported
using AUC averaged over three runs (see Table 4 for an overview including standard deviation). Performance is
compared to the best-performing ST adapter models (cf. Table 2 for all ST adapter results). Orange and teal coloring
refer to a decrease and increase in results, respectively, while gray coloring denotes similar performance. Values in
bold denote Almost Stochastic Dominance over other models in the same column (ϵmin ă τ with τ “ 0.5). While
changes in performance are statistically significant, the absolute magnitude of performance increase and decrease
remains within maximum +2% and -6%.

task setups are most successful at a statistically sig-
nificant level. That is, we compare corresponding
pairs of models based on three random seeds (5,
17, 42), each using ASO with a confidence level
of α “ 0.05, before adjusting for all pair-wise
comparisons using the Bonferroni correction.

Does knowledge transfer through adapter fu-
sion improve models of plausibility? Table 1
presents our main results, comparing the multi-
tude of fusion models against the best-performing
single-task adapters. We observe a range of interest-
ing insights: (i) Knowledge transfer does not lead
to substantial performance gains in low-resource
scenarios (PEP-3K, 20Q, train) across tasks from
all categories. (ii) When training on other than
the original training data, adding knowledge from
different tasks either hurts in most cases (20Q,
ADEPT, w/o train), or yields comparable results
(PEP-3K), but does not explicitly help. (iii) When
making use of as much balanced-out training data

as possible, including representations from a dif-
ferent task either sustains (20Q, ADEPT plausi-
bility prediction performance, train+b) or at least
does not hurt the performance (PEP-3K). Regard-
ing task categories, our study reveals minimum
negative impact from syntactic tasks, closely fol-
lowed by discourse-level tasks and (but with a
larger margin) lexical-semantics tasks. We con-
clude that given the prerequisite of class bal-
ance, plausibility prediction can be sustained
but not substantially improved through comple-
mentary knowledge transfer in adapter fusion,
while more closely related tasks seem to rather hurt
performance.

Does adding in-domain data improve mod-
els of plausibility? Table 2 looks into variants of
our baseline single-task adapters with and with-
out adding in-domain data. When training and
evaluating on 20Q and ADEPT TRAIN, learning
a combined representation including in-domain
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Train Data PEP-3K 20Q ADEPT PEP-3K-C 20Q-C ELLIE

train 0.80˘0.02 0.76˘0.01 0.76˘0.01 - - -
w/o train 0.69˘0.03 0.66˘0.01 0.57˘0.02 0.68˘0.00 0.65˘0.00 0.50˘0.00

w/o train+b 0.62˘0.03 0.64˘0.02 0.55˘0.01 0.64˘0.01 0.62˘0.01 0.50˘0.01

w/ train 0.83˘0.01 0.76˘0.01 0.74˘0.02 - - -
w/ train+b 0.82˘0.01 0.76˘0.01 0.82˘0.01 - - -

Table 2: Target task adapter performance comparison across datasets and train data settings. PEP-3K-C and 20Q-C
refer to dev and test splits as devised by Porada et al. (2019), cf App. B for further details. We report test set
performance using AUC, averaged over 3 runs, with standard deviation. Using Almost Stochastic Order (ASO)
testing, we determine almost stochastic dominant models (ϵmin ă τ with τ “ 0.2), marked in bold.

datasets yields competitive results and seems to
help with both small (PEP-3K) and larger datasets
(ADEPT). In comparison to previous work (Po-
rada et al., 2021) performing full fine-tuning on
an automatically extracted 3M train set, our single-
task adapters are acceptable for 20Q (Porada et al.
(2021): 0.74, ours: 0.65). For PEP-3K, the single-
task adapters are outperformed by full fine-tuning
on only in-domain data using BERT-large (Porada
et al., 2019), while reaching performance com-
parable to full fine-tuning on RoBERTa-base with
an automatically extracted 3M train set and en-
forced lexical abstraction consistency (Porada et al.,
2021) (Porada et al. (2019): 0.89 accuracy, Po-
rada et al. (2021): 0.67 AUC, ours: 0.68 AUC).
Thus, based on our study settings, we conclude that
low-resource plausibility prediction is likely to
benefit from more data disregarding any class
imbalance, which, however, decreases with grow-
ing dataset size.

6 Limitations and Future Directions

Events based on s-v-o events or comparably sim-
ple constructions have been successfully leveraged
for exploring selection preference and thematic fit
tasks (Erk et al., 2010; Zhang et al., 2019; Pedinotti
et al., 2021). However, the addition of context
could potentially resolve potential ambiguities in
the s-v-o triples and thus improve plausibility pre-
diction. Furthermore, while we train and evaluate
our models on datasets such as ADEPT coming
with sentence-level contexts, high class imbalance
leads to a relatively small proportion of implau-
sible sentences which are particularly relevant as
LMs are usually pretrained on mostly plausible
data and expected to inherently perform better for
plausible expressions. We hope future research ex-
tends this work by collecting plausibility ratings for
more complex constructions within broader con-
texts. Here, Liu et al. (2023) and Tang et al. (2023)

present interesting work exploring the generation
of implausible and less plausible but relevant out-
puts to complement their dataset with the goal of
increasing model performance and assist humans
in well-balanced decision-making, respectively.

Further, experiments with a wider variety of
(larger) models represent a relevant future task to
explore whether the presented negative results are
specific to the used underlying transformer back-
bone or prevalent across model sizes and families.

Finally, in this work, we follow previous re-
search (Wang et al., 2018; Porada et al., 2019, 2021)
regarding the formulation of plausibility prediction
as a binary classification task to discern plausible
from implausible events. Plausibility can, however,
also be captured in a graded way using more fine-
grained labels that allow for graded classification
such as the label set {impossible, less likely, equally
likely, more likely, necessarily true} adopted by
Emami et al. (2021) for modeling change in se-
mantic plausibility between two sentences. We
thus encourage further research on modeling plau-
sibility from a graded perspective to capture the
phenomenon at a more fine-grained level.

7 Conclusion

We tackled the task of discerning plausible from
implausible events by adopting a multi-task learn-
ing perspective and exploring whether knowledge
transfer from different tasks improves performance
and reveals insights about relevant knowledge. Us-
ing 53 adapters categorized into 17 tasks, we found
that complementary knowledge sustains but not
substantially improves performance, while choos-
ing a "wrong" task might seriously hurt the results.
We further demonstrated that knowledge transfer
may be hindered by class imbalance, and that bal-
ancing training data shows a significant positive yet
non-substantial effect, even at the expense of size.
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Ethics Statement

While humans excel at assessing plausibility, they
might naturally disagree regarding the plausibility
of an event such as law-prohibit-discrimination. In
the course of the last decade, a growing line of re-
search argues for the preservation and integration
of disagreement in dataset construction, modelling,
and evaluation (Aroyo and Welty, 2015; Pavlick
and Kwiatkowski, 2019; Basile et al., 2021; Forna-
ciari et al., 2021; Uma et al., 2021). Automatically
modeling plausibility thus bears the danger that
what is considered plausible by a model will be
closely related to what is represented as highly plau-
sible in the existing datasets which do not capture
disagreement in plausibility ratings. This might dis-
advantage certain assessments regarding the plau-
sibility of an event or sentence that are so far un-
derrepresented in the data. We therefore argue
for the necessity to investigate how the presented
or newly applied models process and handle data
with potentially underrepresented perspectives on
the plausibility of a given expression and to create
more diverse plausibility datasets

Acknowledgements

We are grateful to the IMS SemRel research group
for helpful suggestions and feedback regarding ver-
sions of this work. We would also like to thank the
anonymous reviewers for their constructive feed-
back. Annerose Eichel received funding by the
Hanns Seidel Foundation’s Talent Program.

References
Abdalghani Abujabal, Rishiraj Saha Roy, Mohamed

Yahya, and Gerhard Weikum. 2019. ComQA: A
community-sourced dataset for complex factoid ques-
tion answering with paraphrase clusters. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 307–317, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang, Hes-
sel Haagsma, Rik van Noord, Pierre Ludmann, Duc-
Duy Nguyen, and Johan Bos. 2017. The Parallel
Meaning Bank: Towards a multilingual corpus of
translations annotated with compositional meaning
representations. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 242–247, Valencia, Spain. Association
for Computational Linguistics.

Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Se-
bastian Ruder, Goran Glavaš, Ivan Vulić, and Anna
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A Selectional Preference and Semantic
Plausibility

In this work, we follow a clear distinction between
the notions of selectional preference and (semantic)
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plausibility established by previous work (Wang
et al., 2018; Porada et al., 2019, 2021; Eichel and
Schulte im Walde, 2023).

Selectional preference (or thematic fit) is con-
cerned with the semantic preference of a predicate
for taking an argument (Resnik, 1993; Erk et al.,
2010), e.g., the relative preference of the verb pour
for the noun water as its nominal object. Label
sets commonly consist of the labels {typical, atyp-
ical} which are often interpreted as plausible and
implausible as well as an additional label selec-
tional preference violation for constructions violat-
ing the notion of selectional preference. Proposed
approaches to modeling selection preference at the
level of events and sentences include corpus-based
methods (Padó et al., 2006; Erk et al., 2010), un-
supervised vector-based approaches (Baroni and
Lenci, 2010; Greenberg et al., 2015a,b; Sayeed
et al., 2016; Chersoni et al., 2016; Santus et al.,
2017; Chersoni et al., 2020), supervised neural net-
works (Tilk et al., 2016; Zhang et al., 2019; Marton
and Sayeed, 2022), as well as transformer-based
approaches (Metheniti et al., 2020; Pedinotti et al.,
2021; Testa et al., 2023; Kauf et al., 2023, 2024).

In contrast to selectional preference, evaluations
of semantic plausibility emphasizes the importance
of treating what is atypical but still plausible as an
instance of what might be actually plausible though
not highly frequent or potentially novel. Hence,
modeling approaches not only focus on correctly
modeling what is typical as plausible but seek to
also capture what is atypical yet still plausible as
plausible (Wang et al., 2018; Porada et al., 2021).
This also seems to be in line with human percep-
tion of plausibility which tends to place atypical
yet plausible events on the side of plausibility as op-
posed to categorizing what is less frequent as atyp-
ical, and thus implausible (Eichel and Schulte im
Walde, 2023).

B Dataset Test Sets and Splits

PEP-3K Wang et al. (2018) only provide a split
into plausible and implausible events, while we
split the data into balanced train, dev, and test sets.
To compare to additional previous work, we em-
ploy a 50% dev and 50% test split by Porada et al.
(2019) whenever possible (PEP-3K-C).
20Q5 In our work, we use a dataset version adapted
for binary plausibility classification by Porada et al.
(2021). In addition to the provided 50% dev and

5https://github.com/allenai/twentyquestions

50% test splits, we split the data into train, dev, and
test sets (20Q-C).
ADEPT The adapted ADEPT dataset consists of
32,230 individual sentences which we keep in the
original (now double-sized) train, dev, and test set
splits.
ELLIE While ELLIE was introduced to capture
“[...] the effect of argument thematic fit in solv-
ing ellipsis and reconstructing the missing element”
(Testa et al., 2023), our re-mapping of the labels
typical and atypical to plausible, and instances vi-
olating selectional preference to implausible does
not eliminate but rather highlight the distinction
between selectional preference and semantic plau-
sibility outlined in App. A. More specifically, the
conversion introduces a different label set and a
change in label distribution to allow the usage of
the data to capture semantic plausibility.

Table 3 shows an overview of dataset sizes as
well as training and test data statistics.

Concerning licenses of the used datasets, we
note that Wang et al. (2018) do not provide a spe-
cific license for PEP-3K.6 20Q is licensed un-
der the Apache-2.0 license.7 The ADEPT dataset
(Emami et al., 2021) is distributed under the CC
BY-SA 3.0 license and includes data from work
licensed under the Creative Commons Attribution-
ShareAlike license CC BY-SA 4.0. ADEPT is
accompanied by a dataset sheet. Testa et al. (2023)
do not provide a specific license for the ELLIE

dataset.8 As far as we know, our use of the listed
datasets is consistent with their intended use. Based
on the accompanying publications, dataset descrip-
tions, and data sheets no data was identified that
violates anonymisation.

C Intermediate Error Analysis Results

We perform an error analysis to further understand
how training data choices influence model perfor-
mance. In case of substantial overlap between
wrongly predicted instances, we assume low in-
fluence of training data. If the reverse is observed,
training data makes a difference. For this, we re-
trieve all incorrectly predicted instances from the
test predictions using the best-performing seed for
each dataset. We calculate error overlap at instance

6https://github.com/suwangcompling/
Modeling-Semantic-Plausibility-NAACL18

7cf. https://github.com/allenai/twentyquestions
8https://github.com/Caput97/ELLie-ellipsis_

and_thematic_fit_with_LMs/tree/main
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Setting PEP-3K 20Q ADEPT ELLIE

Training Data

TRAIN 2,459 4,076 25,784 -
W/O TRAIN 37,901 35,867 8,733 35,867
W/O TRAIN+B 13,504 11,476 8,394 11,476
W/ TRAIN 40,350 39,943 34,517 -
W/ TRAIN+B 15,953 15,552 14,926 -

Dev Data

DEV SET 306 510 3,222 -
(Porada et al., 2019) 1,531 2,548 - -

Test Data

TEST SET 307 510 3,224 575
(Porada et al., 2019) 1,531 2,548 - -

Table 3: Overview of dataset sizes where TRAIN denotes training on the train split of a specific dataset only, W/O
TRAIN refers to training on the full size of all but a specific dataset, and W/ TRAIN settings include the full size of all
but a specific dataset plus the train portion of a specific dataset. +B refers to a setting where class labels are balanced
out, using the maximum number of implausible labels and a randomly drawn sample from possible plausible labels.

level and compute Spearman’s ρ across training
settings. Results are presented in Fig. 1 with our
observations as follows: Firstly, training on all but
a given dataset’s train set vs. including a dataset’s
train set leads to a clearly distinct set of incorrectly
predicted instances, with stronger correlations ob-
served for ADEPT than for PEP-3K and 20Q.
Secondly, removing class imbalance alters error
sets more strongly for ADEPT (ρ “ 0.3) than for
PEP-3K and 20Q (ρ “ 0.6) where datasets are
already balanced out. This might also be the rea-
son for the outlier observed for the high overlap
between ADEPT’s W/O TRAIN and W/O TRAIN+B.

D Experimental Details

As a RoBERTa model, we use the roberta-base
implementation from huggingface (Wolf et al.,
2020) that comes with 125M parameters. We
leverage Adapters (Poth et al., 2023) as multi-
task learning framework. Existing task adapters
are harnessed through adapterhub.ml/ and listed
in Table 5, with paths to the source. We use
scikit-learn (Pedregosa et al., 2011) to calcu-
late metrics. For all experiments, including obtain-
ing predictions from the various models, we use a
single NVIDIA RTX A600 GPU.

E Single-Task Adapter Results Details

We show results comparing single-task adapters
for the target task of assessing plausibility in Ta-
ble 2. Table 4 presents the results comparing single
task source and target adapters with fusion-based

models. For both single-task and adapter-fusion
results we report mean and standard deviation of
AUC score, averaged over three runs. Single-task
adapters reach good results when tested on a given
dataset’s own test set. When evaluated on data
that has not been seen in the test set, we observe
comparable and acceptable performance for similar
linguistic constructions (PEP-3K-C and 20Q-C)
where models are trained on in-domain data (e.g.,
PEP-3K, ADEPT, ELLIE) and evaluated on 20Q-
C dev and test sets. However, when evaluating on
ELLIE which consists of more complex linguis-
tic constructions, performance drops to random
chance, indicating that the model cannot make use
of information learned during training.
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Figure 1: Analysis of error overlap across training settings at instance level where Spearman’s ρ “ 1 and ρ “ ´1
indicate perfect and no overlap, respectively.

PEP-3K 20Q ADEPT

tasks train w/o train w/ train+b train w/o train w/ train+b train w/o train w/ train+b

ST 0.80 ˘0.02 0.69 ˘0.03 0.82 ˘0.01 0.76 ˘0.01 0.66 ˘0.01 0.76 ˘0.01 0.76 ˘0.01 0.57 ˘0.02 0.82 ˘0.01

(Morpho-)Syntactic
chunk 0.80 ˘0.01 0.68 ˘0.00 0.82 ˘0.01 0.76 ˘0.01 0.62 ˘0.01 0.77 ˘0.02 0.72 ˘0.02 0.55 ˘0.02 0.83 ˘0.00

dep 0.79 ˘0.02 0.67 ˘0.00 0.81 ˘0.02 0.77 ˘0.02 0.62 ˘0.01 0.77 ˘0.01 0.74 ˘0.03 0.55 ˘0.00 0.83 ˘0.00

ged 0.81 ˘0.01 0.68 ˘0.02 0.82 ˘0.01 0.76 ˘0.01 0.63 ˘0.01 0.78 ˘0.01 0.71 ˘0.03 0.54 ˘0.01 0.83 ˘0.00

la 0.80 ˘0.01 0.68 ˘0.01 0.82 ˘0.01 0.76 ˘0.02 0.62 ˘0.01 0.77 ˘0.00 0.72 ˘0.04 0.54 ˘0.01 0.83 ˘0.00

ner 0.81 ˘0.01 0.68 ˘0.01 0.82 ˘0.00 0.76 ˘0.01 0.62 ˘0.00 0.77 ˘0.01 0.71 ˘0.03 0.55 ˘0.02 0.83 ˘0.01

parse 0.80 ˘0.01 0.67 ˘0.01 0.82 ˘0.00 0.76 ˘0.01 0.63 ˘0.01 0.77 ˘0.01 0.72 ˘0.02 0.54 ˘0.01 0.83 ˘0.00

tag 0.79 ˘0.01 0.67 ˘0.02 0.81 ˘0.00 0.76 ˘0.02 0.63 ˘0.00 0.77 ˘0.00 0.71 ˘0.00 0.56 ˘0.01 0.83 ˘0.00

Lexical Semantics
abstr 0.79 ˘0.02 0.68 ˘0.01 0.81 ˘0.01 0.77 ˘0.02 0.62 ˘0.01 0.77 ˘0.01 0.75 ˘0.05 0.55 ˘0.01 0.83 ˘0.00

emo 0.80 ˘0.01 0.68 ˘0.01 0.82 ˘0.00 0.76 ˘0.01 0.63 ˘0.01 0.77 ˘0.02 0.71 ˘0.03 0.55 ˘0.01 0.83 ˘0.00

senti 0.80 ˘0.02 0.68 ˘0.01 0.82 ˘0.01 0.76 ˘0.02 0.62 ˘0.01 0.77 ˘0.00 0.73 ˘0.03 0.55 ˘0.02 0.83 ˘0.01

sp 0.80 ˘0.02 0.68 ˘0.00 0.81 ˘0.01 0.77 ˘0.01 0.63 ˘0.01 0.76 ˘0.01 0.71 ˘0.01 0.55 ˘0.01 0.83 ˘0.00

Sentence+Discourse-level Semantics
arg 0.80 ˘0.01 0.67 ˘0.01 0.82 ˘0.01 0.76 ˘0.01 0.62 ˘0.01 0.77 ˘0.01 0.72 ˘0.03 0.54 ˘0.01 0.83 ˘0.00

csr 0.78 ˘0.03 0.67 ˘0.00 0.82 ˘0.01 0.76 ˘0.02 0.63 ˘0.00 0.77 ˘0.01 0.71 ˘0.03 0.56 ˘0.01 0.83 ˘0.01

mrc 0.79 ˘0.01 0.68 ˘0.02 0.83 ˘0.00 0.76 ˘0.01 0.62 ˘0.01 0.78 ˘0.01 0.72 ˘0.02 0.54 ˘0.01 0.83 ˘0.01

nli 0.81 ˘0.01 0.66 ˘0.01 0.81 ˘0.01 0.75 ˘0.01 0.62 ˘0.02 0.77 ˘0.01 0.70 ˘0.02 0.55 ˘0.01 0.83 ˘0.01

qa 0.78 ˘0.02 0.68 ˘0.02 0.82 ˘0.01 0.75 ˘0.03 0.64 ˘0.01 0.77 ˘0.00 0.71 ˘0.03 0.55 ˘0.01 0.83 ˘0.01

sts 0.80 ˘0.02 0.68 ˘0.02 0.81 ˘0.01 0.76 ˘0.01 0.63 ˘0.01 0.77 ˘0.01 0.72 ˘0.04 0.56 ˘0.01 0.83 ˘0.00

Table 4: Fusion model performance across datasets and training data settings with test set performance reported
using AUC, averaged over 3 runs, with standard deviation. Performance is compared to the best-performing ST
adapter models (cf. Table 2 for all ST adapter results). Orange and teal coloring refer to a decrease and increase in
absolute results, respectively, while gray coloring denotes similar performance. Using ASO testing, we determine
almost stochastic dominant models (ϵmin ă τ with τ “ 0.5), marked in bold. While changes in performance are
statistically significant, the absolute magnitude of performance increase and decrease remains within maximum
+2% and -6%.
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Task Abbr. Dataset Source Adapter Source

(Morpho-)Syntactic

Chunking chunk (Tjong Kim Sang and Buchholz, 2000) AH/r-b-pf-conll2000
Dependency Relation Class. deprel (Nivre et al., 2017) AH/r-b-pf-ud_deprel
Grammatical Error Detect. ged (Yannakoudakis et al., 2011) AH/r-b-pf-fce_error_detection
Linguistic Acceptability la (Warstadt et al., 2019) lingaccept/cola@ukp
Named Entity Recognition ner Link only9 AH/r-b-pf-mit_movie_trivia
Named Entity Recognition ner (Tjong Kim Sang and De Meulder, 2003) AH/r-b-pf-conll2003
Named Entity Recognition ner (Derczynski et al., 2017) AH/r-b-pf-wnut_17
Parsing parse (Nivre et al., 2017) AH/r-b-pf-ud_en_ewt
Tagging tag (Tjong Kim Sang and De Meulder, 2003) AH/r-b-pf-conll2003_pos
Tagging tag (Nivre et al., 2017) AH/r-b-pf-ud_pos
Tagging tag (Abzianidze et al., 2017) AH/r-b-pf-pmb_sem_tagging

Lexical Semantics

Abstractness Prediction abstr (Brysbaert et al., 2014) See our code repo
Emotion Analysis emo (Chatterjee et al., 2019) AH/r-b-pf-emo
Sentiment Analysis senti (Maas et al., 2011) AH/r-b-pf-imdb
Sentiment Analysis senti (Pang and Lee, 2005) AH/r-b-pf-rotten_tomatoes
Sentiment Analysis senti (Socher et al., 2013) sentiment/sst-2@ukp
Sentiment Analysis senti (Zhang et al., 2015) AH/r-b-pf-yelp_polarity
Selectional Preference Pred. sp (Zhang et al., 2019) See our code repo

Sentence-/Discourse-level Semantics

Argument Mining arg (Stab et al., 2018) argument/ukpsent@ukp
Commonsense Reasoning csr (Sap et al., 2019) comsense/siqa@ukp
Commonsense Reasoning csr (Bhagavatula et al., 2020) AH/r-b-pf-art
Commonsense Reasoning csr (Gordon et al., 2012) AH/r-b-pf-copa
Commonsense Reasoning csr (Huang et al., 2019) AH/r-b-pf-cosmos_qa
Commonsense Reasoning csr (Talmor et al., 2019) AH/r-b-pf-commonsense_qa
Commonsense Reasoning csr (Zellers et al., 2019) AH/r-b-uncased-pf-hellaswag
Commonsense Reasoning csr (Sakaguchi et al., 2021) AH/r-b-pf-winogrande
Machine-Reading Compr. mrc (Rogers et al., 2020) AH/r-b-pf-quail
Machine-Reading Compr. mrc (Khashabi et al., 2018) AH/r-b-pf-multirc
Machine-Reading Compr. mrc (Lai et al., 2017) AH/r-b-pf-race
Machine-Reading Compr. mrc (Zhang et al., 2018) AH/r-b-pf-record
Natural Lanaguge Inf. nli (Williams et al., 2018) nli/multinli@ukp
Natural Lanaguge Inf. nli (Dagan et al., 2006) nli/rte@ukp
Natural Lanaguge Inf. nli (Nie et al., 2020) AH/r-b-pf-anli_r3
Natural Lanaguge Inf. nli (de Marneffe et al., 2019) nli/cb@ukp
Natural Lanaguge Inf. nli (Wang et al., 2019) nli/qnli@ukp
Natural Lanaguge Inf. nli (Khot et al., 2018) AH/r-b-pf-scitail
Natural Lanaguge Inf. nli (Marelli et al., 2014) AH/r-b-pf-sick
Natural Lanaguge Inf. nli (Bowman et al., 2015) AH/r-b-pf-snli
Natural Lanaguge Inf. nli (Zellers et al., 2019) AH/r-b-pf-swag
Question Answering qa (Dua et al., 2019) AH/r-b-pf-drop
Question Answering qa (Rajpurkar et al., 2016) qa/squad1@ukp
Question Answering qa (Rajpurkar et al., 2018) qa/squad2@ukp
Question Answering qa (Clark et al., 2019) AH/r-b-pf-boolq
Question Answering qa (Abujabal et al., 2019) AH/r-b-pf-comqa
Question Answering qa (Talmor and Berant, 2018) AH/r-b-pf-cq
Question Answering qa (Saha et al., 2018) AH/r-b-pf-duorc_s
Question Answering qa (Yang et al., 2018) AH/r-b-pf-hotpotqa
Question Answering qa (Trischler et al., 2017) AH/r-b-pf-newsqa
Question Answering qa (Tafjord et al., 2019) AH/r-b-pf-quartz
Question Answering qa (Dasigi et al., 2019) AH/r-b-pf-quoref
Question Answering qa (Welbl et al., 2018) AH/r-b-pf-wikihop
Semantic Textual Similarity sts (Cer et al., 2017) sts/sts-b@ukp
Semantic Textual Similarity sts (Dolan and Brockett, 2005) AH/r-b-pf-mrpc
Semantic Textual Similarity sts Link only10 AH/r-b-pf-qqp

Table 5: Overview of tasks adapters. Categorization into tasks follows Adapterhub11 sorting where possible. Task
Abbr. refer to abbreviations as used in this paper. Dataset source denotes the dataset used to train an adapter
with a reference to a paper or, where no paper could be found, a link to a website with a description. Adapter
Source denotes the source where an existing adapter was harnessed from. For the sake of space, we abbreviate
AH/roberta-base with AH/r-b which should be correspondingly expanded when searching for a given adapter.
Please see https://github.com/AnneroseEichel/Adapters-for-PP for details on where to find our adapters.
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Abstract

Massively multilingual machine translation
models allow for the translation of a large
number of languages with a single model, but
have limited performance on low- and very-
low-resource translation directions. Pivoting
via high-resource languages remains a strong
strategy for low-resource directions, and in this
paper we revisit ways of pivoting through multi-
ple languages. Previous work has used a simple
averaging of probability distributions from mul-
tiple paths, but we find that this performs worse
than using a single pivot, and exacerbates the
hallucination problem because the same hallu-
cinations can be probable across different paths.
We also propose MaxEns, a novel combination
strategy that makes the output biased towards
the most confident predictions, hypothesising
that confident predictions are less prone to be
hallucinations. We evaluate different strategies
on the FLORES benchmark for 20 low-resource
language directions, demonstrating that
MaxEns improves translation quality for
low-resource languages while reducing hallu-
cination in translations, compared to both direct
translation and an averaging approach. On
average, multi-pivot strategies still lag behind
using English as a single pivot language, raising
the question of how to identify the best pivoting
strategy for a given translation direction.1

1 Introduction

Early work on multilingual neural machine
translation (NMT) has explored combining source
segments in different source languages (Zoph and
Knight, 2016; Firat et al., 2016a), an idea that is
also compatible with pivoting through intermediate
languages. For example, one could translate
from Dutch to Ukrainian by first translating the
Dutch source to English and Russian, and then

∗Work done while working at University of Zurich.
Currently co-founder of Leeroo.

1The implementation is publicly available at
https://github.com/ZurichNLP/MultiPivotNMT.

making a combined prediction to Ukrainian. In
the simplest case, this combination is achieved by
predicting probability distributions for each source
language and averaging these predictions in an
ensemble-like manner (Firat et al., 2016a).

With massively multilingual NMT mod-
els (NLLB Team et al., 2022; Mohammadshahi
et al., 2022a; Goyal et al., 2022; Wenzek et al.,
2021; Zhang et al., 2020; Fan et al., 2021; Aharoni
et al., 2019; Arivazhagan et al., 2019), one can in
principle translate directly in any translation direc-
tion. While early models relied on zero-shot gener-
alization for many directions, recent improvements
include massive data collection efforts (Schwenk
et al., 2021; El-Kishky et al., 2020) and synthetic
data creation via back-translation (Edunov et al.,
2018; Sennrich et al., 2016). However, these
models still have low performance on many
low-resource translation directions2 and pivot-
translation via high-resource languages remains
a strong baseline. Fan et al. (2021) also investigate
the combination of multiple translation paths,
which they call multi-source self-ensemble, that
slightly improves over the direct translation and
a single pivot for zero-shot language pairs.

In this paper, we investigate this multi-source
self-ensembling strategy more closely, with a focus
on preventing completely defunct translations such
as hallucinations. However, we find that simple av-
eraging is sub-optimal and may increase the num-
ber of hallucinations in the output, a typical failure
case in low-resource settings. We relate this to a re-
cent finding that hallucinations are sticky, meaning
that different models trained on the same data and
architecture may produce similar hallucinations
(Guerreiro et al., 2023a). We also find evidence of
such stickiness when combining multiple transla-
tion paths, and propose a new ensembling strategy
that, instead of averaging probabilities, picks the

2SentencePiece BLEU of 63% translation directions in
M2M-100 is lower than 12 (Mohammadshahi et al., 2022b).
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output with the maximum probability across differ-
ent paths: MaxEns. This is partially inspired by the
finding that model confidence is a good heuristic
for avoiding hallucinations, which tend to be low-
confidence predictions (Guerreiro et al., 2023b).

We perform experiments on the FLORES bench-
mark (Goyal et al., 2022) for 20 low-resource
translation directions by using two massively mul-
tilingual NMT models, SMaLL100 (Mohammad-
shahi et al., 2022a) and M2M100 (Fan et al., 2021).
Our results show that while the average ensemble
outperforms the direct translation, it still under-
performs using only English as a pivot, both in
terms of spBLEU and the number of hallucinations.
MaxEns performs significantly better than the aver-
aging strategy for both translation performance and
hallucination. Specially, MaxEns has competitive
translation performance with English pivoting on
average, but still lags behind it on the hallucination
performance. To sum up, our contributions are:

• We explore why a naive multi-pivot strategy
with massively multilingual models can un-
derperform single-pivot translation. Then, we
propose MaxEns, a more robust ensembling
technique for multi-pivot translation with
multilingual NMT models.

• We evaluate different ensembling strategies
on 20 low-resource translation directions of
FLORES benchmark, and demonstrate that
multi-pivot ensembling still lags behind the
English pivoting.

2 Related Work

Several approaches exploited different multi-
pivoting methods to improve the performance
of NMT models, specifically for low-resource
language directions (Macháček et al., 2023;
Dabre et al., 2021; Kim et al., 2019; Cheng
et al., 2017; Firat et al., 2016b). Macháček et al.
(2023) analyzed the robustness of multi-source
NMT in transcription errors. Dabre et al. (2021)
improved the performance of simultaneous
NMT by translating the source language into
pivot languages, then applying the multi-source
translation method (Zoph and Knight, 2016). Firat
et al. (2016b) proposed a novel zero-resource
translation approach by exploiting the multi-way
multilingual NMT model, introduced by Firat
et al. (2016a), and improved the performance over
traditional pivot-based translation (Wu and Wang,

2007; Utiyama and Isahara, 2007). Cheng et al.
(2017) introduced the pivot-based NMT model by
jointly training source-to-pivot and pivot-to-target
directions. Currey and Heafield (2019) proposed
an alternative method by applying a monolingual
pivot-language data for zero-resource NMT via
back-translation (Sennrich et al., 2016).

3 Ensembling Methods

When performing direct translation, the score of
a translation Y given a source sequence Xsrc is
computed as follows:

s(Y ;Xsrc)=

|Y |∑

i=1

log p(yi|y<i,Xsrc) (1)

where p(yi|y<i,Xsrc) is the predicted probability
of the i-th target token yi given the previous tokens
y<i and the source sequence Xsrc.

For multi-pivot ensembling, we select a set
of pivot languages M = {µ1, µ2, ..., µK} and
generate the corresponding pivot translations
XM ={Xµ1 ,Xµ2 ,...,XµK}. The final translation is
generated by ensembling predictions, conditioned
on the individual pivot translations.

In the following, we describe two approaches
for such an ensembling: the multilingual averaging
method and our MaxEns approach.

Multilingual Average (MultiAvg). Inspired by
Fan et al. (2021); Firat et al. (2016b), we average
the predicted probabilities of a token yi across all
pivot languages:3

s(Y ;XM )=

|Y |∑

i=1

log
1

|M |

|M |∑

k=1

p(yi|y<i,Xµk
). (2)

where |Y | and |M | are the number of target tokens
and pivots, respectively.

Maximum Ensemble (MaxEns). As novel
combination strategy that biases the prediction
towards the more confident pivot, we propose the
following approach:

s(Y ;XM )=

|Y |∑

i=1

|M |
max
k=1

[log p(yi|y<i,Xµk
)]. (3)

3We tried both averaging probabilities and log-probabilities
in preliminary experiments, and averaging probabilities worked
better in terms of translation performance and hallucination.

170



Son más fríos ... 

El so términu ...
“Hulle is koeler as die omliggende
omgewing in die dag en warmer in

die nag.”

English

French

Spanish

AST

AST

AST

El so términu ...

MaxEns
Son más fríos que'l ambiente 
nel día y más calientes na nueche.

MultiAvg El númberu d'especies d'especies
d'especies d'especies ...

max of distribution :
0.15

Son más fresques que la superficie que
 les arrodia pel día y más caldies pela nueche.

Reference

max of distribution :
0.14

max of distribution :
0.91

They are cooler than the surrounding
surface in the day and warmer at night.

They are colder than the environment
in the day and warmer at night.

The number of species of species 
of species of species ...

Figure 1: A sample translation of Afrikaans to Asturian by using SMaLL100. Translations of individual pivots are
shown in the middle, output translations of MaxEns and MultiAvg on the right. MaxEns method eliminates the
hallucination, as it follows the more confident pivot (here, Spanish). Glosses in English are presented within gray boxes.

where it chooses the maximum score between pre-
dictions of pivots for token yi. Intuitively, MaxEns
selects the most confident pivot language when
generating token yi.

4 Results and Discussion

4.1 Experimental Setup
Models. We used M2M100 and SMaLL100
as our massively multilingual NMT models.
M2M100 is trained on large-scale multilingual
corpora (Schwenk et al., 2021; El-Kishky et al.,
2020) with a novel data mining procedure, that
uses language similarities. We exploit M2M100
variant with 418M parameters. SMaLL100 (Mo-
hammadshahi et al., 2022a) is a distilled version of
M2M100 12B with 330M parameters. It has been
trained with uniform sampling across all language
pairs on nearly 6% of M2M100 pre-training
dataset, and achieved competitive performance
with M2M100 with 1.2B parameters.

Evaluation Setting. Inspired by Fan et al. (2021),
we use the FLORES-101 benchmark (Goyal et al.,
2022). It contains 3,001 sentences derived
from English Wikipedia, and translated into 101
languages by human. We use the devtest subset for
the evaluation. To better understand the effect of
multilingual pivoting, we chose five low-resource
(or very low) languages from different branches
of Indo-European, including Germanic, Romance,
Slavic, Indo-Aryan, and Iranian. These languages
are Afrikaans, Asturian, Croatian, Urdu, and

Pashto. We evaluate on all permutations of these
languages, which results in 20 language pairs.
As pivot languages, we use English, Spanish
and French. English has the largest amount of
bitext overall in the training data of M2M100, and
Spanish and French have the largest amount of
bitext with English (Fan et al., 2021).

Evaluation Metrics. spBLEU4 is used to
measure the translation performance (Goyal et al.,
2022). For the hallucination measurement, we
apply a coarse estimation method inspired by Lee
et al. (2019); Müller and Sennrich (2021), counting
the proportion of sentences with ChrF (Popović,
2015)5 less than 20.6 Additionally, we use top
n-gram (TNG) (Guerreiro et al., 2023b; Raunak
et al., 2022, 2021) for detecting oscillatory
hallucinations.7 We apply significance testing with
p=0.05.8 Beam size 5 is used for inference.

4.2 Results & Discussion

Figure 1 illustrates an example of multi-pivot trans-
lation of Afrikaans to Asturian by using English,
French, and Spanish as pivots. Translations via
English and French pivots are hallucinations, while
the translation via the Spanish pivot is more related
to the reference translation. The output of MaxEns

4BLEU is computed after tokenization with SentencePiece
with 256K tokens (Goyal et al., 2022).

5sacrebleu 2.3.1 (Post, 2018) with ChrF3 is used.
6Threshold based on manual inspection.
7We follow Guerreiro et al. (2023b) and usen=4 and t=2.
8Paired bootstrap resampling (Koehn, 2004) with sacrebleu.
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Language Pairs Direct MultiAvg MaxEns EN Pivot

Afrikaans-Asturian 20.6 21.8 22.5 21.0
Afrikaans-Croatian 22.1 22.5 22.4 22.8
Afrikaans-Urdu 14.0 13.8 13.9 14.4
Afrikaans-Pashto 5.9 5.8 6.0 6.0
Asturian-Afrikaans 18.5 19.9 19.8 21.0
Asturian-Croatian 16.1 20.4 20.0 20.4
Asturian-Urdu 8.4 11.8 11.8 12.6
Asturian-Pashto 3.6 5.0 5.0 5.4
Croatian-Afrikaans 20.5 20.7 20.8 21.2
Croatian-Asturian 19.7 20.8 21.6 19.7
Croatian-Urdu 13.5 13.1 12.9 13.2
Croatian-Pashto 5.0 5.2 5.2 5.6
Urdu-Afrikaans 12.1 13.0 13.2 13.8
Urdu-Asturian 7.7 11.7 12.8 12.2
Urdu-Croatian 11.2 12.0 11.9 12.2
Urdu-Pashto 4.7 4.4 4.2 4.6
Pashto-Afrikaans 10.2 11.0 11.0 11.4
Pashto-Asturian 6.9 9.9 10.9 10.4
Pashto-Croatian 8.7 9.9 10.0 9.8
Pashto-Urdu 10.0 9.2 9.2 9.5

Average 12.0 13.1 13.3 13.4

Table 1: Average spBLEU (higher is better) of different
pivoting methods for M2M100 and SMaLL100 on
selected language pairs of FLORES-101. Best systems
(not significantly outperformed by any other) in bold.

approach is closer to the translation achieved by
using Spanish as the pivot language, since the NMT
model is more confident for this pivot (maximum
of output probability distributions for the first
token of English, French, and Spanish pivots are
0.15, 0.14, and 0.91, respectively). In contrast, the
output of the MultiAvg method is a hallucination.
Tables 1 and 2 show translation and hallucination
performances on 20 language directions, respec-
tively.9 TNG scores for measuring oscillatory
hallucinations are provided in Appendix B.
MultiAvg approach achieves better translation
performance and lower hallucination compared to
the direct translation. However, MultiAvg method
lags behind the English pivoting approach in terms
of both translation quality (13.4 vs. 13.1) and the
occurrence of hallucinations (18.8% vs. 22.5%).10

Applying the MaxEns method instead for com-
bining pivots tightens this gap, and leads to
better translation and reduces the occurrence of
hallucinations. Specifically, MaxEns reaches
competitive translation quality with English

9Average scores of M2M100 and SMaLL100 are shown in
Table 1 and 2. Individual scores are provided in Appendix A.

104.5% vs. 7.3% based on the TNG metric, as shown in
Table 7.

Language Pairs Direct MultiAvg MaxEns EN Pivot

Afrikaans-Asturian 5.9 6.4 4.0 4.3
Afrikaans-Croatian 1.7 2.2 2.2 1.9
Afrikaans-Urdu 11.3 13.9 13.4 11.1
Afrikaans-Pashto 49.5 54.1 53.2 49.8
Asturian-Afrikaans 8.8 6.2 7.8 2.1
Asturian-Croatian 19.5 5.3 8.2 3.5
Asturian-Urdu 40.7 23.4 22.9 18.0
Asturian-Pashto 66.7 62.2 62.2 55.9
Croatian-Afrikaans 1.1 1.5 1.2 1.3
Croatian-Asturian 6.1 6.3 3.8 5.0
Croatian-Urdu 13.2 16.5 16.3 12.7
Croatian-Pashto 54.7 58.4 56.6 53.1
Urdu-Afrikaans 9.8 9.2 9.4 4.9
Urdu-Asturian 31.5 19.9 14.7 12.5
Urdu-Croatian 14.1 15.4 15.5 11.8
Urdu-Pashto 56.8 66.0 66.8 60.1
Pashto-Afrikaans 9.1 10.5 10.0 6.6
Pashto-Asturian 26.9 21.2 15.7 15.6
Pashto-Croatian 18.4 18.5 18.7 16.7
Pashto-Urdu 24.7 33.2 33.3 28.9

Average 23.5 22.5 21.8 18.8

Table 2: Average percentage (100%) of hallucinations
(chrF < 20; lower is better) of different pivoting methods
for M2M100 and SMaLL100 on selected language pairs
of FLORES-101.

pivoting on average (13.3 vs. 13.4), while still
underperforming on hallucinations, as most of the
parallel sentences of pre-training data for M2M100
and SMaLL100 are paired with English.

In general, the optimal strategy differs across
translation directions, highlighting the potential for
future research on determining the most effective
translation strategy for each direction without
depending on the development data for each.

5 Conclusion

We investigate more closely the multi-source self-
ensembling method of Fan et al. (2021) for combin-
ing multiple translation paths to improve transla-
tions of low-resource (or very-low) language pairs.
Specifically, this approach (named MultiAvg, here)
averages the predictions of probability distributions
of each source language in an ensemble-like man-
ner. We evaluated it on 20 low-resource language
pairs of FLORES-101 benchmark by using two
massively multilingual NMT models, SMALL100
and M2M100. The MultiAvg method performs
better than direct translation in terms of both trans-
lation quality and hallucinations, however it lags
behind applying only English as pivot. Then, we
proposed MaxEns method, a novel combination
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method that chooses the maximum of prediction
probabilities of pivots for each designated target
token. This approach results in a better translation
quality compared to MultiAvg, while reducing hal-
lucinations. On average, it achieves competitive
performance with English pivoting with regard to
the translation quality metric, but performs worse
with regard to the hallucination metric. The most ef-
fective translation strategy varies depending on the
translation direction, suggesting the need for future
research to identify the optimal strategy for each di-
rection independently of the specific development
data. We hope our findings are a starting point
for the broader integration of ensemble techniques
within the context of massively multilingual NMT.

The insights of our experiments, specifically
the stickiness of hallucinations with different
inputs, have inspired our follow-up work on
source-contrastive decoding (Sennrich et al.,
2024), which has empirically shown to be an
effective strategy to mitigate hallucinations. Future
work could revisit multi-pivot ensembling in
combination with source-contrastive decoding.

Limitations

We apply our method to two common mas-
sively multilingual NMT models, SMALL100 and
M2M100; future work can extend our work to more
recent large models e.g. NLLB200 (NLLB Team
et al., 2022) and LLMs (Touvron et al., 2023;
Workshop et al., 2022). We tested our approach
on a subset of 20 low-resource language directions,
future research can study the method for further
language directions, including medium-resource
language pairs.
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Appendix A Individual Scores of M2M100 and SMaLL100 Models

A.A M2M100 Results

Language Pairs Direct MultiAvg MaxEns EN Pivot

Afrikaans-Asturian 19.3 20.2 21.0 20.2
Afrikaans-Croatian 20.8 21.1 21.0 21.4
Afrikaans-Urdu 14.0 13.6 13.8 14.4
Afrikaans-Pashto 5.4 5.4 5.5 5.6
Asturian-Afrikaans 14.2 16.5 16.1 18.0
Asturian-Croatian 11.1 19.0 18.3 19.4
Asturian-Urdu 6.3 11.4 11.4 12.6
Asturian-Pashto 2.4 4.4 4.5 5.0
Croatian-Afrikaans 17.6 17.9 17.9 18.2
Croatian-Asturian 18.8 19.5 20.6 19.1
Croatian-Urdu 13.6 13.3 13.1 13.4
Croatian-Pashto 4.4 4.9 4.9 5.4
Urdu-Afrikaans 9.0 9.8 10.0 10.6
Urdu-Asturian 7.1 9.9 10.8 10.9
Urdu-Croatian 8.9 10.0 9.8 10.1
Urdu-Pashto 4.2 3.8 3.6 4.2
Pashto-Afrikaans 8.3 9.3 8.9 9.3
Pashto-Asturian 7.8 9.6 10.4 9.7
Pashto-Croatian 8.0 9.0 9.0 8.5
Pashto-Urdu 9.8 8.9 8.9 9.0

Average 10.6 11.9 12.0 12.2

Table 3: spBLEU (higher is better) of different pivoting methods for M2M100 model on selected language pairs
of FLORES-101 (Goyal et al., 2022) benchmark. Best systems (not significantly outperformed by any other) in bold.

Language Pairs Direct MultiAvg MaxEns EN Pivot

Afrikaans-Asturian 7.0 8.8 5.0 3.6
Afrikaans-Croatian 2.6 2.6 2.4 2.3
Afrikaans-Urdu 12.2 15.5 14.5 11.5
Afrikaans-Pashto 53.6 59.7 57.0 54.8
Asturian-Afrikaans 15.7 10.0 13.0 2.8
Asturian-Croatian 35.0 7.3 12.6 4.4
Asturian-Urdu 55.8 26.7 27.3 18.4
Asturian-Pashto 73.4 68.0 67.8 58.6
Croatian-Afrikaans 1.4 1.9 1.5 1.7
Croatian-Asturian 6.5 8.4 4.5 3.9
Croatian-Urdu 13.3 17.0 16.4 13.6
Croatian-Pashto 59.1 62.0 58.8 57.5
Urdu-Afrikaans 15.2 14.5 14.8 7.7
Urdu-Asturian 38.9 28.0 21.5 15.9
Urdu-Croatian 20.3 22.3 22.2 17.9
Urdu-Pashto 60.2 72.7 73.3 65.1
Pashto-Afrikaans 11.5 12.8 12.7 9.0
Pashto-Asturian 23.1 25.1 17.9 18.0
Pashto-Croatian 20.5 21.6 22.5 21.1
Pashto-Urdu 26.6 35.9 35.5 31.9

Average 27.6 26.0 25.0 21.0

Table 4: The percentage of hallucinations (chrF < 20; lower is better) of different pivoting methods for M2M100
model on selected language pairs of FLORES-101 (Goyal et al., 2022) benchmark.

177



A.B SMaLL100 Results

Language Pairs Direct MultiAvg MaxEns EN Pivot

Afrikaans-Asturian 22.0 23.4 24.0 21.7
Afrikaans-Croatian 23.5 23.9 23.8 24.1
Afrikaans-Urdu 13.9 14.0 14.0 14.4
Afrikaans-Pashto 6.4 6.1 6.4 6.4
Asturian-Afrikaans 22.8 23.3 23.4 23.8
Asturian-Croatian 21.1 21.8 21.6 21.4
Asturian-Urdu 10.5 12.1 12.2 12.5
Asturian-Pashto 4.8 5.6 5.5 5.7
Croatian-Afrikaans 23.4 23.4 23.7 24.2
Croatian-Asturian 20.6 22.1 22.5 20.2
Croatian-Urdu 13.3 12.8 12.6 13.0
Croatian-Pashto 5.6 5.4 5.4 5.8
Urdu-Afrikaans 15.1 16.1 16.3 17.0
Urdu-Asturian 8.3 13.4 14.8 13.4
Urdu-Croatian 13.4 14.0 13.9 14.3
Urdu-Pashto 5.1 5.0 4.8 5.0
Pashto-Afrikaans 12.0 12.7 12.9 13.5
Pashto-Asturian 6.0 10.2 11.3 11.1
Pashto-Croatian 9.4 10.8 11.0 11.0
Pashto-Urdu 10.2 9.5 9.4 9.9

Average 13.4 14.3 14.5 14.4

Table 5: spBLEU (higher is better) of different pivoting methods for SMaLL100 model on selected language pairs
of FLORES-101 (Goyal et al., 2022) benchmark. Best systems (not significantly outperformed by any other) in bold.

Language Pairs Direct MultiAvg MaxEns EN Pivot

Afrikaans-Asturian 4.7 4.1 2.9 5.0
Afrikaans-Croatian 0.9 1.9 2.1 1.5
Afrikaans-Urdu 10.4 12.3 12.2 10.8
Afrikaans-Pashto 45.4 48.4 49.4 44.8
Asturian-Afrikaans 1.9 2.5 2.6 1.5
Asturian-Croatian 4.1 3.3 3.9 2.7
Asturian-Urdu 25.6 20.1 18.5 17.5
Asturian-Pashto 59.9 56.5 56.7 53.3
Croatian-Afrikaans 0.8 1.1 0.9 0.9
Croatian-Asturian 5.6 4.2 3.1 6.1
Croatian-Urdu 13.2 16.0 16.1 11.8
Croatian-Pashto 50.3 54.7 54.5 48.7
Urdu-Afrikaans 4.4 4.0 4.0 2.1
Urdu-Asturian 24.1 11.8 7.9 9.0
Urdu-Croatian 7.9 8.5 8.8 5.7
Urdu-Pashto 53.4 59.3 60.3 55.2
Pashto-Afrikaans 6.7 8.3 7.3 4.2
Pashto-Asturian 30.7 17.3 13.6 13.2
Pashto-Croatian 16.4 15.4 14.9 12.4
Pashto-Urdu 22.7 30.5 31.1 25.9

Average 19.5 19.0 18.5 16.6

Table 6: The percentage of hallucinations (chrF < 20; lower is better) of different pivoting methods for SMaLL100
model on selected language pairs of FLORES-101 (Goyal et al., 2022) benchmark.
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Appendix B Results of oscillatory hallucinations based on TNG metric

Language Pairs Direct MultiAvg MaxEns EN Pivot

Afrikaans-Asturian 2.2 2.1 0.7 1.3
Afrikaans-Croatian 0.3 0.3 0.2 0.2
Afrikaans-Urdu 1.2 1.5 1.1 0.6
Afrikaans-Pashto 6.7 6.7 5.1 4.7
Asturian-Afrikaans 5.1 3.0 3.9 0.2
Asturian-Croatian 11.9 1.5 3.0 0.4
Asturian-Urdu 15.7 4.1 4.3 0.7
Asturian-Pashto 20.9 12.8 11.6 5.0
Croatian-Afrikaans 0.1 0.2 0.2 0.0
Croatian-Asturian 2.2 2.0 1.0 1.2
Croatian-Urdu 1.5 1.3 1.1 0.5
Croatian-Pashto 7.2 6.4 4.9 4.3
Urdu-Afrikaans 8.2 3.3 3.3 0.9
Urdu-Asturian 15.8 6.2 4.0 2.4
Urdu-Croatian 2.5 2.6 2.8 0.8
Urdu-Pashto 9.3 11.7 9.5 4.2
Pashto-Afrikaans 2.7 3.6 3.5 0.8
Pashto-Asturian 16.0 6.2 4.1 2.0
Pashto-Croatian 3.6 2.9 3.0 1.0
Pashto-Urdu 2.5 4.8 4.3 1.6

Average 7.3 4.5 4.0 1.9

Table 7: Average percentage (100%) of hallucinations (TNG metric; lower is better) of different pivoting methods
for M2M100 and SMaLL100 on selected language pairs of FLORES-101.

Language Pairs Direct MultiAvg MaxEns EN Pivot

Afrikaans-Asturian 1.8 2.6 1.1 0.5
Afrikaans-Croatian 0.5 0.49 0.2 0.3
Afrikaans-Urdu 1.9 2.7 1.6 0.9
Afrikaans-Pashto 10.4 11.6 9.1 8.0
Asturian-Afrikaans 9.8 5.6 6.8 0.2
Asturian-Croatian 22.6 2.5 5.2 0.4
Asturian-Urdu 25.3 7.6 7.7 1.2
Asturian-Pashto 36.8 23.6 21.3 9.2
Croatian-Afrikaans 0.1 0.2 0.2 0.0
Croatian-Asturian 2.3 2.7 1.1 0.2
Croatian-Urdu 2.2 2.1 1.7 0.7
Croatian-Pashto 11.8 11.1 8.5 7.5
Urdu-Afrikaans 15.2 6.1 6.1 1.5
Urdu-Asturian 18.2 9.0 6.8 2.1
Urdu-Croatian 4.1 4.8 4.9 1.2
Urdu-Pashto 13.3 21.0 16.8 7.4
Pashto-Afrikaans 4.2 4.3 4.7 1.1
Pashto-Asturian 12.7 6.9 5.1 1.2
Pashto-Croatian 4.2 3.7 3.7 1.6
Pashto-Urdu 3.3 7.5 6.2 2.8

Average 10.9 7.6 6.7 2.8

Table 8: The percentage of hallucinations (TNG metric; lower is better) of different pivoting methods for M2M100
model on selected language pairs of FLORES-101 (Goyal et al., 2022) benchmark.

179



Language Pairs Direct MultiAvg MaxEns EN Pivot

Afrikaans-Asturian 2.5 1.6 0.2 2.1
Afrikaans-Croatian 0.0 0.1 0.2 0.1
Afrikaans-Urdu 0.4 0.3 0.6 0.2
Afrikaans-Pashto 2.9 1.8 1.2 1.3
Asturian-Afrikaans 0.4 0.5 0.9 0.2
Asturian-Croatian 1.2 0.4 0.7 0.4
Asturian-Urdu 6.1 0.7 0.9 0.2
Asturian-Pashto 5.0 2.0 1.9 0.9
Croatian-Afrikaans 0.0 0.1 0.1 0.0
Croatian-Asturian 2.1 1.3 0.8 2.2
Croatian-Urdu 0.8 0.4 0.4 0.3
Croatian-Pashto 2.6 1.7 1.3 1.2
Urdu-Afrikaans 1.1 0.6 0.4 0.3
Urdu-Asturian 13.4 3.3 1.2 2.6
Urdu-Croatian 0.8 0.4 0.7 0.4
Urdu-Pashto 5.3 2.3 2.1 1.0
Pashto-Afrikaans 1.2 2.9 2.2 0.4
Pashto-Asturian 19.4 5.4 3.1 2.7
Pashto-Croatian 3.0 2.1 2.3 0.3
Pashto-Urdu 1.6 2.2 2.4 0.4

Average 3.6 1.5 1.2 0.9

Table 9: The percentage of hallucinations (TNG metric; lower is better) of different pivoting methods for SMALL100
model on selected language pairs of FLORES-101 (Goyal et al., 2022) benchmark.
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